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range of contrasts likely to be encountered in typical natural scenes 
(Albrecht and Hamilton, 1982; Frazor and Geisler, 2006). Therefore, 
contrast-sensitive cells must continually modulate their gain in 
order to adequately represent local contrast.

Optimal contrast sensitivity is paramount to successful object 
perception because edges and textures are defi ned by contrast. This 
is refl ected by the fact that a large portion of neurons in the visual 
system are sensitive to ambient contrast level, including areas V1, 
V2, V3a, V4 and MT (Tootell et al., 1995, 1997; Boynton et al., 
1999; Avidan et al., 2002; Gardner et al., 2005). However, there is a 
gradual trend towards increasing contrast invariance as one ascends 
the ventral visual stream, culminating in almost totally contrast-
independent responses in higher level object-sensitive areas of the 
occipitotemporal cortex, such as primate pSTS (Rolls and Baylis, 
1986), lateral occipital complex (LOC) and posterior fusiform gyrus 
(Avidan et al., 2002). This trend is likely one facet of object con-
stancy in visual perception (Sary et al., 1993; Ito et al., 1995; Grill-
Spector et al., 1999); namely, an increasing capacity to respond to 
invariant and intrinsic properties of objects, such as their semantic 
category. Conversely, object-evoked responses in the higher ventral 
stream areas are less sensitive to transient object properties that 
depend on viewing conditions, such as luminance contrast across 
retinal receptive fi elds, retinal image size and position, etc.

INTRODUCTION
A prominent notion in cognitive neuroscience holds that top-down 
factors such attention, knowledge and expectations can infl uence 
how incoming stimuli are processed by sensory systems. Attention-
directing cues in visual spatial attention tasks can help the visual 
system to prepare to process task-relevant information at a particu-
lar region of the visual fi eld by biasing cortical excitability (Hillyard 
and Mangun, 1987; Hillyard et al., 1998). The context in which 
visual input occurs can also infl uence the subsequent  bottom-up 
analysis via long-range feedback connections (Bullier, 2001; Bar 
et al., 2006; Kveraga et al., 2007a,b). In addition, sensory process-
ing may also depend on working memory capacity (Agam and 
Sekuler, 2007). In that sense, any prior knowledge or cue that could 
potentially narrow down stimulus expectations could be benefi cial 
to perception.

Top-down control may be particularly important in the visual 
system, which must remain sensitive to local variations in lumi-
nance (contrast) across the retina. Contrast-sensitive neurons 
do not respond to stimulation in their receptive fi eld until some 
threshold contrast level is reached. As stimulus intensity increases 
above threshold so does the neuron’s rate of fi ring until it saturates. 
This dynamic range of contrasts in which the neuron is most sen-
sitive to incremental changes is considerably narrower than the 
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Second, if participants utilize the cue in the Informative  condition 
to increase or decrease their sensitivity, then any activity related to 
top-down preparation should also differentiate trials based on the 
identity of the cue, but only when the cue is informative. In other 
words, we should be able to isolate differences between cues that 
signal low contrasts versus cues that signal high contrasts, but only 
in the Informative condition. This contrast would refl ect the differ-
ence between using the cue to shift sensitivity towards lower ver-
sus higher contrasts. Note that these hypothesized task differences 
refl ect overlapping stages of processing. If both could be isolated, 
then owing to their functional similarities it is likely that they would 
overlap spatially and temporally. Given that the meaning of the 
cue must be processed for it to confer any predictive advantage, 
we expected the task-relevant potentials to comprise mostly late 
endogenous responses (>200 ms following cue onset).

One purpose of a top-down control system for contrast gain 
may be to allow representations of objects in higher areas to remain 
invariant across different viewing conditions, including varying 
levels of illumination. Therefore, areas most involved in knowledge-
driven gain adjustments may be those whose responses typically do 
not depend as much on ambient contrast, such as LOC or posterior 
fusiform gyrus (Avidan et al., 2002).

Our experimental question was framed in terms of concrete 
task differences, but the absolute latency or spatial distribution of 
those differences was diffi cult to predict because we used a novel 
paradigm that had not been previously studied using neuroimag-
ing techniques. Rather than confi ne our analysis to a few select 
peaks and electrodes and potentially miss interesting task effects, we 
chose a multivariate analytic approach (spatiotemporal partial least 
squares; ST-PLS) (McIntosh et al., 1996; McIntosh and Lobaugh, 
2004) that allowed us to detect patterns of task-modulated activity 
simultaneously across both the spatial and temporal domains and 
to restrict those patterns by hypothesized task effects. Moreover, we 
sought to resolve these patterns into component processes. To this 
end, prior to statistical analysis data were subjected to groupwise 
independent component analysis (ICA) (Kovacevic and McIntosh, 
2007). This served to create an alternate spatial representation of 
the EEG signal in which task effects could be assessed across com-
ponents with maximally temporally independent time courses. 
Since independence is maximized in a temporal sense, this tech-
nique was ideally suited to studying how experimental effects are 
expressed across distinct stages of information processing. Data 
compression by ICA has been shown to yield more robust statis-
tical effects in subsequent statistical analyses and the combined 
groupwise ICA/ST-PLS approach has recently proven fruitful in 
studying cue-driven processes in both auditory and visual modali-
ties (Kovacevic and McIntosh, 2007; Diaconescu et al., 2008). We 
used standardized low resolution electromagnetic tomography 
(sLORETA) (Pascual-Marqui, 2002) for cortical source localiza-
tion of task-relevant components.

In this paper we also consider an alternative hypothesis for the 
effect reported by de la Rosa et al. (2009), which posits that partici-
pants do not use the informative cue to modulate contrast gain, but 
rather to avoid the occurrence of the high-contrast grating, perhaps 
by blinking, by moving their eyes or by “defocusing” attention. In 
this view, gain is at a constant level in all conditions but sensitivity is 
adversely affected by an unpredictable high-contrast grating which 

There is much evidence to suggest that contrast sensitivity can be 
controlled in stimulus-driven fashion (Albrecht and Hamilton, 1982; 
Ohzawa et al., 1982; Ross and Speed, 1991; Foley, 1994; Boynton 
et al., 1999; Gardner et al., 2005). For example, if the local ambient 
contrast at a cell’s receptive fi eld is decreased, contrast gain of that 
cell tends to be amplifi ed. However, selective attention has also been 
shown to modulate physiological responses of  contrast-sensitive 
cells as well as the subsequent perceptual experience (apparent 
contrast). Studies using single-cell recordings have demonstrated 
that contrast-dependent neuronal responses can also be enhanced 
by attention (Reynolds et al., 2000; Martınez-Trujillo and Treue, 
2002). In psychophysical studies, covert shifts of  attention – be they 
transient or sustained – tend to decrease the smallest contrast incre-
ment that can be reliably detected (Carrasco et al., 2004; Huang 
and Dobkins, 2005; Ling and Carrasco, 2006).

Moreover, a recent study behaviourally demonstrated that con-
trast sensitivity could also be modulated by knowledge and/or 
expectations about the contrast of an upcoming target (de la Rosa 
et al., 2009). Participants identifi ed a series of cued gratings by their 
contrast. Four gratings in the stimulus set were of low contrast and 
were diffi cult to identify, while a fi fth grating had extremely high 
contrast and was easy to identify. In the Baseline condition only the 
four low-contrast gratings were presented. In another condition 
(Uninformative cue) the high-contrast grating was also presented, 
but was unpredictable. In the third condition (Informative cue) 
the high-contrast grating was predicted by a cue. The identity of 
the specifi c low-contrast grating was unpredictable in all condi-
tions. Participants’ contrast sensitivity (indexed by their ability to 
correctly identify low-contrast gratings) was assessed while system-
atically manipulating the predictability of a high-contrast grating. 
The addition of an occasional unpredictable high-contrast grating 
to the stimulus set adversely affected identifi cation accuracy for 
low-contrast gratings relative to the condition in which only the low-
contrast gratings are presented. However, when the high-contrast 
grating was made predictable by the cue, there was no such accuracy 
cost. This suggested that knowledge conferred by the cue was used 
to tune contrast sensitivity on each trial. This mechanism could 
potentially serve to maximize discriminability when an observer is 
scanning a familiar visual scene by using prior knowledge to match 
contrast sensitivity to impending changes in contrast.

In the present investigation we used the event-related poten-
tials (ERP) technique in conjunction with the cued absolute 
identifi cation paradigm described by de la Rosa et al. (2009) to 
resolve stages of information processing in the brain that facili-
tate such knowledge-driven sensory gain control. Namely, we 
sought to isolate spatiotemporal patterns of brain activity related 
to cue-driven preparation rather than the evoked responses to the 
targets themselves.

First, we hypothesized that any such activity should differentiate 
conditions according to the informative value of the cue rather than 
the ability of the participants to identify gratings. In other words, 
cue-locked activity should differ between the Informative condition 
on one hand and the Baseline/Uninformative conditions on the 
other, despite the fact that the Baseline and Informative conditions 
cannot be distinguished in terms of accuracy. This task contrast, 
if it exists, would refl ect the difference between using the cue and 
not using the cue to adjust sensitivity.
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saturates neuronal responses. Therefore, high- contrast stimuli 
impair accuracy for all stimuli in the Uninformative condition but 
they have no effect in the Informative condition because they can 
be avoided. The control experiment was designed to behaviourally 
test this hypothesis by forcing participants to make a perceptual 
judgment about high- and low-contrast stimuli.

MATERIALS AND METHODS
PARTICIPANTS
Fifteen naïve, healthy young adults (eight female, 19–29 years old, 
mean = 23.6, standard deviation = 2.92 years) participated in the 
ERP experiment. Five participants took part in the behavioural con-
trol experiment (two female, 18–27 years old, mean = 23.0, standard 
deviation = 3.61 years). Participants were recruited from the volun-
teer pool of the Rotman Research Institute at Baycrest Centre. All 
participants were right-handed and reported normal or corrected-
to-normal vision. Experiments were performed with the informed 
consent of each individual in accordance with the joint Baycrest 
Centre-University of Toronto Research Ethics Committee.

STIMULI AND TASK
The target stimuli were a set of three vertical sinusoidal gratings 
generated in MATLAB (Mathworks, Inc.), using the Psychophysics 
Toolbox extension (Brainard, 1997). The gratings were identical in 
all physical characteristics (5 × 5° visual angle, spatial frequency 
4 cpd and phase equal to zero) save for contrast, such that two grat-
ings had relatively low contrast (19% and 26%) while the third had 
high contrast (100%). Contrast was measured using the Michelson 
formula (Michelson, 1927):

L L

L L
max min

max min

−
+

This manipulation served not only to create a high-low separa-
tion within the set, but also to increase the diffi culty of correctly 
identifying low-contrast gratings, because they were more similar 
to each other than to the high-contrast grating.

Participants were comfortably seated in a dimly-lit and dou-
ble-walled sound-attenuated chamber (IAC model 1204A) in 
the Rotman Research Institute at Baycrest Centre, at a viewing 
distance of 60 cm from a Sony Trinitron GDM-F520 computer 
screen while stimuli were presented centrally over a uniform grey 
background (luminance: 55.16 cd/m2). In each trial a symbolic 
cue was presented fi rst for 550 ms (Figure 1). The cue could be 
either a cross (“+”) or a letter “H”. Following an inter-stimulus 
interval (ISI) equal to 500 ms, a target sinusoidal grating was 
presented for 500 ms. The task was to correctly identify the grating 
by the relative magnitude of its contrast, using a number key on 
a keyboard. The 19%-, 26%- and 100%-contrast gratings corre-
sponded to keys numbered 1, 2 and 3, respectively. The response 
period was limited to 2 s following the onset of the target grating. 
Participants were instructed to respond as accurately as possible. 
At the end of the response period participants were shown the 
correct number of the grating (1, 2 or 3, presented for 500 ms), 
regardless of whether their response on that trial was correct or 
incorrect. To reduce expectancy effects, the trials were jittered 
such that the inter-trial interval between the offset of the feedback 

stimulus at the end of one trial and the onset of the cue at the start 
of the next trial was varied randomly and with equal probability 
between 800 and 1200 ms.

Trials were organized into condition-specifi c runs that differed 
in terms of target sets and the informative value of the cues. In 
the Baseline (B) condition, only the two low-contrast gratings 
(19% and 26%) could appear on any given trial (Figure 2). In 
the Informative-Cue (IC) and Uninformative-Cue (UC) condi-
tions all three gratings (19%, 26% and 100%) could appear. Each 
grating was presented 66 times in each condition, across two runs. 
Thus, Baseline consisted of 132 trials, while the Informative- and 
Uninformative-Cue conditions consisted of 198 trials each.

In both the Baseline and Uninformative-Cue conditions, the “H” 
cue was randomly assigned to precede 16 of the 66 presentations of 
each grating, while the “+” cue was assigned to precede the other 50 
presentations. In other words, the “H” cue appeared on 25% of the 
trials and the “+” cue appeared on 75% of the trials. This random 
and equiprobable assignment ensured that the cues were unin-
formative and could not be used to predict the stimulus contrast. 
In the Informative-Cue condition the “H” cue was always assigned 
to trials in which the high-contrast grating would be presented and 
the “+” cue was always assigned to trials in which the low-contrast 
gratings would be presented. Therefore, the cues were informative 
in each trial because they could be used to predict whether the 
contrast of the ensuing stimulus would be high or low.

Participants were verbally advised about cue validity prior to each 
run. Each participant completed 66 Baseline trials as a practice block 
(discarded from the analysis) as well as two consecutive runs of each 
condition. All participants initially completed two Baseline runs, 
while the order of the subsequent condition-specifi c pairs of runs 
was counterbalanced across participants. Thus, each participant 
completed a total of 66 practice trials and 528 experimental trials.

ELECTROPHYSIOLOGICAL SIGNAL ACQUISITION AND PROCESSING
The electroencephalogram (EEG) was continuously recorded from 
76 scalp locations using Ag/Ag-Cl-tipped electrodes attached to a 
custom cap according to the international 10/20 system and digi-
tized at a rate of 512 Hz. Recordings were made using the Active-Two 
system (BioSemi, Amsterdam, The Netherlands) which does not 
require impedance measurements or an online reference. Offsets 
from the common mode were no greater than 25 mV across all 
electrodes. All offl ine signal processing and artifact correction was 
performed using EEGLAB software (Delorme and Makeig, 2004). 
Continuous recordings were downsampled to 256 Hz,  average-
referenced and digitally fi ltered [band-pass: 0.1–100 Hz; notch: 
60 Hz]. Data were then epoched and baselined into [−200 1950] ms 
segments with a [−200 0] ms pre-cue baseline. Trials with excessive 
signal amplitude were rejected fi rst, leaving between 469 and 518 
trials and an average of 493 trials per subject. Ocular and muscle 
artifacts were identifi ed and subtracted from the remaining trials on 
a subject-by-subject basis using ICA (Delorme and Makeig, 2004). 
Both correct- and incorrect-response trials were analyzed.

GROUPWISE INDEPENDENT COMPONENT ANALYSIS
The term “groupwise” refers to the fact that the ICA decomposition 
was performed simultaneously across all subjects and all conditions 
(Kovacevic and McIntosh, 2007). Data from all participants were 
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concatenated and the optimal number of underlying dimensions for 
the whole dataset was determined using the Bayesian Information 
Criterion (BIC) (Hansen and Yu, 2001). A model with nine dimen-
sions yielded the maximum BIC probability. Concatenated data 
were fi rst subjected to principal components analysis (PCA) for 
spatial dimensionality reduction and then decomposed using the 
Infomax ICA algorithm, as implemented in EEGLAB (Delorme and 
Makeig, 2004). Thus, single-trial data from a space of 76 electrodes 
were re-expressed in the space spanned by the independent compo-
nents. Subject- and condition-specifi c single-trial time series were 
calculated for each component by multiplying the corresponding 
time series in electrode space by the ICA mixing matrix. The result-
ing single-trial component activations were averaged across trials 
to yield condition-specifi c independent component waveforms for 
each participant.

SPATIOTEMPORAL PARTIAL LEAST SQUARES
Task ST-PLS
Spatiotemporal partial least squares (ST-PLS) analysis is a mul-
tivariate statistical technique that can be used in the context of 
neuroimaging to relate a set of design variables (e.g. conditions) 
to a set of brain activity measures (e.g. scalp potentials) (McIntosh 
et al., 1996). As such, ST-PLS represents a useful method of extract-
ing distributed activity patterns that vary linearly across time in 
a task-dependent manner. In multivariate terminology these rela-
tionships are referred to as latent variables (LVs). When applied to 
ERPs, each LV derived from the analysis represents one contrast 
between experimental conditions (design saliences) in relation 
to a particular pattern of electrodes and latencies that optimally 
expresses that contrast (electrode saliences) (Lobaugh et al., 2001). 
In the present analysis, independent components were used as an 
alternative spatial representation of the ERP data, so ST-PLS was 
used to identify task-dependent spatial patterns in terms of elec-
trodes in one analysis and in terms of independent components 
in another (Kovacevic and McIntosh, 2007).

Experimental effects captured by each LV were statistically 
assessed using resampling procedures. First, the signifi cance of each 
task effect was determined using permutation tests (Edgington, 
1995). Each permuted sample was obtained by random sampling 
without replacement to reassign the order of conditions within 
participants (500 replications). Second, the stability of each task 
effect was indexed at all data points across participants using boot-
strap resampling to estimate standard errors of the correspond-
ing electrode saliences (Efron and Tibshirani, 1986). Bootstrap 
samples were generated by random sampling with replacement 
of participants within conditions (500 replications). Assuming a 
Gaussian bootstrap distribution, the ratio of an electrode salience to 
its standard error is approximately equivalent to a z score. Bootstrap 
ratios were thresholded across all data points to allow parsimonious 
identifi cation of spatiotemporal patterns that reliably expressed 
each task effect. Ratios greater than 3.0 (roughly equivalent to a 
99% confi dence interval) were taken to indicate stable saliences, 
i.e. time points at which the task effect was reliable.

ST-PLS is typically applied in data-driven fashion such that task 
effects are partially determined by the most robust spatiotempo-
ral patterns in the data. However, there is a variant that allows 
spatiotemporal patterns to be mapped directly to a set of a priori 

contrasts, termed “non-rotated” ST-PLS (McIntosh and Lobaugh, 
2004). In this version of ST-PLS the contrasts served to restrict the 
time-varying patterns of activity derived from the analysis. Each 
contrast represented a particular differentiation of component sig-
nal amplitude across conditions.

In order to explore cue-driven brain activity independently of 
the subsequent target stimulus, all analyses were limited to [−200 
1050] ms epochs ranging from cue onset to grating onset, with a 
−200-ms pre-cue baseline. In the fi rst analysis we examined which 
aspects of brain activity were sensitive to the informative value of 
the cue. Component activations in the IC condition were contrasted 
with those in the UC/B conditions, coded as [1 −1 −1]. This analysis 
was limited to “+” cue trial types because they were more numerous 
and to ensure that the epochs to be compared were time-locked to 
stimuli with identical physical characteristics. In the second analy-
sis we attempted to isolate those features of the EEG signal that 
were sensitive to cue identity and unique to the IC condition. We 
contrasted “+” versus “H” cue trials and ran ST-PLS separately for 
the IC condition (coded [1 −1]) and for the the UC/B conditions 
(coded [1 −1 1 −1]).

Behaviourally, participants showed evidence of preparation only 
in the IC condition. The nature of this preparation (increased or 
decreased contrast sensitivity) must depend on the identity of the 
cue. Therefore, spatiotemporal patterns of brain activity related 
to cue-driven preparation should (a) be sensitive to the difference 
between cues with different identities and (b) only materialize when 
those cues are informative. In other words, any spatiotemporal 
patterns that differentiate trial types only in the IC condition must 
serve some gain adjustment function.

Behaviour ST-PLS
Task ST-PLS analysis allowed us to examine how ERP amplitude 
was affected by the informative value of the cue. As a fi nal step, we 
sought to determine whether task-dependent changes in the spa-
tiotemporal pattern of electrical activity following the cue presenta-
tion could predict subsequent identifi cation accuracy. Behaviour 
ST-PLS (McIntosh and Lobaugh, 2004) was used to identify task-
dependent changes in brain-behaviour correlations. Identifi cation 
accuracies were expressed as z-scores using subject-specifi c mean 
and standard deviation and correlated with independent compo-
nent amplitude across participants within task. The resulting corre-
lation matrix was subjected to SVD as described above. Signifi cance 
and stability of statistical effects were estimated using the same 
permutation test and bootstrapping procedure.

STANDARDIZED LOW RESOLUTION ELECTROMAGNETIC TOMOGRAPHY
We used standardized low resolution electromagnetic tomography 
(sLORETA) (Fuchs et al., 2002; Pascual-Marqui, 2002; Jurcak et al., 
2007) to estimate source activity for task-relevant components 
based on their scalp maps. The sLORETA algorithm is a modi-
fi ed weighted minimum norm approach to the inverse problem. 
To produce a single discrete linear solution, the algorithm works 
under the constraint that source activity be as smoothly distributed 
as possible. It has been shown to localize point sources with zero 
error under ideal conditions (Sekihara et al., 2005). We chose to 
localize independent components instead of ERP peaks because 
tomographic solutions based on factor scores tend to be less noisy 
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Mišić et al. Knowledge-driven contrast gain

than those based on mean or peak voltage (Carretié et al., 2004). 
Solutions were expressed in the MNI152 human brain volume with 
6239 cortical grey matter voxels at 5 mm resolution.

CONTROL EXPERIMENT
This behavioral control experiment was similar to the procedure 
described above with one important change. A second high-contrast 
(79%) grating was added to the stimulus sets in the Uninformative- and 
Informative-Cue conditions, such that there were two equiprobable 
high-contrast gratings (79% and 100%; stimuli 3 and 4, respectively). 
The task was identical to Experiment I in all other aspects. In other 
words, in the Informative-Cue condition the “H” cue still accurately 
predicted the onset of a high-contrast stimulus. However, the cue 
could not be solely used to identify the grating. Participants had to 
attend to a grating in order to judge its contrast.

RESULTS
BEHAVIOUR
In the main ERP experiment, identifi cation accuracy for the high-
contrast stimulus was extremely high in both IC and UC condi-
tions (>99%) and participants reported no diffi culty in identifying 
it. Identifi cation accuracy for the low-contrast gratings was subjected 
to a series of paired t-tests which revealed no signifi cant difference 
between the B and IC conditions [t(14) = 0.66, p = 0.52]. However, 
there were signifi cant differences between the B and UC conditions 
[t(14) = 3.40, p = 0.004], as well as between the IC and UC conditions 
[t(14) = 3.58, p = 0.003]. These data are displayed in Figure 3.

In the control experiment, identifi cation accuracy for high-
contrast gratings was above-chance in both UC (67.4%) and 
IC (72.5%) conditions. Importantly, the main behavioral effect 
for low-contrast gratings was still present. No signifi cant differ-
ences were detected between the B and IC conditions [t(4) = 1.01, 
p = 0.37]. There were signifi cant differences between the B and UC 
conditions [t(4) = 3.98, p = 0.016], as well as between the IC and 
UC conditions [t(4) = 3.37, p = 0.028].

ST-PLS ANALYSIS IN ELECTRODE SPACE
Informative versus uninformative/baseline contrast
The contrast between IC and UC/B conditions was statistically 
signifi cant by permutation test (p = 0.03). This task effect indi-
cated the presence of scalp potentials that differentiated the 

IC condition from UC/B. Figure 4 shows that the contrast was 
expressed at two distinct topographic regions. The fi rst was over 
bilateral parietal-occipital channels, where differences materi-
alized 190 ms following cue onset and remained stable until 
approximately 600 ms. This effect appears to map onto ampli-
tude differences across the P2-N2-P3 components. Specifi cally, 
amplitude in the IC condition was attenuated relative to UC/B. 
A complementary expression of the effect was also observed 
at the vertex, emerging 210–600 ms following cue onset. Here, 
the effect was polarity-reversed relative to the parietal-occipital 
channels, such that task differences mapped onto weaker negative 
potentials in the IC condition compared with the UC/B condi-
tions. The average waveforms during this period comprised an 
initial negative peak at 250 ms and a positive peak at 300 ms, 
followed by a negative slow wave. Note that these statistical con-
trasts were assessed by permuting squared singular values, so the 
tests were effectively two-tailed. For this reason, the sign of the 
statistical contrast is not important: an effect would be signifi cant 
whether the IC condition had greater or smaller amplitude than 
the UC/B conditions.

FIGURE 1 | Task schematic.

FIGURE 2 | Experimental conditions. Baseline: only the two low-contrast 
gratings appear and the cues are unpredictive. Uninformative: all three gratings 
appear and the cues are unpredictive. Informative: all three gratings appear, 
“+” predicts low-contrast gratings, “H” predicts the high-contrast grating.

FIGURE 3 | Mean identifi cation accuracy for low-contrast gratings. Bars 
indicate standard errors of the mean.
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Mišić et al. Knowledge-driven contrast gain

The inclusion of several distinct defl ections in this experi-
mental effect suggested that the statistical contrast captured by 
the LV may be a consequence of task differences across more 
than one underlying electrogenic process. Indeed, the amplitude 
distribution of difference waves computed from the B and IC 
conditions was time-dependent, with a posterior-going shift from 
250 to 330 ms.

“+” versus “H” contrast
In order to test whether the cue elicited any preparatory activ-
ity unique to the IC condition, data time-locked to the cue were 
organized into condition- and cue-specifi c blocks (across high- and 
low-contrast trials). Non-rotated ST-PLS analyses were designed to 
contrast brain responses to the two cues (“+” versus “H”), separately 
for the B and UC conditions on one hand and for the IC condition 
on the other. In both instances, task differences were signifi cant by 
permutation test (p = 0) and most stable over central (Cz/1/2/3/4) 
and central-parietal channels (CPz/1/2/3/4) (Figure 5). In all con-
ditions the difference manifested as a higher-amplitude P3-like 
wave in the “H”-cue trials with peak latency at approximately 
500 ms. However, the magnitude of the difference was greater in 
the Valid-Cue condition.

ST-PLS ANALYSIS IN INDEPENDENT COMPONENT SPACE
Electrode-space analyses revealed signifi cant effects of experimental 
condition, but it was unclear whether those effects could be attrib-
uted to a single underlying process or several. Groupwise ICA served 
to represent the signal from 76 electrodes in a space of nine maxi-
mally independent components. Of those components, only four (1, 
3, 6 and 9) displayed task-related amplitude differentiation.

Informative versus uninformative/baseline contrast
The contrast between IC and UC/B conditions remained statistically 
signifi cant by permutation test (p = 0). This task effect indicated 
the presence of scalp potentials that differentiated the IC condi-
tion from the others and was primarily expressed by components 
1 and 3 (Figure 6). Component 1 weighted cerebellar, occipital 

and parietal electrodes most heavily and more so on the left side 
than the right. Component 3 was mainly distributed over central-
parietal electrodes.

Both components displayed stimulus-locked P1-N1 responses 
that were not task-dependent, as well an offset response roughly 650–
750 ms post-cue (150–250 ms following cue offset). Component 1 
captured an early and relatively brief expression of the effect, with sta-
ble bootstrap ratios ranging from 210 to 400 ms following cue onset. 
Component 3 captured a sustained later expression of the effect, 
from 350 ms post-cue until the onset of the grating. Please note the 
brief temporal overlap between the component-specifi c effects, from 
approximately 350 to 400 ms post-cue. For both components, the 
effect can be attributed mainly to amplitude differences as opposed 
to latency shifts. Specifi cally, task-related potentials associated with 
IC were of smaller absolute magnitude than UC/B in component 1, 
and of larger magnitude than UC/B in component 3.

The task-related potentials of components 1 and 3 morpho-
logically resemble the visual P2-N2 complex and the P3 evoked 
potentials commonly observed in the literature. This is consistent 

FIGURE 4 | Spatiotemporal patterns of scalp activity that differentiate 

Informative and Uninformative/Baseline conditions. Left: schematic 
indicates how the statistical contrast was coded. Right: condition-specifi c ERPs 

time-locked to cue onset and averaged across “+” cue trials, shown separately 
for four representative electrodes. Blue dots above the abscissa indicate time 
points at which the statistical contrast is reliable by bootstrap test.

FIGURE 5 | Spatiotemporal patterns of scalp activity that differentiate “+” 

cue and “H” cue trials, separately for the Uninformative/Baseline 

conditions and for the Informative condition. Top: schematic indicates how 
the statistical contrasts were coded. Cue- and condition-specifi c ERPs time-
locked to cue onset, shown for electrode Pz. Blue dots above the abscissa 
indicate time points at which the statistical contrast is reliable by bootstrap test.



Frontiers in Human Neuroscience www.frontiersin.org January 2010 | Volume 3 | Article 78 | 7
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with their respective latencies and topography (Simson et al., 
1977). However, we must exercise caution when attempting to 
describe wave morphology of ICA-decomposed signals in terms 
of evoked potentials observed in the electrodes. For example, 
the polarity of component activations is often reversed since 
the electrodes that contribute to that signal may have been 
assigned negative weights in the decomposition. This is prob-
ably the case for component 3, which is mainly comprised of 
negatively-weighted electrodes from central-parietal regions. 
Hence, the negative-going defl ection observed at approximately 
400 ms post-stimulus most likely corresponds to a positive-going 
defl ection at those electrodes.

“+” versus “H” contrast
Contrasts between the two cues (“+” versus “H”) were assessed 
separately for the UC/B conditions and for the IC condition. In both 
cases, the contrasts were signifi cant (p = 0) and were expressed over 
two common components (components 6 and 9). An additional 
pair of components (components 1 and 3, Figure 7) captured the 
contrast only for IC but not for the UC/B conditions. Note that 
these were the same components that differentiated the IC condi-
tion from the others. In this instance their time courses overlapped 
considerably, expressing the contrast at 500–850 ms (component 
1) and 400–850 ms (component 3).

Of the two components that expressed the contrast across 
all conditions, component 6 captured a central-parietal expres-
sion of the effect together with some contribution from bilateral 
temporal-occipital sites. The spatial distribution of component 
9 was irregular and diffi cult to interpret, involving contribu-
tions from posterior as well as lateral frontal electrodes. As the 
last component derived from the decomposition it captured the 
least proportion of total variance. These two components reliably 
expressed the effect at latencies that were roughly comparable, 
from 400 to 900 ms following cue onset. In addition, compo-
nent 6 displayed a brief epoch of stability roughly 100 to 200 ms 
post-cue.

Behaviour ST-PLS
The cue-locked signal from component 3 was signifi cantly cor-
related with identifi cation accuracy (p = 0) and was stable at 230–
430 ms (Figure 8, middle). The pattern did not differentiate among 
conditions and instead displayed a positive association between 
amplitude and accuracy across all three tasks (B 0.804, UC 0.698, 
IC 0.575) (Figure 8, right). Accuracy did not correlate with activity 
in any other components, including component 1.

SOURCE ANALYSIS
sLORETA solutions were derived for components 1 and 3 and are 
displayed on an MNI152 T2-weighted template. Broadly speak-
ing, both components were localized to the inferior occipito-
temporal cortices, though component 1 was more posterior and 
left lateralized, while component 3 was anterior and distributed 
bilaterally. Component 1 was associated with activity mainly 
in the left fusiform gyrus (BA 37, 19) (X,Y,Z) = (−45,−60,−25) 
(Figure 9, top). Component 3 comprised the inferior tempo-
ral gyrus (BA 20) (X,Y,Z) = (50,−10,−40), fusiform gyrus (BA 
37) (X,Y,Z) = (55,−55,−25) and middle temporal gyrus (BA 21) 
(X,Y,Z) = (50,5,−40) (Figure 9, bottom).

DISCUSSION
The behavioral results confi rm that information conferred by the 
cue mediates sensitivity to the contrast of an upcoming target. 
The addition of an unpredictable high-contrast grating in the UC 
condition was associated with decreased identifi cation accuracy 
for low-contrast gratings relative to Baseline, presumably because 
of a tonic reduction in sensory gain. When the high-contrast grat-
ing was made predictable as in the IC condition, identifi cation 
accuracy for low-contrast gratings recovered to Baseline levels. The 
introduction of a fully informative cue for high-contrast gratings 
allowed fl exible tuning of sensory gain on a trial to trial basis such 
that task performance could be maintained at optimal levels due to 
enhanced contrast sensitivity on low-contrast trials while sensory 
overload could be prevented by diminished sensitivity on high-

FIGURE 6 | Spatiotemporal patterns of scalp activity that differentiate 

Informative and Uninformative/Baseline conditions. Left: schematic 
indicates how the statistical contrast was coded. Middle: colour-coded 
topomaps indicate the weights in the ICA mixing matrix. Warmer colours 

represent positive weights. Right: condition-specifi c ERPs time-locked to cue 
onset and averaged across “+” cue trials, shown separately for each 
component. Blue dots above the abscissa indicate time points at which the 
statistical contrast is reliable by bootstrap test.
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FIGURE 7 | Spatiotemporal patterns of scalp activity that differentiate “+” 

cue and “H” cue trials, separately for the Uninformative/Baseline conditions 

and for the Informative condition. Top: schematic indicates how the statistical 

contrasts were coded. Cue- and condition-specifi c ERPs time-locked to cue 
onset, shown separately for each component. Blue dots above the abscissa 
indicate time points at which the statistical contrast is reliable by bootstrap test.

FIGURE 8 | Brain-behaviour relationships (Behaviour ST-PLS). Left: colour-
coded topomap of component 3 indicates the weights in the ICA mixing matrix. 
Warmer colours represent positive weights. Middle: condition-specifi c 
component activation time-locked to cue onset. Green, red and blue lines 

correspond to B, UC and IC conditions, respectively. Red dots above the 
abscissa indicate time points at which the correlation pattern is reliable by 
bootstrap test. Right: Correlation between component amplitude and 
identifi cation accuracy.
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Mišić et al. Knowledge-driven contrast gain

UC/B. Therefore, we used groupwise ICA as a method of parsing 
the signal into an alternate spatial representation of temporally 
independent components.

As predicted, analyses in component space revealed two 
robust spatiotemporal patterns of scalp potentials that differenti-
ated among conditions based on the predictive value of the cue. 
Furthermore, when the cues were predictive, these patterns were 
also sensitive to the identity of cues. The fact that the two task con-
trasts were expressed by common components is consistent with the 
notion that they capture overlapping aspects of function. The fi rst 
component displayed a posterior occipital-cerebellar distribution 
and encompassed a biphasic peak complex roughly 200–300 ms 
post-stimulus. The second component had a central-parietal distri-
bution and comprised a main broad peak at 400 ms post-stimulus. 
In terms of their morphology, topography and latency, the two 
components appear to be similar to the classical visual P2/N2 and 
P3 peaks (Simson et al., 1977), though we cannot guarantee that 

contrast trials (de la Rosa et al., 2009). The alternative view that the 
cue was utilized as part of an avoidance strategy was shown to be 
untenable by the control experiment because the effect persevered 
even when participants were forced to make a perceptual deci-
sion about high-contrast stimuli (which they succeeded in doing 
at above-chance levels).

The ERP data clearly identify those aspects of brain activity 
that are sensitive to cues bearing information about the contrast 
of upcoming targets. Electrode analysis revealed that the P2, N2 
and P3 components of the ERP waveform were all modulated by 
task. However, it was unclear whether these multiple peaks repre-
sented a unitary process or several stages of processing. Further, 
we also predicted that the brain should be sensitive to individual 
cues only when they are predictive but electrode analysis could 
not validate this claim, because contrasts between “+” and “H” tri-
als were statistically signifi cant across all three conditions, despite 
the fact that they were qualitatively different in IC compared to 

FIGURE 9 | Source localization from sLORETA for components 1 (top) and 3 (bottom). The solution is displayed on an MNI152 T2-weighted template.
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they are homologous. The relatively long-latency P3 is consistent 
with previous literature (Simson et al., 1977; Squires et al., 1977; 
Perrault and Picton, 1984). The fact that an N2-like and a P3-like 
potential were captured by different components is consistent with 
the long-held view that they are generated by at least two independ-
ent sources.

The emergence of endogenous potentials typically signals broad 
stages of cognitive processing (Hillyard and Picton, 1987). The N2 
is associated with registering the onset of an informative stimulus 
(Picton and Hillyard, 1974), as well as with perceptual stimulus 
evaluation and classifi cation (Ritter et al., 1979) because it has 
a modality-dependent topography (Simson et al., 1977). The P3 
represents a set of later, more involved evaluative steps (Picton, 
1992) that are generally thought to index the updating of context 
(Donchin, 1981; Donchin and Coles, 1988).

This work complements a growing literature on top-down fac-
tors and the way in which they infl uence sensory processing. For 
example, one prominent notion holds that visual spatial selective 
attention facilitates sensory processing by modulating gain in vis-
ual cortex (Hillyard and Mangun, 1987; Hillyard et al., 1998). The 
task-related components observed in this study bear some resem-
blance to potentials evoked by attention-directing cues (Harter 
et al., 1989; Harter and Anllo-Vento, 1991; Hopf and Mangun, 
2000). The early directing attention negativity (EDAN) is usually 
observed 200–400 ms following cue onset and is most prominent 
at occipital-parietal channels on the hemisphere contralateral to the 
direction indicated by the cue. It has been hypothesized that EDAN 
refl ects the interpretation of the symbolic cue and the orienting 
of attention. Approximately 500 ms following cue onset, posterior 
electrodes contralateral to the cued direction also become more 
positive compared to those on the ipsilateral side. This late direct-
ing attention positivity (LDAP) is typically sustained until target 
onset and is thought to refl ect gain control in cortical structures 
preparing to process relevant visual information.

At fi rst blush, comparisons between these results and our own 
appear diffi cult for two reasons. First, in the present study all stimuli 
were centrally presented and it is unlikely that spatial attention 
demands differed across conditions (de la Rosa et al., 2009). This 
is corroborated by the control study, which demonstrated that 
attention was deployed in the same manner across all gratings and 
conditions. Second, EDAN and LDAP are, by defi nition, lateral-
ized and differ somewhat from components 1 and 3 in terms of 
topography. However, components 1 and 3 are similar to EDAN 
and LDAP in the sense that both pairs comprise an early, relatively 
transient potential in tandem with a long-latency potential that is 
sustained at least until target onset. Moreover, efforts to determine 
where sensory gain is modulated by spatial attention have consist-
ently implicated fusiform gyrus and extrastriate regions (Gomez-
Gonzales et al., 1994; Heinze et al., 1994), in concordance with our 
source analysis.

These similarities suggest that the functional interpretation 
of components 1 and 3 may be similar to EDAN and LDAP. 
Component 1 may refl ect an early stage in which the brain regis-
ters the onset of an informative event, whereas the late sustained 
component 3 could refl ect the modulation of cortical excitability. 
Though this explanation must be rigorously tested in future stud-
ies, it is at least consistent with our Behaviour ST-PLS analysis 

which established a linear relationship between brain activity and 
identifi cation accuracy for component 3 but not component 1. 
If the activity captured by the fi rst component is associated with 
registering the onset of the the cue, then it does not necessarily 
follow that greater or smaller amplitude would be associated with 
a change in sensitivity. Noting the presence of the cue and inter-
preting its meaning is trivial (see the following paragraph) so the 
amplitude of that component may not infl uence accuracy. On the 
other hand, if component 3 is associated with changes in gain then 
its amplitude should directly infl uence accuracy, consistent with 
the Behaviour ST-PLS results.

Top-down effects have also been studied from the perspective 
of stimulus expectation and prediction. Top-down feedback may 
help to guide and constrain the bottom-up analysis (Bullier, 2001; 
Kveraga et al., 2007b). For example, there is evidence to suggest that 
the context in which an object is perceived can be utilized to make 
top-down predictions about the identity of that object and to aid 
recognition by narrowing down the range of possibilities generated 
by the bottom-up analysis in the ventral stream (Bar et al., 2006; 
Kveraga et al., 2007a). However, note that the pattern of results that 
we observed cannot be accounted for in this manner. It is unlikely 
that the informative cue helped participants to narrow down the 
range of possibilities because identifi cation accuracy for the high-
contrast grating was near-perfect (>99%) in both the informative 
and uninformative conditions. Likewise, the vast majority (>98%) 
of errors in the low-contrast trials were due to the low-contrast 
gratings being mis-identifi ed as each other. This strongly implies 
that participants were well-capable of categorizing gratings as “low” 
or “high” contrast, regardless of whether the cue was informative 
or uninformative. In other words, working memory requirements 
were comparable in the two tasks. Therefore, task differences prob-
ably do not refl ect the ability of participants to narrow down stimu-
lus expectations, but rather their sensitivity.

Is the perception of visual contrast a unique instance in which 
prior knowledge and context modulate sensory processing, or does 
their infl uence extend across other sensory modalities? Research 
in auditory psychophysics has demonstrated similar effects in the 
perception of loudness (Parker and Schneider, 1994; Parker et al., 
2002). Namely, the addition of a high-intensity tone to a baseline set 
of low-intensity tones also tends to adversely affect identifi cation. 
These data suggest that top-down gain control may be a general 
principle by which perceived stimulus intensity is regulated across 
sensory modalities.

Could the same mechanism help to optimize discriminability 
along other stimulus dimensions? Stimulus properties that are per-
ceived in dedicated perceptual channels, such as spatial frequency, 
colour or orientation are unlikely to be subject to the same type of 
top-down control. For instance, imagine an identical experiment in 
which the stimulus set varies in terms of spatial frequency rather 
than contrast. In that situation, discriminability would best be opti-
mized by using the cue to focus attention on the spatial frequency 
channel tuned to the appropriate portion of the frequency spectrum 
rather than by adjusting contrast gain. Contrast is a unique visual 
property in the sense that there is no evidence to suggest the exist-
ence of specialized contrast channels. Therefore, the behavioural 
pattern we observed is likely to be the outcome of a gain control 
mechanism that serves to regulate stimulus intensity.
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What could be the purpose of a top-down contrast gain control 
mechanism? We have already considered the situation in which an 
observer is scanning a familiar visual scene. Expectations about the 
contrast of a specifi c upcoming target object may help to optimize 
the cortical representation of that object by making it invariant 
across different levels of contrast. In other words, top-down modula-
tion of contrast sensitivity may play an important role in maintain-
ing object constancy (Sary et al., 1993; Ito et al., 1995; Grill-Spector 
et al., 1999; Avidan et al., 2002). Indeed, source analysis estimated 
the occipitotemporal cortex to be the origin of both task-relevant 
components identifi ed by our study. This group of object-sensitive 
areas is situated at the apex of the ventral visual stream hierarchy and 
characterized by a high degree of contrast invariance, particularly 
the posterior portion of the fusiform gyrus (Avidan et al., 2002).

The present inquiry was focused on cue-driven preparation and 
did not consider electrophysiological responses evoked by targets. 
Thus, we cannot determine the precise manner in which knowledge 
was used to adjust contrast sensitivity. In theory, contrast sensitiv-

ity could be controlled either by shifting the dynamic range of a 
contrast-sensitive neuron towards the average ambient contrast 
level (contrast gain) or by scaling the response profi le of the neuron 
around the ambient contrast level (response gain). Recently, there 
has been considerable debate as to whether attention modulates 
the former (Li et al., 2008) or the latter (Morrone et al., 2004) 
or both (Huang and Dobkins, 2005; Ling and Carrasco, 2006). 
Future studies should employ a greater number of target contrasts 
in conjunction with imaging and/or recording techniques to derive 
physiological contrast-response functions (CRFs) and investigate 
how those CRFs are affected by prior knowledge about impending 
changes in contrast.
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