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We present a mathematical analysis of networks with integrate-and-fi re (IF) neurons with conductance based synapses. Taking into 
account the realistic fact that the spike time is only known within some fi nite precision, we propose a model where spikes are effective 
at times multiple of a characteristic time scale δ, where δ can be arbitrary small (in particular, well beyond the numerical precision). We 
make a complete mathematical characterization of the model-dynamics and obtain the following results. The asymptotic dynamics is 
composed by fi nitely many stable periodic orbits, whose number and period can be arbitrary large and can diverge in a region of the 
synaptic weights space, traditionally called the “edge of chaos”, a notion mathematically well defi ned in the present paper. Furthermore, 
except at the edge of chaos, there is a one-to-one correspondence between the membrane potential trajectories and the raster plot. 
This shows that the neural code is entirely “in the spikes” in this case. As a key tool, we introduce an order parameter, easy to compute 
numerically, and closely related to a natural notion of entropy, providing a relevant characterization of the computational capabilities 
of the network. This allows us to compare the computational capabilities of leaky and IF models and conductance based models. The 
present study considers networks with constant input, and without time-dependent plasticity, but the framework has been designed for 
both extensions.
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INTRODUCTION
Neuronal networks have the capacity to treat incoming infor-
mation, performing complex computational tasks (see Rieke 
et al., 1996 for a deep review), including sensory-motor tasks. 
It is a crucial challenge to understand how this information is 
encoded and transformed. However, when considering in vivo 
neuronal networks, information treatment proceeds usually 
from the interaction of many different functional units having 
different structures and roles, and interacting in a complex way. 
As a result, many time and space scales are involved. Also, in vivo 
neuronal systems are not isolated objects and have strong inter-
actions with the external world, that hinder the study of a specifi c 
mechanism (Frégnac, 2004). In vitro preparations are less sub-
ject to these restrictions, but it is still diffi cult to design specifi c 
neuronal structure in order to investigate the role of such sys-
tems regarding information treatment (Koch and Segev, 1998). 
In this context models are often proposed, suffi ciently close 
from neuronal networks to keep essential biological  features, 

but also suffi ciently simplifi ed to achieve a  characterization of 
their dynamics, the most often numerically and, when possible, 
analytically (Gerstner and Kistler, 2002b; Dayan and Abbott, 
2001). This is always a delicate compromise. At one extreme, one 
reproduces all known features of ionic channels, neurons, syn-
apses… and lose the hope to have any (mathematics and even 
numeric) control on what is going on. At the other extreme, 
over- simplifi ed models can lose important biological features. 
Moreover, sharp simplifi cations may reveal exotic properties 
which are in fact induced by the model itself, but do not exist 
in the real system. This is a crucial aspect in theoretical neuro-
science, where one must not forget that models are subject to 
hypothesis and have therefore intrinsic limits.

For example, it is widely believed that one of the major 
advantages of the integrate-and-fi re (IF) model is its concep-
tual simplicity and analytical tractability that can be used to 
explore some general principles of neurodynamics and cod-
ing. However, though the fi rst IF model was introduced in 
1907 by Lapicque (1907) and though many important analyti-
cal and rigorous results have been published, there are essential 
parts missing in the state of the art in theory concerning the 
dynamics of IF neurons (see e.g., Ernst et al., 1995; Gong and 
van Leeuwen, 2007; Jahnke et al., 2008; Memmesheimer and 
Timme, 2006; Mirollo and Strogatz, 1990; Senn and Urbanczik, 
2001; Timme et al., 2002 and references below for analytically 
solvable network models of spiking neurons). Moreover, while 
the analysis of an isolated neuron submitted to constant inputs 
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is straightforward, the action of a periodic current on a neuron 
reveals already an astonishing complexity and the mathematical 
analysis requires elaborated methods from dynamical systems 
theory (Coombes, 1999b; Coombes and Bressloff, 1999; Keener 
et al., 1981). In the same way, the computation of the spike train 
probability distribution resulting from the action of a Brownian 
noise on an IF neuron is not a completely straightforward exer-
cise (Brunel and Latham, 2003; Brunel and Sergi, 1998; Gerstner 
and Kistler, 2002a; Knight, 1972; Touboul and Faugeras, 2007) 
and may require rather elaborated mathematics. At the level of 
networks the situation is even worse, and the techniques used 
for the analysis of a single neuron are not easily extensible to 
the network case. For example, Bressloff and Coombes (2000b) 
have extended the analysis in Coombes (1999b), Coombes and 
Bressloff (1999) and Keener et al. (1981) to the dynamics of 
strongly coupled spiking neurons, but restricted to networks 
with specifi c architectures and under restrictive assumptions 
on the fi ring times. Chow and Kopell (2000) studied IF neu-
rons coupled with gap junctions but the analysis for large net-
works assumes constant synaptic weights. Brunel and Hakim 
(1999) extended the Fokker–Planck analysis combined to a 
mean-fi eld approach to the case of a network with inhibitory 
synaptic couplings but under the assumptions that all synaptic 
weights are equal. However, synaptic weight variability plays a 
crucial role in the dynamics, as revealed, e.g., using mean-fi eld 
methods or numerical simulations (Van Vreeswijk, 2004; Van 
Vreeswijk and Hansel, 1997; Van Vreeswijk and Sompolinsky, 
1998). Mean-fi eld methods allow the analysis of networks with 
random synaptic weights (Amari, 1972; Cessac, 1995; Cessac 
et al., 1994; Hansel and Mato, 2003; Samuelides and Cessac, 
2007; Sompolinsky et al., 1988; Soula et al., 2006) but they 
require a “thermodynamic limit” where the number of neurons 
tends to infi nity and fi nite-size corrections are rather diffi cult 
to obtain. Moreover, the rigorous derivation of the mean-fi eld 
equations, that requires large-deviations techniques (BenArous 
and Guionnet, 1995), has not been yet done for the case of IF 
networks with continuous time dynamics (for the discrete time 
case, see Samuelides and Cessac, 2007; Soula et al., 2006).

Therefore, the “analytical tractability” of IF models is far from 
being evident. In the same way, the “conceptual simplicity” hides 
real diffi culties which are mainly due to the following reasons. 
IF models introduce a discontinuity in the dynamics whenever 
a neuron crosses a threshold: this discontinuity, that mimics a 
“spike”, maps instantaneously the membrane potential from the 
threshold value to a reset value. The conjunction of continuous 
time dynamics and instantaneous reset leads to real conceptual 
and mathematical diffi culties. For example, an IF neuron with-
out refractory period (many authors have considered this situ-
ation), can, depending on parameters such as synaptic weights, 
fi re uncountably many spikes within a fi nite time interval, lead-
ing to events which are not measurable (in the sense of prob-
ability theory). This prevents the use of standard methods in 
probability theory and notations such as ρ δ( ) ( )t t t

i

n

i= −
=∑ 1

 
(spike response function) simply lose their meaning1. Note also 
that the information theory (e.g., the Shannon theorem, stat-
ing that the sampling period must be less than half the period 
corresponding to the highest signal frequency) is not applicable 

with unbounded frequencies. But IF models have an unbounded 
frequencies spectrum (corresponding to instantaneous reset). 
From the information theoretic point of view, it is a tempta-
tion to relate this spurious property to the erroneous fact that 
the neuronal network information is not bounded. These few 
examples illustrate that one should not be abused by the appar-
ent simplicity of IF models and must be careful in pushing too 
much their validity in order to explore some general principles 
of neurodynamics and coding.

The situation is not necessarily better when consider-
ing numerical implementations of IF neurons. Indeed, it is 
known from a long time that the way the membrane poten-
tial is reset in a neuronal network simulation have signifi cant 
consequences for the dynamics of the model. In particular, 
Hansel et al. (1998) showed that a naive implementation of IF 
dynamics on a discrete time grid introduces spurious effects 
and proposed an heuristic method to reduce the errors induced 
by time discretization. In parallel, many people have developed 
event based integration schemes (Brette et al., 2007), using the 
fact that the time of spike of a neuron receiving instantaneous 
spikes from other neurons can be computed analytically, thus 
reducing  consequently the computation time and affording 
the simulation of very large networks. In addition, exact event 
based computational schemes are typically used for the above-
mentioned analytically tractable model classes (see, e.g., Mirollo 
and Strogatz, 1990; Timme et al., 2002). Unfortunately, this 
approach suffers two handicaps. If one considers more elabo-
rated models than analytically tractable models, one is rapidly 
faced to the diffi culty of fi nding an analytical expression for 
the next spike time (Rudolph and Destexhe, 2006). Moreover, 
any numerical implementations of a neural network model will 
necessarily introduce errors compared to the exact solution. 
The question is: how does this error behave when iterating the 
dynamics? Is it amplifi ed or damped? In IF models, as set previ-
ously, these errors are due to the discontinuity in the membrane 
potential reset and to the time discretization. This has been 
nicely discussed by Hansel et al. (1998). These authors point 
out two important effects. When a neuron fi res a spike between 
time t and t + Δt a local error on the fi ring time is made when 
using time discretization. First, this leads to an error on the 
membrane potential and second this error is propagated to the 
other neurons via the synaptic interaction term. Unfortunately, 
this analysis, based on numerical simulations, was restricted to 
a specifi c architecture (identical excitatory neurons) and there-
fore the conclusions drawn by the authors cannot be extended 
as it is to arbitrary neural architectures. Indeed, as we show in 
the present paper, the small error induced by time discretiza-
tion can be amplifi ed or damped, depending on the synaptic 
weights value. This leads to the necessity of considering care-
fully (that is mathematically) the spurious effects induced by 
continuous time and instantaneous reset in IF models, as well 
as the effects of time discretization. This is one aspect discussed 
in the present paper.

More generally, this work contains several conclusions 
forming a logical chain. After a discussion on the characteristic 
times involved in real neurons and comparison to the assump-
tions used in IF models we argue that discrete time IF models 
with synchronous dynamics can be used to model real  neurons 
as well, provided that the time scale discretization is suffi ciently 
small. More precisely, we claim that IF equations are inappro-
priate if one sticks to much on the instantaneous reset and 
spike time, but that they provide a good and  mathematically 

1Obviously, one can immediately point out that (1) this situation is not plausible 
if one thinks of biological neurons and (2) is not “generic” for IF models. Thus, 
objection (1) implies that some conclusions drawn from IF models are not 
biologically plausible, while objection (2) needs to be made mathematically clear. 
This is one of the goals of this paper.
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tractable model if one allows reset and spike to have some 
 duration. We therefore modify the reset and spike defi nition 
(while keeping the  differential equation for the dynamics of 
the membrane  potential below the threshold). The goal is how-
ever NOT to propose yet another numerical scheme for the 
numerical integration of continuous time IF models. Instead, 
our aim is to analyze mathematically the main properties of 
the corresponding dynamical system, describing the evolution 
of a network with an arbitrary, fi nite, size (i.e., we do not use 
neither a mean-fi eld approach nor a thermodynamic limit). 
We also consider an arbitrary architecture. Finally, in our anal-
ysis the time discretization step is arbitrary small (thus pos-
sibly well below the numerical precision). For this, we use a 
dynamical system approach developed formerly in Blanchard 
et al. (2000) and Cessac et al. (2004). In particular, in Cessac 
(2008) a discrete time version of a leaky IF network, was stud-
ied. It was shown that the dynamics is generically periodic, 
but the periods can become arbitrary large (in particular, they 
can be larger than any accessible computational time) and in 
(non generic) regions of the synaptic weights space, dynamics 
is chaotic. In fact, a complete classifi cation of the dynamical 
regimes exhibited by this class of IF models was proposed and 
a one-to-one correspondence between membrane potential 
trajectories and raster plots was exhibited (for recent contribu-
tions that study periodic orbits in large networks of IF neurons, 
see Gong and van Leeuwen, 2007; Jahnke et al., 2008). Beyond 
these mathematical results, this work warns one about some 
conclusions drawn from numerical simulations and empha-
sizes the necessity to have, when possible, a rigorous analysis 
of the dynamics.

The paper (Cessac, 2008) dealt however with a rather simple 
version of IF neurons (leaky IF) and one may wonder whether 
this analysis extend to models closer to biology. In the present 
paper we extend these results, and give a mathematical treat-
ment of the dynamics of spikes generated in synaptic coupled 
IF networks where synaptic currents are modeled in a biophysi-
cally plausible way (conductance based synapses). As developed 
in the text, this extension is far from being straightforward and 
requires a careful defi nition of dynamics incorporating the inte-
gration on the spikes arising in the past. This requires a relatively 
technical construction but this provides a setting where a rigor-
ous classifi cation of dynamics arising in IF neural networks with 
conductance based synapse can be made, with possible further 
extension to more elaborated models.

The paper is organized as follows. In Section 1 we give a short 
presentation of continuous time IF models. Then, a careful dis-
cussion about the natural time scales involved in biological 
neurons dynamics and how continuous time IF models violate 
these conditions is presented. From this discussion we propose 
the related discrete time model. Section 2 makes the mathemati-
cal analysis of the model and mathematical results characteriz-
ing its dynamics are presented. Moreover, we introduce an order 
parameter, called d(Ω, S), which measures how close to the 
threshold are neurons during their evolution. Dynamics is peri-
odic whenever d(Ω, S) is positive, but the typical orbit period 
can diverge when it tends to 0. This parameter is therefore related 
to an effective entropy within a fi nite time horizon, and to the 
neural network capability of producing distinct spikes trains. In 
other words, this is a way to measure the ability of the system to 
emulate different input–output functions. See Bertschinger and 
Natschläger (2004) and Langton (1990) for a discussion on the 
link between the system dynamics and its related  computational 

complexity2. The smaller d(Ω, S), the larger is the set of  distinct 
spikes trains that the neural network is able to produce. This 
implies in particular a larger variability in the responses to 
stimuli. The vanishing of d(Ω, S) corresponds to a region in the 
parameters space, called “the edge of chaos”, and defi ned here in 
mathematically precise way. In Section 3 we perform numerical 
investigations of d(Ω, S) in different models from leaky IF to 
conductance based models. These simulations suggest that there 
is a wide region of synaptic conductances where conductance 
based models display a large effective entropy, while this region 
is thinner for leaky IF models. This provides a quantitative way 
to measuring how conductances based synapses and currents 
enhances the information capacity of IF models. Section 4 pro-
poses a discussion on these results.

GENERAL FRAMEWORK
GENERAL STRUCTURE OF INTEGRATE AND FIRE MODELS
We consider the (deterministic) evolution of a set of N neurons. 
Call V

k
(t) the membrane potential of neuron k ∈{1 … N} at time 

t and let V(t) be the vector 
k

N

kV t
=[ ] 1

( ) . We denote by V ≡ V(0) the 
initial condition and the (forward) trajectory of V by:

Ṽ
def= { V (t)} +∞

t =0 ,

where time can be either continuous or discrete. In the exam-
ples considered here the membrane potential of all neurons 
is uniformly bounded, from above and below, by some values 
V

min
, V

max
. Call M = [V

min
, V

max
]N. This is the phase space of our 

dynamical system.
We are focusing here on “IF models”, which always incorpo-

rate two regimes. For the clarity of the subsequent developments 
we briefl y review these regimes (in a reverse order).

The “fi re” regime
Fix a real number θ ∈[V

min
, V

max
] called the fi ring threshold of 

the neuron3. Defi ne the fi ring times of neuron k, for the trajec-
tory4 V, by:

t t t t V tk
n

k
n

k
( ) ( )( ) inf ( ) ( )V V= | > , ≥{ }−1 θ

 
(1)

where tk
( )0 = −∞. The fi ring of neuron k corresponds to the fol-

lowing procedure. If V
k
(t) ≥ θ then neuron membrane potential 

is reset instantaneously to some constant reset value V
reset

 and a 

2It has been proposed that optimal computational capabilities are achieved 
by systems whose dynamics is neither chaotic nor ordered but somewhere in-
between order and chaos. This has led to the idea of computation at “the edge 
of chaos”. Early evidence for this hypothesis has been reported by Kauffman 
(1969) and Langton (1990) considering cellular automata behavior, and Packard 
(1988) using a genetic algorithm. See Bertschinger and Natschläger (2004) for a 
review. In relation, with these works, theoretical results by Derrida and Flyvbjerg 
(1986) and Derrida and Pomeau (1986) allow to characterize analytically the 
dynamics of random Boolean networks and for networks of threshold elements 
(Derrida, 1987). Recently Bertschinger and Natschläger (2004) have contributed 
to this question, considering numerical experiments in the context of real-time 
computation with recurrent neural networks.
3We assume that all neurons have the same fi ring threshold. The notion of 
threshold is already an approximation which is not sharply defi ned in Hodgkin–
Huxley (Hodgkin and Huxley, 1952) or Fitzhugh–Nagumo (FitzHugh, 1961; 
Nagumo et al., 1962) models (more precisely it is not a constant but it depends 
on the dynamical variables). Recent experiments (Naundorf et al., 2006, 2007; 
McCormick et al., 2007) even suggest that there may be no real potential 
threshold.
4Note that, since the dynamics is deterministic, it is equivalent to fi x the forward 
trajectory or the initial condition V ≡ V(0).
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spike is emitted toward post-synaptic neurons. In mathematical 
terms fi ring reads5:

V t V t Vk k( ) ( )≥ ⇒ =+θ reset  (2)

where V
reset 

∈[V
min

, V
max

] is called the “reset potential”. In the 
sequel we assume, without loss of generality, that V

reset
 = 0. This 

reset has a dramatic effect. Changing the initial values of the 
membrane potential, one may expect some variability in the 
evolution. Now, fi x a neuron k and assume that there is a time 
t > 0 and an interval [a, b] such that, ∀V

k
(0) ∈[a, b], V

k
(t) ≥ θ. 

Then, after reset, this interval is mapped to the point V
reset

. Then, 
all trajectories born from [a, b] collapse on the same point and 
have obviously the same further evolution. Moreover, after reset, 
the membrane potential evolution does not depend on its past 
value. This induces an interesting property used in all the IF 
models that we know (see e.g., Gerstner and Kistler, 2002b). The 
dynamical evolution is essentially determined by the fi ring times of 
the neurons, instead of their membrane potential value.

The “Integrate regime”
Below the threshold, V

k
 < 0, neuron k’s dynamics is driven by an 

equation of form:

C
dV

dt
g V ik

k k k+ = ,
 

(3)

where C is the membrane capacity of neuron k. Without loss 
of generality we normalize the quantities and fi x C = 1. In its 
most general form, the neuron k’s membrane conductance g

k
 > 0 

depends on V
k
 [see e.g., Hodgkin–Huxley equations (Hodgkin 

and Huxley, 1952)] and time t, while the current i
k
 can also 

depend on V, the membrane potential vector, on time t, and also 
on the collection of past fi ring times. The current i

k
 can include 

various phenomenological terms. Note that (3) deals with neu-
rons considered as points instead of spatially extended objects.

Let us give two examples investigated in this paper.

The leaky IF model
In its simplest form equation (3) reads:

dV

dt

V
i tk k

k

k= − +
τ

( )
 

(4)

where g
k
 is a constant, and τ

k
 = g

k
/C is the characteristic time 

for membrane potential decay when no current is present. This 
model has been introduced in Lapicque (1907).

Conductance based models with α profi les
More generally, conductance and currents depend on V only via 
the previous fi ring times of the neurons (Rudolph and Destexhe, 
2006). Namely, conductances (and currents) have the general 
form6, g g t tk k j

n
t≡ ,( { } )( )  where t j

n( ) is the nth fi ring time of neuron 

j and { }( )t j
n

t  is the list of fi ring times of all neurons up to time t. 

This corresponds to the fact that the occurrence of a post-
 synaptic potential on synapse j, at time t j

n( ) , results in a change 
of the conductance g

k
 of neuron k. As an example, we consider 

models of form:

dV

dt
V E i V t t i tk

L
k L k k tj

n
k= − −( ) − , ,( ) + ( )⎧

⎨
⎩

⎫
⎬
⎭

1

τ
( ) ( ) ( )syn ext

 
(5)

where the fi rst term in the r.h.s. is a leak term, and where the 
synaptic current reads:

i V t t V E g t tk tj
n

k
j

N

kj tj
n( ) ( ) ( )( ) ( ) ( )syn , , = − ,⎧

⎨
⎩

⎫
⎬
⎭

+

=

+ ⎧
⎨
⎩

⎫
⎬
⎭∑

1

++ − , ,−

=

− ⎧
⎨
⎩

⎫
⎬
⎭∑( ) ( )( )V E g t tk

j

N

kj tj
n

1

where E ± are reversal potential (typically E + � 0 mV and E − � 
−75 mV) and where:

g t t G t tkj tj
n

kj
n

M t

j
n

j

± ⎧
⎨
⎩

⎫
⎬
⎭

±

=

,
±,( ) = −( ).∑( )

( )

( )

1

V

α

In this equation, M
j
(t, V) is the number7 of times neuron j has 

fi red at time t. Gkj
± is the synaptic effi ciency (or synaptic weight) 

of the synapse j → k. (It is 0 if there is no synapse j → k), where 
+ [−] expresses that synapse j → k is excitatory [inhibitory]. The 
α function mimics the conductance time-course after the arrival 
of a post-synaptic potential. A possible choice is:

α
τ

τ±
±

−
= ,±( ) ( )t H t

t
e

t

 
(6)

with H the Heaviside function and τ± being characteristic times. 
This synaptic profi le, with α(0) = 0 while α(t) is maximal for 
t = τ, allows us to smoothly delay the spike action on the post-
synaptic neuron. We are going to neglect other forms of delays 
in the sequel.

Then, we may write (5) in the form (3) with:

g t t G t tk tj
n

L j

N

kj
n

M t

j
n

j

j

,( ) = + −( )

+

⎧
⎨
⎩

⎫
⎬
⎭

=

+

=

,
+

=

∑ ∑( )

( )

( )1

1 1

1

τ
α

V

NN

kj
n

M t

j
nG t t

j

∑ ∑−

=

,
− −( ),

1

( )

( )

V

α
 

(7)

and

i t t
E

E g t t

E

k tj
n L

L j

N

kj tj
n

j

N

,( ) = + ,( )
+

⎧
⎨
⎩

⎫
⎬
⎭

+

=

+ ⎧
⎨
⎩

⎫
⎬
⎭

−

=

∑( ) ( )

τ 1

1
∑∑ − ⎧

⎨
⎩

⎫
⎬
⎭

,( ) + ( ).g t t i tkj tj
n

k
( ) ( )ext

 

(8)

DISCRETE TIME DYNAMICS
Characteristic time scales in neurons dynamics
IF models assume an instantaneous reset of the membrane 
potential corollary to an infi nite precision for the spike time. 

5Note that the fi ring condition includes the possibility to have a membrane potential 
value above the threshold. This extension of the standard defi nition affords some 
discontinuous jumps in the dynamics. These jumps arise when considering addition 
of (discontinuous) noise, or α profi les with jumps (e.g., α τ

τ( )t e t
t

= , ≥−1 0). They also 
appear when considering a discrete time evolution. Note that strictly speaking, this 
can happen, within the numerical precision, even with numerical schemes using 
interpolations to locate more precisely the spike time (Hansel et al., 1998).
6The rather cumbersome notation g t tk tj

n,( )⎧
⎨
⎩

⎫
⎬
⎭

( )  simply expresses that in conductance 

based models the conductance depends on the whole set (history) of (past) fi ring 
times. Note that membrane potentials are reset after neuron fi ring, but not neuron 
conductances.

7Henceforth, one assumes that there are fi nitely many spikes within a fi nite time 
interval. For continuous time dynamics, this fact is not guaranteed when neglecting 
the refractory period. Note also that this number, as well as the list 

tj
nt ( )⎧

⎨
⎩

⎫
⎬
⎭

, depends 
on the initial condition V and a small change in the initial condition may induce 
a drastic change of M

j
(t, V) at time t, as discussed later. This effect is sometimes 

disregarded (Coombes, 1999b). This issue has also been discussed (for current 
based IF-like models) as “phase history functions” in Ashwin and Timme (2005) 
and Broer et al. (2008) (we thank one of the reviewers for this remark).
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We would like to discuss shortly this aspect. Looking at the spike 
shape reveals some natural time scales: the spike duration τ (a few 
ms); the refractory period r � 1 ms; and the spike time precision. 
Indeed, one can mathematically defi ne the spike time as the time 
where the action potential reaches some value (a threshold, or 
the maximum of the membrane potential during the spike), 
but, on practical ground, spike time is not determined with an 
infi nite precision. An immediate conclusion is that it is not cor-
rect, from an operational point of view, to speak about the “spike 
time”, unless one precise that this time is known with a fi nite 
precision δτ. Thus the notion of list of fi ring time { }( )t j

n
t used in 

Section 1, must be revisited, and a related question is “what is 
the effect of this indeterminacy on the dynamical evolution?” 
Note that this (evident?) fact is forgotten when modeling, e.g., 
spike with Dirac distributions. This is harmless as soon as the 
characteristic time δτ is smaller than all other characteristic times 
involved in the neural network. This is essentially true in biologi-
cal networks but it is not true in IF models.

These time scales arise when considering experimental data 
on spikes. When dealing with models, where membrane poten-
tial dynamics is represented by ordinary differential equations 
usually derived from Hodgkin–Huxley model, other implicit 
times scales must be considered. Indeed, Hodgkin-Huxley for-
mulation in term of ionic channel activity assumes an integra-
tion over a time scale dt which has to be (1) quite larger than the 
characteristic time scale τ

P
 of opening/closing of the channels, 

ensuring that the notion of probability as a meaning; (2) quite 
larger than the correlation time τ

C
 between channel states ensur-

ing that the Markov approximation used in the equations of the 
variable m, n , h is legal. This means that, although the math-
ematical defi nition of d

dt
 assumes a limit dt → 0, there is a time 

scale below which the ordinary differential equations lose their 
meaning. Actually, the mere notion of “membrane potential” 
already assumes an average over microscopic time and space 
scales. Note that the same is true for all differential equations 
in physics! But this (evident?) fact is sometimes forgotten when 
dealing with IF models. Indeed, to summarize, the range of 
validity of an ODE modeling membrane potential dynamics 
is max(τ

C
, τ

P
) << dt << δτ << τ. But the notion of instantaneous 

reset implies τ = 0 and the mere notion of spike time implies that 
δτ = 0!!

There is a last time scale related to the notion of raster plot. 
It is widely admitted that the “neural code” is contained in 
the spike trains. Spike trains are represented by raster plots, 
namely bi-dimensional diagrams with time on abscissa and 
some neurons labeling on ordinate. If neuron k fi res a spike “at 
time t

k
” one represents a vertical bar at the point (t

k
, k). Beyond 

the discussion above on the spike time precision, the physi-
cal measurement of a raster plot involves a time discretiza-
tion corresponding to the time resolution δ

A
 of the apparatus. 

When observing a set of neurons activity, this introduces an 
apparent synchronization, since neurons fi ring between t and 
t + δ

A
 will be considered as fi ring simultaneously. This raises 

several deep questions. In such circumstances the “informa-
tion” contained in the observed raster plot depends on the 
time resolution δ

A
 (Golomb et al., 1997; Panzeri and Treves, 

1996) and it should increase as δ
A
 decreases. But is there a 

limit time resolution below which this information does not 
grow anymore? In IF models this limit is δ

A
 = 0 This may lead 

to the conclusion that neural networks have an unbounded 
information capacity. But is this a property of real neurons or 
only of IF models?

The observation of raster plots corresponds to switching 
from the continuous time dynamics of membrane potential to 
the discrete time and synchronous dynamics of spike trains. One 
obtains then, in some sense, a new dynamical system, of sym-
bolic type, where variables are bits (“0” for no spike, and “1” 
otherwise). The main advantage of this new dynamical system is 
that it focuses on the relevant variables as far as information and 
neural coding is concerned, i.e., one focuses on spikes dynam-
ics instead of membrane potentials. In particular, membrane 
potentials may still depend continuously on time, but one is only 
interested in their values at the times corresponding to the time 
grid imposed by the raster plot measurement. In some sense this 
produces a stroboscopic dynamical system, with a frequency 
given by the time resolution δ

A
, producing a phenomenological 

representation of the underlying continuous time evolution.
This has several advantages. (1) this simplifi es the mathemati-

cal analysis of the dynamics avoiding the use of delta distribu-
tions, left-right limits, etc… appearing in the continuous version; 
(2) provided that mathematical results do not depend on the 
fi nite time discretization scale, one can take it arbitrary small; 
(3) it enhances the role of symbolic coding and raster plots.

Henceforth, from now on, we fi x a positive time scale δ > 0 
which can be mathematically arbitrary small, such that (1) a 
neuron can fi re at most once between [t, t + δ[ (i.e., δ << r, the 
refractory period); (2) dt << δ, so that we can keep the continu-
ous time evolution of membrane potentials (3), taking into 
account time scales smaller than δ, and integrating membrane 
potential dynamics on the intervals [t, t + δ[; (3) the spike time 
is known within a precision δ. Therefore, the terminology, 
“neuron k fi res at time t” has to be replaced by “neuron k fi res 
between t and t + δ”; (4) the update of conductances is made at 
times multiples8 of δ.

Raster plot
In this context, we introduce a notion of “raster plot” which is 
essentially the same as in biological measurements. A raster plot 
is a sequence ω̃

def= {ω(t)} +∞
t =0 , of vectors ω(t)

def= [ωk (t)]Nk =1 
such that the entry ω

k
(t) is 1 if neuron k fi res between [t, t + δ[ 

and is 0 otherwise. Note however that for mathematical reasons, 
explained later on, a raster plot corresponds to the list of fi ring 
states 

t
t =

∞{ } 0
ω( )  over an infi nite time horizon, while on practical 

grounds one always considers bounded times.
Now, for each k = 1

 
,…, N, one can decompose the interval 

I = [V
min

, V
max

] into I
0
 ∪ I

1
 with I

0
 = [V

min
, θ[, I

1
 = [θ, V

max
]. 

If V
k
 ∈ I

0
 neuron k is quiescent, otherwise it fi res. This splitting 

induces a partition P of M, that we call the “natural partition”. 
The elements of P have the following form. Call Λ = ,{ }N

0 1 . 
Let ω= ∈

=
⎡
⎣⎢

⎤
⎦⎥k

N

k 1
ω Λ. This is a N dimensional vector with binary 

components 0, 1. We call such a vector a fi ring state. Then 
M M= ∪

ω ω
∈Λ

 where:

M M Iω= ∈ | ∈ .⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
V Vk kω  

(9)

Therefore, the partition P corresponds to classifying the 
membrane potential vectors according to their fi ring state. 

8This could correspond to the following “experiment”. Assume that we measure 
the spikes emitted by a set of in vitro neurons, and that we use this information 
to update the conductances of a model like (5), in order to see how this model 
“matches” the real neurons [see Jolivet et al. (2006) for a nice investigation in this 
spirit]. Then, we would have to take into account that the information provided 
by the experimental raster plot is discrete, with a clock-based grid, even if the 
membrane potential evolves continuously.
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Indeed, to each point V(t) of the trajectory �V corresponds a 
 fi ring state ω(t) whose components are given by:

ω
k
(t) = Z[V

k
(t)], (10)

where Z is defi ned by:

Z(x) = χ[x ≥ θ], (11)

where χ is the indicator function that will later on allows us to 
include the fi ring condition in the evolution equation of the 
membrane potential (see (20)). On a more fundamental ground, 
the introduction of raster plots leads to a switch from the dynam-
ical description of neurons, in terms of their membrane potential 
evolution, to a description in terms of spike trains where �ω pro-
vides a natural “neural code”. From the dynamical systems point 
of view, it introduces formally a symbolic coding and symbolic 
sequences are easier to handle than continuous variables, in many 
aspects such as the computation of topological or measure theo-
retic quantities like topological or Kolmogorov–Sinai entropy 
(Katok and Hasselblatt, 1998). A natural related  question is 
whether there is a one-to-one correspondence between the mem-
brane potential trajectory and the raster plot (see theorem 2).

Note that in the deterministic models that we consider here, 
the evolution, including the fi ring times of the neurons and 
the raster plot, is entirely determined by the initial conditions. 
Therefore, there is no need to introduce an exogenous process 
(e.g., stochastic) for the generation of spikes (see Destexhe and 
Contreras, 2006 for a nice discussion on these aspects).

Furthermore, this defi nition has a fundamental consequence 
In the present context, current and conductances at time t 
become functions of the raster plot up to time t. Indeed, we may 
write (7) in the form:

gk (t, [ω̃

ω

]t )
def=

j

−
G±

kj

Mj (t, ˜ )

n =1

α±(s − t
(n )
j )ds

 

(12)

where 
t s

t
s�ω[ ] = { } =0

ω( )  is the raster plot up to time t and M tj( ), �ω  
is the number of spikes emitted by neuron j up to time t, in the 
raster plot �ω (i.e., M t sj s

t

j( ) ( ), =
=∑�ω ω

1
). But now t j

n( ) is a mul-
tiple of δ.

Remark
In continuous time IF models �ω can assume uncountably many 
values. This is because a neuron can fi re at any time and because 
fi ring is instantaneous. Therefore, the same property holds also 
if one considers sequences of fi ring states over a bounded time 
horizon. This is still the case even if one introduces a refrac-
tory period, because even if spikes produced by a given neuron 
are separated by a time slot larger or equal than the refractory 
period, the fi rst spike can occur at any time (with an infi nite 
precision). If, on the opposite, we discretize time with a time 
scale δ small enough to ensure that each neuron can fi re only 
once between t and t + δ, �ω, truncated at time Tδ can take at 
most 2NT values. For these reasons, the “computational power” 
of IF models with continuous time is sometimes considered as 
infi nitely larger than a system with clocked based discretization 
(Maass and Bishop, 2003). The question is however whether this 
computational power is something that real neurons have, or if 
we are dealing with a model-induced property.

Integrate regime
For this regime, as we already mentioned, we keep the possibil-
ity to have a continuous time (dt << δ) evolution of membrane 

potential (3). This allows us to integrate V on time scales smaller 
than δ. But, since conductances and currents depends now on 
the raster plot �ω, we may now write (3) in the form:

dV

dt
g t V i t Vk

k t k k t k+ ,[ ]( ) = ,[ ]( ) < .� �ω ω , whenever θ
 

(13)

When neuron k does not fi re between t, t + δ one has, 
 integrating the membrane potential on the interval t, t + δ 
(see Appendix):

V t t V t J tk k t k k t
+( ) = ,[ ]( ) ( ) + ,[ ]( ),δ γ � �ω ω

 
(14)

where

γk (t, [ω̃]t)
def= e

−
t +δ

t
g k (s, [ω̃]t ) ds

,
 

(15)

and

J t i s s t dsk t t

t

k t k t
,[ ]( ) = ,[ ]( ) , + ,[ ]( ) ,

+

∫� � �ω ω ω
δ

ν δ
 

(16)

is the integrated current with:

ν δ
δ

k t

g s ds
s t e s

t

k t, + ,[ ]( ) = ∫ .
− ′,[ ] ′

+

�
�

ω
ω( )

 
(17)

Remarks
1. In the sequel, we assume that the external current (see (8)) is 

time-constant. Further developments with a time dependent 
current, i.e., in the framework of an input-output computa-
tion (Bertschinger and Natschläger, 2004), will be considered 
next.

2. We note the following property, central in the subsequent 
developments. Since g tk t

( ),[ ] >�ω 0,

γ k t
t t k,[ ]( ) < ,∀ ,∀ ,∀ .� �ω ω1

 
(18)

Firing regime
Let us now consider the case where neuron k fi res between t 
and t + δ. In classical IF models this means that there is some 
t t tk

n( ) [ [∈ , + δ  such that V tk k
n( )( ) = θ. Then, one sets V t Vk k

n( )( )+ = reset 
(instantaneous reset). This corresponds to Figure 1B. Doing this 
one makes some error compared to the real spike shape depicted 
in Figure 1A. In our approach, one does not know exactly when 
fi ring occurs but we use the approximation that the spike is 
taken into account at time t + δ. This means that we integrate 
V

k
 until t + δ then reset it. In this scheme V

k
 can be larger than θ 

as well. This explains why Z(x) = χ(x ≥ θ). This procedure cor-
responds to Figure 1C (Alternative I). One can also use a slightly 
different procedure. We reset the membrane potential at t + δ 
but we add to its value the integrated current between [t, t + δ[. 
This corresponds to Figure 1D (Alternative II). We have there-
fore three types of approximation for the real spike in Figure 1A. 
Another one was proposed by Hansel et al. (1998), using a linear 
interpolation scheme. Other schemes could be proposed as well. 
One expects them to be all equivalent when δ → 0. For fi nite δ, 
the question whether the error induced by these approximations 
is crucial is discussed in Section 6.

In this paper we shall concentrate on Alternative II though 
mathematical results can be extended to Alternative I in a 
straightforward way. This corresponds to the initial choice of the 
Beslon–Mazet–Soula model (BMS) motivating the paper (Soula 
et al., 2006) and the present work.
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In this case, the reset corresponds to:

V t V t J tk k k t( ) ≥ ⇒ +( ) = ,[ ]( ),θ δ �ω
 

(19)

(recall that V
reset

 = 0).
IF regime can now be included in a unique equation, using 

the function Z defi ned in (11):

V t t Z V t V t J tk k t k k k t
+( ) = ,[ ]( ) − ( )⎡⎣ ⎤⎦ + ,[ ]( ),1 1γ � �ω ω( ) ( )

 
(20)

where we set δ = 1 from now on.

EXAMPLES
The Beslon–Mazet–Soula model
Consider the leaky IF model, where conductances are constant. 
Set W G E W G Ekj kj kj kj= =+ + − −( ) for excitatory (inhibitory) syn-
apses. Then, replacing the α-profi le by a Dirac distribution, (20) 
reduces to:

V t V t Z V t W Z V t ik k k
j

N

kj j k+( ) = ( ) − ( )⎡⎣ ⎤⎦ + ( ) +
=

∑1 1
1

γ ( ) ( ) ( )ext

 

(21)

This model has been proposed by Soula et al. (2006). A 
mathematical analysis of its asymptotic dynamics has been done 
in Cessac (2008) and we extend these results to the more delicate 
case of conductance based IF models in the present paper. [Note 
that having constant conductances leads to a dynamics which 
is independent of the past fi ring times (raster plot). In fact, the 
dynamical system is essentially a cellular automaton but with a 
highly non trivial dynamics].

Alpha-profi le conductances
Consider now a conductance based model of form (3), leading to:

γ
α

k t

G s t ds

t Ke j kj n

M j t

t

t

j
n

,[ ]( ) =
∑ ∑ ∫ ,

− −( )⎛
⎝⎜

⎞
⎠⎟

±
=

, + ±

�
�

ω

ω

1

1( ) ( )

 
(22)

where K is a constant:

K e L= < .− δ
τ 1  (23)

while, using the form (6) for α gives:

γ
τ

τ

k t

G e

t K e
j

N

kj n

M j t t t

,[ ]( ) =
∑ ∑− +( ) −

⎡

⎣
⎢

⎤

⎦
⎥−

= =

, − −

�
�

ω

ω

1 1
1

1

1 1
( ) ( jj

n t t j
n

e e
( ) )

( )

τ
τ τ1
1

−
−⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

−
−

.
 

(24)

One has therefore to handle an exponential of an exponential. 
This example illustrates one of the main problem in IF models. 
IF models have been introduced to simplify neurons  description 

and to simplify numerical calculations [compared, e.g., with 
Hodgkin–Huxley’s model (Hodgkin and Huxley, 1952)]. Indeed, 
their structure allows one to write an explicit expression for 
the next fi ring times of each neurons, knowing the membrane 
potential value. However, in case of α exponential profi le, there is 
no simple form for the integral and, even in the case of one neu-
ron, one has to use approximations with Γ functions (Rudolph 
and Destexhe, 2006) which reduce consequently the interest of IF 
models and event based integration schemes.

THEORETICAL ANALYSIS OF THE DYNAMICS
THE GENERAL PICTURE
In this section we develop in words some important mathemati-
cal aspects of the dynamical system (20), mathematically proved 
in the sequel.

Singularity set
The fi rst important property is that the dynamics (20) (and the 
dynamics of continuous time IF models as well) is not smooth, 
but has singularities, due to the sharp threshold defi nition in 
neurons fi ring. The singularity set is:

S M= ∈ | ∃ = , ={ }.V i N Vi1, ,… such that θ

This is the set of membrane potential vectors such that at 
least one of the neurons has a membrane potential exactly equal 
to the threshold9. This set has a simple structure: it is a fi nite 
union of N − 1 dimensional hyperplanes. Although S is a “small” 
set both from the topological (non residual set) and metric (zero 
Lebesgue measure) point of view, it has an important effect on 
the dynamics.

Local contraction
The other important aspect is that the dynamics is locally con-
tracting, because γ k t

t( ),[ ] <�ω 1 (see Eq. (18)). This has the fol-
lowing consequence. Let us consider the trajectory of a point 
V ∈ M and perturbations with an amplitude <ε about V (this 
can be some fl uctuation in the current, or some additional noise, 

Figure 1 | (A) “Real spike” shape; the sampling window is represented at a scale corresponding to a “small” sampling rate to enhance the related 
bias. (B) Spike shape for an integrate and fi re model with instantaneous reset, the real shape is in blue. (C) Spike shape when reset occurs at time t + δ 
(Alternative I). (D) Spike shape with reset at time t + δ plus addition of the integrate current (green curve) (Alternative II).
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9A suffi cient condition for a neuron i to fi re at time t is V
i
(t) = θ hence V(t)∈S. 

But this is not a necessary condition. Indeed, as pointed in the footnote 1, there 
may exist discontinuous jumps in the dynamics, even if time is continuous, either 
due to noise, or α profi les with jumps (e.g., α τ

τ( )t e t
t

= , ≥−1 0). Thus neuron i can 
fi re with V

i
(t) > θ and V( )t ∉S . In the present case, this situation arises because 

time is discrete and one can have V(t − δ) < θ and V(t) > θ. This holds as well even 
if one uses numerical schemes using interpolations to locate more precisely the 
spike time (Hansel et al., 1998).
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but it can also be some error due to a numerical implementa-
tion). Equivalently, consider the evolution of the ε-ball B(V, ε). 
If B(V, ε) ∩ S = 0⁄  then we shall see in the next section that the 
image of B(V, ε) is a ball with a smaller diameter. This means, 
that, under the condition B(V, ε) ∩ S = 0⁄ , a perturbation is 
damped. Now, if the images of the ball under the dynamics 
never intersect S, any ε-perturbation around V is exponentially 
damped and the perturbed trajectories about V become asymp-
totically indistinguishable from the trajectory of V. Actually, 
there is a more dramatic effect. If all neurons have fi red after 
a fi nite time t then all perturbed trajectories collapse onto the 
trajectory of V after t + 1 iterations (see prop. 1 below).

Initial conditions sensitivity
On the opposite, assume that there is a time, t

0
, such that the 

image of the ball B(V, ε) intersects S. By defi nition, this means 
that there exists a subset of neurons {i

1 
,…, i

k
} and V′ ∈ B(V, ε), 

such that Z V t Z V ti i( ( )) ( ( ))0 0≠ ′ , i ∈ {i
1 
,…, i

k
}. For example, some 

neuron does not fi re when not perturbed but the application 
of an ε-perturbation induces it to fi re (possibly with a mem-
brane potential strictly above the threshold). This requires obvi-
ously this neuron to be close enough to the threshold. Clearly, 
the evolution of the unperturbed and perturbed trajectory may 
then become drastically different (see Figure 2). Indeed, even if 
only one neuron is lead to fi re when perturbed, it may induce 
other neurons to fi re at the next time step, etc …, inducing an 
avalanche phenomenon leading to unpredictability and initial 
condition sensitivity10.

It is tempting to call this behavior “chaos”, but there is an 
important difference with the usual notion of chaos in differ-
entiable systems. In the present case, due to the sharp condition 
defi ning the threshold, initial condition only occurs at sporadic 

instants, whenever some neuron is close enough to the thresh-
old. Indeed, in certain periods of time the membrane potential 
typically is quite far below threshold, so that the neuron can fi re 
only if it receives strong excitatory input over a short period of 
time. It shows then a behavior that is robust against fl uctuations. 
On the other hand, when membrane potential is close to the 
threshold a small perturbation may induce drastic change in the 
evolution.

Stability with respect to small perturbations
Therefore, depending on parameters such as the synaptic 
weights, the external current, it may happen that, in the station-
ary regime, the typical trajectories stay away from the singularity 
set, say within a distance larger than ε > 0, which can be arbitrary 
small, (but positive). Thus, a small perturbation (smaller than ε) 
does not produce any change in the evolution. At a computa-
tional level, this robustness leads to stable input-output trans-
formations. In this case, as we shall see, the dynamics of (20) is 
asymptotically periodic (but there may exist a large number of 
possible orbits, with a large period). In this situation the system 
has a vanishing entropy11. This statement is made rigorous in 
theorem 1 below.

On the other hand, if the distance between the set where the 
asymptotic dynamics lives12 and the singularity set is arbitrary 
small then the dynamics exhibit initial conditions sensitivity, and 
chaos. Thus, a natural question is: is chaos a generic situation? 
How does this depend on the parameters? A related question is: 
how does the numerical errors induced by a time discretization 
scheme evolve under dynamics (Hansel et al., 1998)?

Edge of chaos
It has been shown, in Cessac (2008) for the BMS model, that 
there is a sharp transition13 from fi xed point to complex dynam-
ics, when crossing a critical manifold usually called the “edge of 
chaos” in the literature. While this notion is usually not sharply 
defi ned in the Neural Network literature, we shall give a math-
ematical defi nition which is moreover tractable numerically. 
Strictly speaking chaos only occurs on this manifold, but from a 
practical point of view, the dynamics is indistinguishable14 from 
chaos, close to this manifold. When the distance to the edge of 
chaos further increases the dynamics is periodic with typical 
periods compatible with simulation times. This manifold can be 
characterized in the case where the synaptic weights are inde-
pendent, identically distributed with a variance σ2

N
.

In BMS model (e.g., time discretized gIF model with constant 
conductances) it can be proved that the chaotic situation is non 
generic (Cessac, 2008). We now develop the same lines of inves-
tigation and discuss how these result extend to the model (20). 
Especially, the “edge of chaos” is numerically computed and com-
pared to the BMS situation.

Let us now switch to the related mathematical results. Proofs 
are given in the Appendix.

Figure 2 | Schematic representation, for two neurons, of the natural 
 partition P and the mapping discussed in the text. In this case, a fi ring 

state is a vector with components ω =
⎛
⎝⎜

⎞
⎠⎟

ω

ω

1

2

 labeling the partition elements. 

A set of initial conditions, say a small (L∞) ball in M
ω
, is contracted by leak 

(neuron 1 in the example) and reset (neuron 2 in the example), but its image 
can intersect the singularity set. This generates several branches of trajecto-
ries. Note that we have given some width to the projection of the image of the 
ball on direction 2 in order to see it on the picture. But since neuron 2 fi res 
the width is in fact 0.

0
0

0
1

1
1

0
1

V2

V1

θ

θ

10This effect is well known in the context of synfi re chains (Abeles, 1982, 1991; Abeles 
et al., 1993; Hertz, 1997) or self-organized criticality (Blanchard et al., 2000). 

11More precisely the topological entropy (average bit rate production considered 
over an infi nite time horizon) is zero but this implies that the Shannon entropy 
is also zero.
12Say the “attractor”, though one must be cautious with this notion, as we shall 
see below.
13This transition is reminiscent of the one exhibited in Keener et al. (1981) for 
an isolated neuron submitted to a periodic excitation, but the analysis in Cessac 
(2008) and the present analysis hold at the network level. 
14Namely, though the dynamics is periodic, the periods are well beyond the times 
numerically accessible.
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PIECEWISE AFFINE MAP
Let us fi rst return to the notion of raster plot developed in 
Section 2. At time t, the fi ring state ω(t) ∈Λ can take at most 
2N values. Thus, the list of fi ring states ω(0)

 
,…, ω(t) ∈Λt + 1 can 

take at most 2N(t + 1) values. (In fact, as discussed below, only a 
subset of these possibilities is selected by the dynamics). This 
list is the raster plot up to time t and we have denoted by 

t
�ω[ ] . 

Once the raster plot up to time t has been fi xed the coeffi cients γ
k
 

and the integrated currents J
k
 in (20) are determined. Fixing the 

raster plot up to time t amounts to construct branches for the 
discrete fl ow of the dynamics, corresponding to sub-domains of 
M constructed iteratively, via the natural partition (9), in the 
following way.

Fix t > 0 and 
t

�ω[ ] . Note:

M M M
t

s s s t�ω[ ] ,
⎧
⎨
⎩

⎫
⎬
⎭

= ∈ | ∈ .V V( ) ( )ω = …0

This is the set (possibly empty) of initial membrane poten-
tials vectors V ≡ V(0) whose fi ring pattern at time s is ω(s), 
s = 0

 
,…, t. Consequently, ∀ ∈ [ ]V M

t
�ω , we have:

V t s s V

J n

k
s

t

k s k k

n

t

k n
s n

+( ) = ,[ ]( ) −[ ] ( )

+ ,[ ]( )
=

= =

∏

∑

1 1 0
0

0

γ �

�

ω ω

ω

( )

++
∏ ,[ ]( ) −[ ] =

1

1 1
t

k s ks s k Nγ �ω ω ( ) , ,…
 
(25)

as easily found by recursion on (20). We used the convention 

s t

t

k s ks s
=

+∏ ,[ ] −[ ] =1
1 1γ ( ) ( ) .�ω ω

Then, defi ne the map:

F
V F V V

�
�

�
ω

ω

ω

t

t

t

t
+ [ ]

+
=

→

→ = +

⎧
⎨
⎪

⎩⎪
,1

1 1

M M
( )

 

(26)

with V
k
(t + 1) given by (25) and F�ω

0 = Id. Note that F�ω
t +1 is affi ne. 

Finally defi ne:

F

V F V

t

t

t

+

[ ]
+

: →
∈ →

⎧
⎨
⎪

⎩⎪

1

1

M M
M � �ω ω ( )

 

(27)

such that the restriction of Ft + 1 to the domain M
t

�ω[ ]  is precisely 
F�ω

t +1. This mapping is the fl ow of the model (20) where:

V(t + 1) = Ft + 1 V, V ∈M
A central property of this map is that it is piecewise affi ne and 

it has at most 2N(t + 1) branches F�ω
t +1 parameterized by the legal 

sequences 
t

�ω[ ]  which parameterize the possible histories of the 
conductance/currents up to time t.

Let us give a bit of explanation of this construction. Take 
V V≡ ∈( ) ( )0 0Mω . This amounts to fi xing the fi ring pattern at 
time 0 with the relation ωk kZ V k N( ) ( ( )) , ,0 0 1= , = … . Therefore, 
V V Jk k k k k( ) ( ( )) ( ) ( ) ( ( ))1 0 0 1 0 0 0 0= , −[ ] + ,γ ω ωω , where γ

k
, J

k
 do 

not depend on V(0) but only on the spike state of neurons 
at time 0. Therefore, the mapping F�ω

1
0: →M Mω( )  such that 

F V J k Nk k k k k; = , −[ ] + , , =� � �
ω ω ω ω1 0 1 0 0 0 1V γ ( ) ( ) ( ) ( ) …  is affi ne (and 

continuous on the interior of Mω( )0 ). Since ω(0) is an hyper-
cube, F�ω

1
0→Mω( ) is a convex connected domain. This domain 

typically intersects several domains of the natural partition P. 
This corresponds to the following situation. Though the pattern 
of neuron fi ring at time 0 is fi xed as soon as V( ) ( )0 0∈Mω , the 
list of neurons fi ring at the next time depends on the value of the 

membrane potentials V(0), and not only on the spiking pattern 
at time 0. But, by defi nition, the domain:

M M M ∩ Mω ω ω ω( ) ( ) ( ) ( )1 0

11
1 0

1
= =[ ]

−⎛
⎝⎜

⎞
⎠⎟� �ω ωF

is such that ∀ ∈V( ) ( ) ( )0 1 0Mω ω , the spiking pattern at time 0 is 
ω(0) and it is ω(1) at time 1. If the intersection is empty this 
simply means that one cannot fi nd a membrane potential vector 
such that neurons fi re according to the spiking pattern ω(0) at 
time t = 0 then fi re according to the spiking pattern ω(1) at time 
t = 1. If the intersection is not empty we say that “the transition 
ω(0) → ω(1) is legal”15.

Proceeding recursively as above one constructs a hierarchy of 
domains M

t
�ω[ ]  and maps F�ω

t +1. Incidentally, an equivalent defi ni-
tion of M

t
�ω[ ]  is:

M M
t

s

t
s

s� �∩ω ω[ ]
=

−⎛
⎝⎜

⎞
⎠⎟= .

0

1
F ω( )

 
(28)

As stated before, M
t

�ω[ ]  is the set of membrane potential vec-
tors V such that the fi ring patterns up to time t are ω(0) ,…, ω(t). 
If this set is non empty we say that the sequence ω(0) ,…, ω(t) 
is legal. Though there are at most 2N(t + 1) possible raster plots at 
time t the number of legal raster plots is typically smaller. This 
number can increase either exponentially with t or slower. We 
shall denote by ΣΛ

+  the set of all legal (infi nite) raster plots (legal 
infi nite sequences of fi ring states). Note that ΣΛ

+  is a topological 
space for the product topology generated by cylinder sets (Katok 
and Hasselblatt, 1998). The set 

t
�ω[ ]  of raster plots having the 

same fi rst t + 1 fi ring patterns is a cylinder set.

PHASE SPACE CONTRACTION
Now, we have the following:

Proposition 1. For all �ω ∈ ,∀ ≥+ΣΛ t 0, the mapping V ∈ →[ ]M
t

�ω  
F V�ω

t +1( ) is affi ne, with a Jacobian matrix and an affi ne constant 
depending on t

t
,[ ]�ω . Moreover, the Jacobian matrix is diagonal 

with eigenvalues

σ γk
s

t

k s kt s s k N( ) ( )( ( )) , ,, = ,[ ] − < , = .
=

∏� �ω ω ω
0

1 1 1 …

Consequently, F V�ω
t +1( ) is a contraction.

Proof. The proof results directly from the defi nition (26) and 
(25) with γ k s

s s( ),[ ] < ,∀ ≥�ω 1 0 [see (18)].
Since the domains M

ω
 of the natural partition are convex 

and connected, and since F is affi ne on each domain (therefore 
continuous on its interior), there is a straightforward corollary:

Corrollary 1. The domains M
t

�ω[ ]  are convex and connected.
There is a more important, but still straightforward 

consequence:

Corrollary 2. Ft + 1 is a non uniform contraction on M where 
the contraction rate in direction k is 1

1 0t s

t

k s+ =∑ ,[ ]log ( )σ �ω , 
∀ ∈ [ ]V M

t
�ω .

Then, we have the following:

Proposition 2. Fix �ω ∈ +ΣΛ.
1. If ∃t < ∞, such that, ∀k = 1 ,…, N, ∃s ≡ s(k) ≤ t where ω

k
(s) = 1 

then F� �ω ω

t

t

+
[ ]

1[ ]M  is a point. That is, all orbits born from the 
domain M

t
�ω[ ]  converge to the same orbit in a fi nite time.

15Conditions ensuring that a transition is legal depend on the parameters of the 
dynamical systems, such as the synaptic weights.
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2. If ∃ ∈ ,{ }k N1 …,  such that ∀t > 0, ω
k
(t) = 0 then F�ω

t +1 is con-
tracting in direction k, with a Lyapunov exponent λk( )�ω , such 
that:

lim inf log

lim sup

t s

t

k s k

t s

t

t
s

t

→∞ =

→∞ =

+
,[ ]( ) ≤ ( )

≤
+

∑

∑

1

1

1

1

0

0

γ λ� �ω ω

llog γ k s
s,[ ]( ) <�ω 0

Proof. Statement 1 holds since, under these hypotheses, all 
eigenvalues of F�ω

t +1 are 0. For 2, since D tF�ω
+1 is diagonal, the 

Lyapunov exponent in direction k is defi ned by λk( )�ω =  
lim log( ( ))t t s

t

k t→∞ + =∑ ,1
1 0

σ �ω  whenever the limit exists (it exists 
almost surely for any F invariant measure from Birkhoff theorem).

Remark
An alternative defi nition of Lyapunov exponent has been intro-
duced by Coombes (1999a,b), for IF neurons. His defi nition, 
based on ideas developed for impact oscillators (Muller, 1995), 
takes care of the discontinuity in the trajectories arising when 
crossing S. Unfortunately, his explicit computation at the net-
work level (with continuous time dynamics), makes several 
implicit assumptions [see Eq. 6 in Coombes (1999a)]: (1) there is 
a fi nite number of spikes within a bounded time interval; (2) the 
number of spikes that have been fi red up to time t, ∀t > 0, is the 
same for the mother trajectory and for a daughter trajectory, 
generated by a small perturbation of the mother trajectory at 
t = 0; (3) call Ti

k , in Coombes’ notations, the kth spike time for 
neuron i in the mother trajectory, and i

k
T�  the kth spike time for 

neuron i in the daughter trajectory. Then �T Ti
k

i
k

i
k= + δ , where δi

k  
is assumed to become arbitrary small, ∀k ≥ 0, when the initial 
perturbation amplitude tends to 0. While assumption (1) can be 
easily fulfi lled (e.g., by adding a refractory period) assumptions 
(2) and (3) are more delicate.

Transposing this computation to the present analysis, this 
requires that both trajectories are never separated by the sin-
gularity set. A suffi cient condition is that the mother trajec-
tory stays suffi ciently far from the singularity set. In this case 
the Lyapunov exponent defi ned by Coombes coincides with our 
defi nition and it is negative. On the other hand, in the “chaotic” 
situation (see Section 3), assumptions (2) and (3) can typically 
fail. For example, it is possible that neuron i stops fi ring after a 
certain time, in the daughter trajectory, while it was fi ring in the 
mother trajectory, and this can happen even if the perturbation 
is arbitrary small. This essentially means that the explicit for-
mula for the Lyapunov exponent proposed in Coombes (1999a) 
cannot be applied as well in the “chaotic” regime.

ASYMPTOTIC DYNAMICS
Attracting set A and ω-limit set
The main notion that we shall be interested in from now on con-
cerns the invariant set where the asymptotic dynamics lives.

Defi nition 1 (From Guckenheimer and Holmes, 1983 and Katok 
and Hasselblatt, 1998)

A point y ∈ M is called an ω-limit point for a point x ∈ M 
if there exists a sequence of times 

kkt
=

+∞{ } 0
, such that x(t

k
) → y 

as t
k
 → + ∞. The ω-limit set of x, ω(x), is the set of all ω-limit 

points of x. The ω-limit set of M, denoted by Ω, is the set 
Ω = ∈∪ x xM ω( ) .

Equivalently, since M is closed and invariant, we have 
Ω = =

∞∩ t
t

0 F ( )M .

Basically, Ω is the union of attractors. But for technical rea-
sons, related to the case considered in Section 3, it is more con-
venient to use the notion of ω-limit set.

A theorem about the structure of Ω
Theorem 1. Assume that ∃ε > 0 and ∃T < ∞ such that, ∀V∈M, 
∀i∈{1

 
,…, N},

1. Either ∃t ≤ T such that V
i
(t) ≥ θ;

2. Or ∃t
0
 ≡ t

0
(V, ε)such that ∀t ≥ t

0
, V

i
(t) < θ − ε

Then, Ω is composed by fi nitely many periodic orbits with 
a period ≤T.

The proof is given in the Appendix 2.
Note that conditions (1) and (2) are not disjoint. The mean-

ing of these conditions is the following. (1) corresponds to 
imposing that a neuron has fi red after a fi nite time T (uniformly 
bounded, i.e., independent of V and i). (2) amounts to requir-
ing that after a certain time t

0
, the membrane potential stays 

below the threshold value and it cannot accumulate on θ. We 
essentially want to avoid a situation when a neuron can fi re for 
the fi rst time after an unbounded time (see Section 3 for a dis-
cussion of this case). Thus assumptions (1) and (2) look quite 
reasonable. Under these assumptions the asymptotic dynamics 
is periodic and one can predict the evolution after observing the 
system on a fi nite time horizon T, whatever the initial condition. 
Note however that T can be quite a bit large.

There is a remarkable corollary result, somehow hidden in the 
proof given in the Appendix. The neurons that do not fi re after 
a fi nite time are still driven by the dynamics of fi ring neurons. It 
results that, in the asymptotic regime, non fi ring neurons have a 
membrane potential which oscillates below the threshold. This 
exactly corresponds to what people call “sub-threshold oscil-
lations”. In particular, there are times where those membrane 
potentials are very close to the threshold, and a small pertur-
bation can completely changes further evolution. This issue is 
developed in the next section. Possible biological interpretations 
are presented in the discussion section.

Ghost orbits
The advantage of the previous theorem is that we defi ne condi-
tions where one can relatively easily controls dynamics. However, 
what happens if we consider the complementary situation cor-
responding to the following defi nition?

Defi nition 2 An orbit �V is a ghost orbit if ∃i such that:

(i) ∀t > 0, V
i
(t) < θ

and

( ) lim sup ( )ii V t
t

i
→+∞

= θ

Namely there exists at least one initial condition V and one 
neuron i such that one cannot uniformly bound the fi rst time 
of fi ring, and V

i
(t) approaches arbitrary close the threshold. In 

other words sub-threshold oscillations drive the neuron “dan-
gerously close” to the threshold, though we are not able to pre-
dict when the neuron will fi re. This may look a “strange” case 
from a practical point of view, but it has deep implications. This 
indeed means that we can observe the dynamics on arbitrary 
long times without being able to predict what will happen later 
on, because when this neuron eventually fi re, it may drastically 
change the evolution. This case is exactly related to the chaotic 
or unpredictable regime of IF models.
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One may wonder whether the existence of ghost orbits is 
“generic”. To reply to this question one has fi rst to give a defi nition 
of genericity. In the present context, it is natural to consider the 
dynamical system describing the time evolution of our neural net-
work as a point in a space H of parameters. These parameters can 
be, e.g., the synaptic weights, or parameters fi xing the time scales, 
the reversal potentials, the external currents, etc… Varying these 
parameters (i.e., moving the point representing our dynamical sys-
tem in H) can have two possible effects. Either there is no qualita-
tive change in the dynamics and observable quantities such as, e.g., 
fi ring rates, average inter-spikes interval, etc, are varying continu-
ously. Or, a sharp change (bifurcation) occurs. This corresponds 
to the crossing of a critical or bifurcation manifold in H. Now, a 
behavior is generic if it is “typical”. On mathematical grounds this 
can have two meanings. Either this behavior is obtained, with a 
positive probability, when drawing the parameters (the corre-
sponding point in H) at random with some natural probability 
(e.g., Gaussian). In this case one speaks of “metric genericity”. Or, 
this behavior holds in a dense subset of H. One speaks then of 
“topological genericity”. The two notions usually do not coincide.

In the BMS model, ghost orbits are non generic in both senses 
(Cessac, 2008). The proof does not extend to more general mod-
els such as (20) because it heavily uses the fact that the synaptic 
current takes only fi nitely many values in the BMS model. As 
soon as we introduce a dependence in �ω this is not the case any-
more. We do not know yet how to extend this proof.

EDGE OF CHAOS
On practical grounds ghost orbits involve a notion of limit t → +∞ 
which has no empirical meaning. Therefore the right question 
is: are there situations where a neuron can fi re for the fi rst time 
after a time which is well beyond the observation time? One way 
to analyze this effect is to consider how close the neurons are to 
the threshold in their evolution. On mathematical grounds this is 
given by the distance from the singularity set to the ω-limit set:

d V t
t i N

i( ) inf inf min ( )Ω
Ω

, = | − | .
∈ ≥ =

S
V 0 1

θ
 

(29)

The advantage of this defi nition, is that it can easily be 
adapted to the plausible case where observation time is bounded 
(see Section 3).

Now, the following theorem holds.

Theorem 2.
1. If d(Ω, S) > 0 then Ω is composed by fi nitely many periodic 

orbits with a fi nite period.
2. There is a one-to-one correspondence between a trajectory 

on Ω and its raster plot.

The proof is exactly the same as in (Cessac, 2008) so we do not 
reproduce it here. It uses the fact that if d(Ω, S) > 0 then there is a 
fi nite time T, depending on d(Ω, S) and diverging as d(Ω, S) → 0, 
such that FT has a Markov partition (constituted by local stable 
manifolds since dynamics is contracting) where the elements of the 
partition are the domains M

T
�ω[ ] . Note, however, that d(Ω, S) > 0 

is a suffi cient but not a necessary condition to have a periodic 
dynamics. In particular, according to theorem 1 one can have d(Ω, 
S) = 0 and still have a periodic dynamics, if at some fi nite time 
t, for some neuron i, V

i
(t) = θ. This strict equality is however not 

structurally stable, since a slight change, e.g., in the parameters will 
remove it. The main role of the condition d(Ω, S) > 0 is therefore 
to avoid situations where the membrane potential of some neuron 
accumulates on θ from below (ghost orbits). See the discussion sec-
tion for a possible biological interpretation on this.

But d(Ω, S) plays another important role concerning the effect 
of perturbations on the dynamics. Indeed, if d(Ω, S) > 0 then the 
contraction property (corollary 2) implies that any perturbation 
smaller than d(Ω, S) will be damped by dynamics. In particular, 
making a small error on the spike time, or any other type of error 
leading to an indeterminacy of V smaller than d(Ω, S) will be 
harmless.

Let us now discuss the second item of theorem 2. It expresses 
that the raster plot is a symbolic coding for the membrane poten-
tial trajectory. In other words there is no loss of information on 
the dynamics when switching from the membrane potential 
description to the raster plot description. This is not true any-
more if d(Ω, S) = 0.

The fi rst item tells us that dynamics is periodic, but period 
can be arbitrary long. Indeed, following (Cessac, 2008) an esti-
mate for an upper bound on the orbits period is given by:

nM

N
d S

� 2
log( ( ))

log( )
Ω,

< >γ

 (30)

where <γ> denotes the value of γ averaged over time and ini-
tial conditions16 (see Appendix for details). Though this is 
only an upper bound this suggests that periods diverge when 
d(Ω, S) → 0. In BMS model, this is consistent with the fact that 
when d(Ω, S) is close to 0 dynamics “looks chaotic”. Therefore, 
d(Ω, S) is what a physicist could call an “order parameter”, 
quantifying somehow the dynamics complexity. The distance 
d(Ω, S) can be numerically estimated as done in (33) and (34), 
Section 3.

Before, we need the following list of (operational) defi nitions.

Defi nition 3 (Edge of chaos)
The edge of chaos is the set of points E in the parameter space 
H where d(Ω, S) = 0.

The topological structure of E can be quite complicated as 
we checked in the simplest examples (e.g., the BMS model with 
Laplacian coupling) and suggested by the papers (Bressloff and 
Coombes, 2000a,b) (see Discussion). There are good reasons to 
believe that this set coincides with the set of points where the 
entropy is positive [see Kruglikov and Rypdal (2006a,b) and 
discussion below]. The set of points where the entropy is posi-
tive can have a fractal structure even in the simplest examples of 
one dimensional maps (Mackay and Tresser, 1986; Gambaudo 
and Tresser, 1988). Therefore, there is no hope to characterize 
E rigorously in a next future. Instead, we use below a numerical 
characterization.

The edge of chaos is a non generic set in the BMS model, 
and the same could hold as well in model (20). Nevertheless, it 
has a strong infl uence on the dynamics, since crossing it leads to 
drastic dynamical changes. Moreover, close to E dynamics can 
be operationally indistinguishable from chaos. More precisely, 
let us now propose another defi nition.

Defi nition 4 (Effective entropy)
Fix T

0
 called “the observational time”. This is the largest 

accessible duration of an experiment. Call n(t) the number of 
(legal) truncated raster plots up to time t. Then, the effective 
entropy is;

h
T

n T( ) log ( )eff = 1

0
0

 
(31)

16Note that the system is not uniquely ergodic [see Katok and Hasselblatt (1998) 
for a defi nition of unique ergodicity].
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Note that in the cases where raster plots provide a symbolic 
coding for the dynamics then lim ( ) ( )

T h h
0 →∞ =eff top , the topologi-

cal entropy.
On practical grounds, this defi nition corresponds to the follow-

ing notion. The larger the effective entropy, the more the system 
is able to produce distinct neural codes. This provides one way to 
measure the “complexity” of the dynamics. On more “neuronal” 
grounds this quantity measures the variability in the dynamical 
response of the neuronal network to a given stimulus (external cur-
rent) or its ability to produce distinct “functions” (a function being 
the response to a stimulus in terms of a spikes train). Thinking of 
learning mechanisms (e.g., Hebbian) and synaptic plasticity (LTD, 
LTP, STDP) one may expect to having the largest learning capaci-
ties when this entropy is large. This aspect will be developed in a 
separated paper (for the effect of Hebbian learning and entropy 
reduction in fi ring rate neural networks see Siri et al., 2008).

Finally, a positive effective entropy means that the system 
essentially behaves like a chaotic system during the time of the 
experiment. Indeed, the entropy is closely related to the distance 
d(Ω, S), since, from (30), a rough estimate/bound of h(eff) is eas-
ily obtained from (30), (31):

h N
d

T
( ) log( ( ))

log( )
log( )eff < ,

< >
Ω S

0

2
γ  

(32)

The notion of effective entropy provides some notion of “width” 
to the edge of chaos E. For a fi xed T

0
 the system behaves chaotically 

in a thick region E ⊃To
ε in H such that h(eff) > 0. And from (32) one 

expects that this entropy gets larger when d(Ω, S) gets smaller.

EFFECTS OF TIME DISCRETIZATION
Under the light of the previous results, let us reconsider the 
approximation where spikes are taken into account at multiple of 
the characteristic time scale δ, for the conductances update. Doing 
this, we make some error in the computation of the membrane 
potential, compared to the value obtained when using the “exact” 
spike time value. Now, the question is whether this error will be 
amplifi ed by the dynamics, or damped. As we saw, dynamics (20) 
is contracting but the effect of a small error can have dramatic 
consequences when approaching the singularity set. The distance 
d(Ω, S) provides a criterion to defi ne a “safe” region where a 
small error of amplitude ε > 0 in the membrane potential value is 
harmless, basically, if ε < d(Ω, S). On the other hand, if we are in 
a region of the parameters space where d(Ω, S) = 0 then a slight 
perturbation has an incidence on the further evolution. Since δ 
can be arbitrary small in our theorems we have a good control on 
the dynamics of the continuous time IF models except at the edge 
of chaos where d(Ω, S) = 0. This enhances the question of math-
ematically characterizing this region in the parameter space H. 
Note indeed that numerical investigations are of little help here 
since we are looking for a parameter region where the distance 
d(Ω, S) defi ned as an asymptotic limit, has to be exactly 0. The 
problem is that even sophisticated schemes (e.g., event based) are 
also submitted to round off errors. Therefore, as a conclusion, it 
might well be that all numerical schemes designed to approxi-
mate continuous time IF models display trajectory sensitivity to 
spike time errors, when approaching d(Ω, S) = 0.

A NUMERICAL CHARACTERIZATION OF THE “EDGE OF CHAOS”
A “COARSE-GRAINED” CHARACTERIZATION
As mentioned in the previous section an exact analytic com-
putation of the edge of chaos in the general case seems to be 

out of reach. However, a “coarse grained” characterization can 
be performed at the numerical level and possibly some ana-
lytic approximation could be obtained. For this, we choose the 
synaptic weights (resp. the synaptic conductances) (and/or the 
external currents) randomly, with some probability P

W
 (P

i( )ext ), 
where W is the matrix of synaptic weights (W E Gij ij= ± ± ) and 
i(ext) the vector of external currents (recall that external currents 
are time constant in this paper). A natural starting point is the 
use of Gaussian independent, identically distributed variables, 
where one varies the parameters, mean and variance, defi ning 
the probability defi nition [we call them statistical parameters, 
see Cessac and Samuelides (2007) and Samuelides and Cessac 
(2007) for further developments on this approach]. Doing 
these, one performs a kind of fuzzy sampling of the parameters 
space, and one somehow expects the behavior observed for a 
given value of the statistical parameters to be characteristic 
of the region of W, i(ext) that the probabilities P PW ,

i( )ext  weight 
[more precisely, one expects to observe a “prevalent” behavior in 
the sense of Hunt et al. (1992)].

The idea is then to estimate numerically d(Ω, S) in order to 
characterize how it varies when changing the statistical parame-
ters. As an example, in the present paper, we select conductances 
(resp. synaptic weights) randomly with a Gaussian probability 
with a fi xed mean and a variance σ2

N
, and we study the behav-

ior of d(Ω, S) when σ is varying. Note that the neural network 
is almost surely fully connected. We compute numerically an 
approximation of the distance d(Ω, S), where we fi x a transient 
time T

r
 and an observation time T

o
 and average over several ini-

tial conditions V(n), n = 1
 
,…, N

CI
 for a given sample of synap-

tic weights. Then we perform an average over several synaptic 
weights samples W

m
, m = 1

 
,…, N

W
. In a more compact form, 

we compute:

d
N

d
m

N

m

( ) ( )( )exp expΩ, = ,
=

∑S
W

W

W1

1  
(33)

where

d V T t
m n

CIn N t T i N
i

n
W
( )

, , , , , ,

( )min min min (
( )

exp = | +
, = = =V 1 1 1… … …o

r )) − | .θ
 

(34)

In this way, we obtain a rough and coarse grained location of 
the edge of chaos where the distance d(Ω, S) vanishes.

We have performed the following experiments with two con-
trol parameters.

• Variance of random synaptic weights. We randomly select 
the synaptic strength which modulates the synaptic conduct-
ance using a Gaussian distribution so that 80% of the synapses 
are excitatory and 20% inhibitory. The average standard-
variation σ is varied. The value σ = 0.5 corresponds, in our 
units, to what is chosen in the literature when considering 
the biological dispersion in the cortex (e.g., Rudolph and 
Destexhe, 2006). Note however that, at the present stage of 
investigation, Dale’s principle is not taken into account.

• Membrane leak time-constant. As an additional control 
parameter we vary the membrane leak around the usual τ

L
 = 

1
 
,…, 20 ms values. This choice is two-fold. The value τ

L
 = 20 ms 

corresponds to in vitro measurement, while τ
L
 → 1 ms allows 

to represent in vivo conditions in the cortex. On the other 
hand, it acts directly on the average contraction rate <γ> which 
is a natural control parameter.

Each simulation randomly selects the initial potential values in 
a −70 ,…, 30 mV range. For each condition the simulation is 
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run for N
CI

 = 100 initial conditions and NW = 10 random selec-
tion of the synaptic weights. With a sampling period of 0.1 ms, 
the network is run during T

r
 = 1000 steps in order to “skip” the 

transients17 and then observed during T
o
 = 1000 steps. In order 

to explore the role of history dependent conductances on the 
dynamics we considered different models from the biologically 
plausible IF model to BMS model. More precisely we explore 
four modeling variants:

1. Model I, defi ned in (20).
2. Model II (20) with a fi xed γ. The evolution equation of mem-

brane potentials is thus given by:

V t V t Z V t J tk k k k t
+( ) = − ( )⎡⎣ ⎤⎦ + ,[ ]( )1 1γ ( ) ( ) �ω

 where the average γ  is the value observed during the numeri-
cal simulation of model I. Note that γ  depends on the param-
eters σ, τ

L
. The goal of this simulation is to check the role of the 

fl uctuations of γ( )t
t

,[ ]�ω , controlling the instantaneous con-
traction rate, compared to a mean-fi eld model where γ( )t

t
,[ ]�ω  

is replaced by its average. This corresponds to what is called 
“current based” synapses instead of “conductance based” syn-
apses in the literature (see e.g., Brette et al., 2007).

3. Model III (20) approximation with a fi xed γ and simplifi ed 
synapses. The evolution equation of membrane potentials is 
given by:

V t V t Z V t E G Z V t

E G Z

k k k
j

ij j

j
ij

+( ) = ( ) − ( )⎡⎣ ⎤⎦ + −( )
+

+ + +

− −

∑

∑

1 1γ δ( ) ( )

VV tj( )−( )−δ

 In addition to the previous simplifi cation, we consider so-
called “current jump” synapses where the synaptic input 
simply corresponds to an impulse, added to the membrane 
potential equation. Here the magnitude of the impulse and 
its delay δ− = 2 ms and δ+ = 10 ms in order to keep both char-
acteristics as closed as possible to the previous condition.

4. Model IV (20) with a fi xed γ and instantaneous simplifi ed 
synapses. The evolution equation of membrane potentials is 
given by:

V t V t Z V t W Z V tk k k
j

ij j+( ) = < > − ( )⎡⎣ ⎤⎦ + ( )∑1 1γ ( ) ( ) ( )

 where in addition to the previous simplifi cation, the delay 
has been suppressed and where W E Gij ij= ± ±. This last condi-
tion strictly correspond to the original BMS model (Soula 
et al., 2006).

The results are given below. We have fi rst represented the 
average value γ  for the model I in the range σ ∈[0.01, 1], 
τ

L 
∈[10, 40]ms (see Figure 3). The quantity related to the con-

traction rate, is remarkably constant (with small variations 
within the range [0.965, 0.995]).

Then, we have considered the average value of the current 
J tk t

( ),[ ]�ω , averaged over time, initial conditions and neurons 
and denoted by I to alleviate the notations (Figure 4), the loga-
rithm of the distance d(Ω, S) (Figures 5 and 7), and the aver-
age Inter Spike Interval (ISI, Figure 6), for the four models. The 
main observations are the following. Average current and ISIs 

have essentially the same form for all models. This means that 
these quantities are not really relevant if one wants to discrimi-
nate the various models in their dynamical complexity.

The observation of the distance d(Ω, S) is quite more inter-
esting (Figure 7). First, in the four models, the distance becomes 
very small when crossing some “critical region” in the plane τ

L
, 

γ. This region has a regular structure for the BMS model, but 
its structure seems more complex for (20). Note however that 
the numerical investigations used here do not allow us to really 
conclude on this point. The most remarkable fact is that, in mod-
els III and IV, the distance increases when σ increases beyond 
this region, while it does not in models I and II. This corre-
sponds to the following observation. When the d(Ω, S) is small, 
one observes a complex dynamics with no apparent period. 
One naturally concludes to a chaotic regime. As we saw, strictly 
speaking it is in fact periodic but since periods are well beyond 
observable times, the situation is virtually chaotic18. When the 
distance increases, the orbits period decreases. Therefore, there 
is a range of σ values where period become smaller than obser-
vational time and one concludes that dynamics is periodic.

The situation is different for models I and II since the distance 
does not apparently increases with σ. This suggests that intro-
ducing conductance based synapses and currents enhances con-
siderably the width of the edge of chaos. On practical grounds, 
this means that models I and II have the capacity to display a 
very large number of distinct codes for wide choices of param-
eters. This is somewhat expected since the opposite conclusion 
would mean that introducing spike dependent conductances 
and current does not increases the complexity and information 
capacity of the system. But it is one thing to guess some behav-
ior and another thing to measure it. Our investigations on the 
distance d(Ω, S), a concept based on the previous mathematical 
analysis, makes a step forward in this direction.

One step further, we have represented examples of raster 
plots in Figures 8 and 9 for models I and IV. The Figure 8 essen-
tially illustrates the discussion above on the relation between 
the distance d(Ω, S) and the dynamics; for σ = 0.05, where 

17Note the transients depend on the parameters and on the distance to the 
singularity set too. In particular, one can have transients that are well beyond the 
current capacity of existing computers. Therefore, our procedure gives a rough 
localization of the edge of chaos. Analytic computation would give a more precise 
localization.

Figure 3 | Average value of γ for model I σ ∈σ ∈[0.01, 1], τ
L
∈[10, 40]ms. The 

profi le is very similar for other models.

Model I 
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γ

18Moreover, it is likely that the phase space structure has some analogies with 
spin-glasses. For example, if γ = 0 the dynamics is essentially equivalent to the 
Kauffman’s cellular automaton (Kauffman, 1969). It has been shown by Derrida 
and colleagues (Derrida and Flyvbjerg, 1986; Derrida and Pomeau, 1986) that 
the Kauffman’s model has a structure similar to the Sherrington–Kirckpatrick 
spin-glass model (Mézard et al., 1987). The situation is even more complex when 
γ ≠ 0. It is likely that we have in fact a situation very similar to discrete time neural 
networks with fi ring rates where a similar analogy has been exhibited (Cessac, 
1994, 1995). 
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Figure 4 | Average current I for the models I (top left)-II (top right)- III (bottom left)- IV (bottom right) with σ ∈σ ∈[0.01, 1], τ
L
∈[10, 40]ms.

Model III

      14
      12
      10

8
6
4

0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1σ  10  15  20  25  30  35  40

τ

2
4
6
8

 10
 12
 14
 16

I (mV)

Model IV

      14
      12
      10

8

0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1σ  10  15  20  25  30  35  40

τ

7
8
9

 10
 11
 12
 13
 14
 15

I (mV)

Model II

      30
      20
      10

0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1σ  10  15  20  25  30  35  40

τ

0
5

 10
 15
 20
 25
 30
 35
 40

I (mV)

Model I 

      30
      20
      10

0
 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1σ  10  15  20  25  30  35  40

τ

0
5

 10
 15
 20
 25
 30
 35
 40

I (mV)

Figure 5 | Average value of log[d(Ω, S)] for the models I (top left)-II (top right)- III (bottom left)- IV (bottom right) with σ ∈σ ∈[0.01, 1], τ
L
∈[10, 40]ms.
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Figure 6 | Average value of the ISI for the models I (top left)-II (top right)- III (bottom left)- IV (bottom right), with σ ∈σ ∈[0.01, 1], τ
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∈[10, 40]ms.
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Figure 7 | Average value of log[d(Ω, S)] for the model I (left) σ ∈σ ∈[1, 10], τ
L ∈[10, 40]ms. We present here a projection in the plane σ, log[d(Ω, S)], and 

the vertical bars correspond to the variations with τ
L
. It allows us to verify the stability of the previous result for higher variability of the synaptic weights. (mid-

dle) τ
L
∈[1, 1 ,…, 2]ms below the usual 20 ms value, σ∈[1, 10]. Such range corresponds to cortical neurons in high-conductance state. It allows to check the 

behavior of d(Ω, S) in this case. (right) Sampling period of 1 ms, in order to verify the robustness of the numerical results with respect to the sampling rate.
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Figure 8 | Examples of raster plots for the conductance based model (Model I, top row) and the leaky integrate and fi re model (Model IV, bottom 
row). A time window of 100 samples is shown in each case. The control parameter is τ

L
 = 20 ms. As visible in Figure 5, σ = 0.05 corresponds to a small order 

dynamics where the periodic behavior is clearly visible, and σ = 0.40 to the “edge of chaos”. One blob width is 1 msec.

I

IV

σ = 0.05 σ = 0.40

Figure 9 | Raster plots for models I (upper row) and IV (lower row), with σ = 10.00 and the same condition as in Figure 8. First column: model I and 
model without noise. Second column: same realization of synaptic weights and same initial conditions but with a small amount of noise in the external current. 
The noise is added to the membrane potential and its magnitude is very small (10−4 × θ). One blob width is 1 msec.

I

IV

Without noise With noise

d(Ω, S) is “large”, and dynamics is periodic; and for σ = 0.4, 
where d(Ω, S) is small, and dynamics looks more  chaotic, 
for the two models. The difference between the two models 
becomes more  accurate as σ increases. Figure 9 represents 

raster plots for models I and IV, with σ = 10, where we study 
the effect of a small amount of noise, of amplitude 10−4 × θ in 
the external current. This has no effect on model IV while it 
changes slightly the raster plot for model I, as expected. There 
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is another remarkable difference. The code is sparser for model 
I than for model IV. This suggests that model I is in some sense 
optimal with respect to coding since it is able to detect very 
small changes in an input but the changes is not drastic and the 
neural code remains very sparse.

DISCUSSION
We have thus an operational defi nition for the “edge of chaos” 
where an “order parameter”, the distance of orbits to the singu-
larity has been defi ned. This parameter has a deep meaning. It 
controls how much the system is sensitive to perturbations. Such 
perturbations can be noise, but they can also be a small varia-
tion in the external current, corresponding, e.g., to an input. If 
the amplitude of this perturbation is smaller than d(Ω, S) then 
it has no effect on the long term dynamics, and the neural code 
(raster plot) is unchanged. On the other hand, when the distance 
is small, even a tiny perturbation has a dramatic effect on the 
raster plot: the system produces a different code. As a corollary, 
the effective entropy is maximal when the distance is minimal. 
On practical ground, having a positive distance with a large effec-
tive entropy corresponds to situations where the system is able 
to produce a large number of distinct codes within the observa-
tional time, while this code is nevertheless robust to small pertur-
bations of the input. Thus, we have a good compromise between 
the variability of the responses to distinct inputs and robustness 
of the code when an input is subject to small variations.

Several questions are now open. A fi rst one concerns the way 
how we measured this distance. We used a random sampling 
with independent synaptic weights. But these weights are, in real-
ity, highly correlated, via synaptic plasticity mechanism. What 
is the effect of, e.g., STPD or Hebbian learning on the effective 
entropy is a perspective for a future work. Recent results in Soula 
(2005) and Siri et al. (2007, 2008) suggest that synaptic plastic-
ity reduces the entropy by diminishing the variability of raster 
plots and increasing the robustness of the response to an input. 
Some general (variational) mechanism could be at work here. 
This aspect is under investigation.

Another important issue is the effect of noise. It is usual in 
neural network modeling to add Brownian noise to the deter-
ministic dynamics. This noise accounts for different effects such 
as the diffusion of neurotransmitters involved in the synaptic 
transmission, the degrees of freedom neglected by the model, 
external perturbations, etc… Though it is not evident that the 
“real noise” is Brownian, using this kind of perturbations has 
the advantage of providing a tractable model where standard 
theorems in the theory of stochastic processes (Touboul and 
Faugeras, 2007) or methods in non equilibrium statistical phys-
ics [e.g., Fokker–Planck equations (Brunel and Hakim, 1999)] 
can be applied.

Though we do not treat explicitly this case in the present 
work, the formalism has been designed to handle noise effects 
as well. As a matter of fact, the effect of Brownian noise on the 
dynamics of our model can be analyzed with standard techniques 
in probability theory and stochastic perturbations of dynamical 
systems (Freidlin and Wentzell, 1998). In particular, the prob-
ability distribution of the membrane potential trajectory can be 
obtained by using a discrete time version of Girsanov theorem 
(Samuelides and Cessac, 2007). Noise have several effects. Firstly, 
the stochastic trajectories stay around the unperturbed orbits 
until they jump to another attraction basin, the characteristic 
time depending on the noise intensity (“Arrhenius law”). This 
has the effect of rendering the dynamics uniquely ergodic, which 

somehow simplifi es the statistical analysis. The effect of noise 
will be essentially prominent in the region where d(Ω, S) is small, 
leading to an effective initial condition sensitivity and an effec-
tive positive Lyapunov exponent, that could be computed using 
mean-fi eld approaches (Cessac, 1995). It is possible to estimate 
the probability that a trajectory approaches the singularity set S 
within a fi nite time T and a distance d by using Freidlin–Wentzell 
estimates (Freidlin and Wentzell, 1998). One can also construct a 
Markov chain for the transition between the attraction basin of 
the periodic orbits of the unperturbed dynamics. The overall pic-
ture could be very similar (at least for BMS model) to what hap-
pens when stochastically perturbing Kauffman’s model (Golinelli 
and Derrida, 1989), with possibly a phase space structure remi-
niscent of spin-glasses (where noise plays the role of the tempera-
ture). This study is under investigations.

Yet another important issue relates to the fact that spikes 
can also be lost. This aspect is not yet taken into account in the 
present formalism, but annihilation of spikes is a future issue to 
address.

A fi nal issue is the relation of this work with possible biologi-
cal observations. We would like in particular to come back to the 
abstract notion of ghost orbit. As said in the text, this notion 
corresponds to situation where the membrane potential of some 
“vicious” neuron fl uctuates below the threshold, and approaches 
it arbitrary close, with no possible anticipation of its fi rst fi ring 
time. This leads to an effective unpredictability in the network 
evolution, since when this neuron eventually fi re, it may drasti-
cally change the dynamics of the other neurons, and therefore 
the observation of the past evolution does not allow one to 
anticipate what will be the future. In some sense, the system is in 
sort of a metastable state but it is not in a stationary state.

Now, the biological intuition tends to consider that a neu-
ron cannot suddenly fi re after a very long time, unless its input 
changes. This suggests therefore that “vicious” neurons are bio-
logically implausible. However, this argument, to be correct, 
must precisely defi ne what is a “very long time”. In fact, one has 
to compare the time scale of the experiment to the characteristic 
time where the vicious neurons will eventually fi re. Note also that 
since only a very small portion of neurons can be observed, e.g., 
in a given cortex area, some “vicious” neurons could be present 
(without being observed since not fi ring), with the important 
consequence discussed in this paper. The observation of “tem-
porarily silent” neurons which fi ring induces a large dynamic 
change would be an interesting issue in this context.

As a fi nal remark we would like to point out the remarkable 
work of Latham and collaborators discussing the effects induced 
by the addition or removal of a single spike in a raster plot. A 
central question is whether this “perturbation” (which is not 
necessarily “weak”) will have a dramatic effect on the further 
evolution [see Latham et al. (2006) and the talk of P. Latham 
available on line at http://www.archive.org/details/Redwood_
Center_2006_09_25_Latham]. Especially the questions and dis-
cussions formulated during the talk of P. Latham are particularly 
salient in view of the present work. As an additional remark note 
that a perturbation may have an effect on trajectories but not on 
the statistics build on these trajectories (e.g., frequency rates) 
(Cessac and Sepulchre, 2006).
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APPENDIX
A.1. COMPUTATION OF V
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where the last equality holds from our assumption that spikes 
are taken into account at times multiples of δ; therefore 
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If neuron k does not fi re between t and t + δ we have, inte-
grating the previous equation for t

1
∈[t, t + δ[ and setting 

t
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 = t + δ:
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A.2. PROOF OF THEOREM 1
The proof uses the following lemma.

Lemma 1. Fix F a subset of {1
 
,…, N} and let F  be the comple-

mentary set of F. Call

ΓF T

ii i t T V t

ii j t t j
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then Ω(ΓF,T,ε), the ω-limit set of ΓF,T,ε, is composed by fi nitely 
many periodic orbits with a period ≤T.

Proof of theorem 1
Note that there are fi nitely many subsets F of {1

 
,…, N}. Note 

also that ΓF,T,ε ⊂ ΓF,T + 1,ε and that ΓF,T,ε ⊂ ΓF,T,ε′ whenever ε′ < ε. 
We have therefore:
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But, under hypothesis (1) and (2) of theorem 1, there exists 
ε > 0, T < ∞ such that M F F= , ,∪ Γ T ε  where the union on F 
is fi nite. Since F F( ) ( )M ⊂ F F∪ Γ , ,T ε , Ω Ω Γ⊂ ∪F F( ), ,T ε . Under 
lemma 1 Ω is therefore a subset of a fi nite union of sets contain-
ing fi nitely many periodic orbits with a period ≤T.

Proof of lemma 1 Call ΠF (resp. ΠF) the projection onto the 
subspace generated by the basis vectors ei i, ∈F  (resp. e j j, ∈F ) 

and set V VF F= Π  ( V VF F= Π ), F FF F= Π  (F FF F= Π ). Since 

each neuron j ∈F  is such that (25):
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for t suffi ciently large, [larger than the last (fi nite) fi ring time t
j
], 

these neurons do not act on the other neurons and their 
 membrane potential is only a function of the synaptic current 
generated by the neurons ∈F. Thus, the asymptotic dynam-
ics is generated by the neurons i ∈F. Then, ∀V ∈Ω(ΓF,T,ε), 
VF(t + 1) = FF[VF(t)] and V F VF F F( ) [ ( )]t t+ =1 . One can 
therefore focus the analysis of the ω limit set to its projection 
ΩF(ΓF,T,ε) = ΠF 

Ω(ΓF,T,ε) (and infer the dynamics of the neurons 

j ∈F  via (38)).
Construct now the partition P(T), with convex elements given 

by M
T

�ω[ ] , where T is the same as in the defi nition of ΓF,T,ε. By 
construction, FT + 1 is continuous on each element P(T) and fi xing 
M

T
�ω[ ]  amounts to fi x the affi nity constant of FT + 1. By defi nition 

of T, 
V

FD T
F

+1 , the derivative of FF
T +1 at V, has all its eigenval-

ues equal to 0 whenever V∈ΩF(ΓF,T,ε) (prop. 1). Therefore 
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the image of ΩF(ΓF,T,ε) under FF
T +1 is a fi nite union of points 

belonging to M. Since, ΩF(ΓF,T,ε) is invariant, this a fi nite union 
of points, and thus a fi nite union of periodic orbits.

The dynamics of neurons ∈F  is driven by the periodic 
dynamics of fi ring neurons and it is easy to see that their trajec-
tory is asymptotically periodic. Finally, since M = ∪F(ΓF,T,ε) the 
ω limit set of M is a fi nite union of periodic orbits.

A.3. AVERAGE OF A FUNCTION
Since the dynamics is not uniquely ergodic (there are typically 
many periodic attractors), one has to be careful with the notion 
of average of a function φ. We have fi rst to perform a time aver-

age for each attractor i, 
( ) ( )lim ( ( ))
i

T t

T i tφ φ= →∞ =∑ 1
V , where V(i) is 

an initial condition in the attraction basin of attractor i. Then, we 
have to average over all attractors, with a weight corresponding 
to the Lebesgue measure µ(i) of its attraction basin. This gives:

φ μ φ=
=
∑1

1N

N

i

i i( ) ( )

 
(39)

where N is the number of attractors.
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