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We present a mathematical analysis of networks with integrate-and-fire (IF) neurons with conductance based synapses. Taking into
account the realistic fact that the spike time is only known within some finite precision, we propose a model where spikes are effective
at times multiple of a characteristic time scale 5, where & can be arbitrary small (in particular, well beyond the numerical precision). We
make a complete mathematical characterization of the model-dynamics and obtain the following results. The asymptotic dynamics is
composed by finitely many stable periodic orbits, whose number and period can be arbitrary large and can diverge in a region of the
synaptic weights space, traditionally called the “edge of chaos”, a notion mathematically well defined in the present paper. Furthermore,
except at the edge of chaos, there is a one-to-one correspondence between the membrane potential trajectories and the raster plot.
This shows that the neural code is entirely “in the spikes” in this case. As a key tool, we introduce an order parameter, easy to compute
numerically, and closely related to a natural notion of entropy, providing a relevant characterization of the computational capabilities
of the network. This allows us to compare the computational capabilities of leaky and IF models and conductance based models. The
present study considers networks with constant input, and without time-dependent plasticity, but the framework has been designed for

both extensions.
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INTRODUCTION

Neuronal networks have the capacity to treat incoming infor-
mation, performing complex computational tasks (see Rieke
etal.,, 1996 for a deep review), including sensory-motor tasks.
It is a crucial challenge to understand how this information is
encoded and transformed. However, when considering in vivo
neuronal networks, information treatment proceeds usually
from the interaction of many different functional units having
different structures and roles, and interacting in a complex way.
As a result, many time and space scales are involved. Also, in vivo
neuronal systems are not isolated objects and have strong inter-
actions with the external world, that hinder the study of a specific
mechanism (Frégnac, 2004). In vitro preparations are less sub-
ject to these restrictions, but it is still difficult to design specific
neuronal structure in order to investigate the role of such sys-
tems regarding information treatment (Koch and Segev, 1998).
In this context models are often proposed, sufficiently close
from neuronal networks to keep essential biological features,
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but also sufficiently simplified to achieve a characterization of
their dynamics, the most often numerically and, when possible,
analytically (Gerstner and Kistler, 2002b; Dayan and Abbott,
2001). This is always a delicate compromise. At one extreme, one
reproduces all known features of ionic channels, neurons, syn-
apses... and lose the hope to have any (mathematics and even
numeric) control on what is going on. At the other extreme,
over-simplified models can lose important biological features.
Moreover, sharp simplifications may reveal exotic properties
which are in fact induced by the model itself, but do not exist
in the real system. This is a crucial aspect in theoretical neuro-
science, where one must not forget that models are subject to
hypothesis and have therefore intrinsic limits.

For example, it is widely believed that one of the major
advantages of the integrate-and-fire (IF) model is its concep-
tual simplicity and analytical tractability that can be used to
explore some general principles of neurodynamics and cod-
ing. However, though the first IF model was introduced in
1907 by Lapicque (1907) and though many important analyti-
cal and rigorous results have been published, there are essential
parts missing in the state of the art in theory concerning the
dynamics of IF neurons (see e.g., Ernst et al., 1995; Gong and
van Leeuwen, 2007; Jahnke et al., 2008; Memmesheimer and
Timme, 2006; Mirollo and Strogatz, 1990; Senn and Urbanczik,
2001; Timme et al., 2002 and references below for analytically
solvable network models of spiking neurons). Moreover, while
the analysis of an isolated neuron submitted to constant inputs
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is straightforward, the action of a periodic current on a neuron
reveals already an astonishing complexity and the mathematical
analysis requires elaborated methods from dynamical systems
theory (Coombes, 1999b; Coombes and Bressloff, 1999; Keener
etal.,, 1981). In the same way, the computation of the spike train
probability distribution resulting from the action of a Brownian
noise on an IF neuron is not a completely straightforward exer-
cise (Brunel and Latham, 2003; Brunel and Sergi, 1998; Gerstner
and Kistler, 2002a; Knight, 1972; Touboul and Faugeras, 2007)
and may require rather elaborated mathematics. At the level of
networks the situation is even worse, and the techniques used
for the analysis of a single neuron are not easily extensible to
the network case. For example, Bressloff and Coombes (2000b)
have extended the analysis in Coombes (1999b), Coombes and
Bressloff (1999) and Keener etal. (1981) to the dynamics of
strongly coupled spiking neurons, but restricted to networks
with specific architectures and under restrictive assumptions
on the firing times. Chow and Kopell (2000) studied IF neu-
rons coupled with gap junctions but the analysis for large net-
works assumes constant synaptic weights. Brunel and Hakim
(1999) extended the Fokker—Planck analysis combined to a
mean-field approach to the case of a network with inhibitory
synaptic couplings but under the assumptions that all synaptic
weights are equal. However, synaptic weight variability plays a
crucial role in the dynamics, as revealed, e.g., using mean-field
methods or numerical simulations (Van Vreeswijk, 2004; Van
Vreeswijk and Hansel, 1997; Van Vreeswijk and Sompolinsky,
1998). Mean-field methods allow the analysis of networks with
random synaptic weights (Amari, 1972; Cessac, 1995; Cessac
etal., 1994; Hansel and Mato, 2003; Samuelides and Cessac,
2007; Sompolinsky et al., 1988; Soula etal., 2006) but they
require a “thermodynamic limit” where the number of neurons
tends to infinity and finite-size corrections are rather difficult
to obtain. Moreover, the rigorous derivation of the mean-field
equations, that requires large-deviations techniques (BenArous
and Guionnet, 1995), has not been yet done for the case of IF
networks with continuous time dynamics (for the discrete time
case, see Samuelides and Cessac, 2007; Soula et al., 2006).
Therefore, the “analytical tractability” of IF models is far from
being evident. In the same way, the “conceptual simplicity” hides
real difficulties which are mainly due to the following reasons.
IF models introduce a discontinuity in the dynamics whenever
a neuron crosses a threshold: this discontinuity, that mimics a
“spike”, maps instantaneously the membrane potential from the
threshold value to a reset value. The conjunction of continuous
time dynamics and instantaneous reset leads to real conceptual
and mathematical difficulties. For example, an IF neuron with-
out refractory period (many authors have considered this situ-
ation), can, depending on parameters such as synaptic weights,
fire uncountably many spikes within a finite time interval, lead-
ing to events which are not measurable (in the sense of prob-
ability theory). This prevents the use of standard methods in
probability theory and notations such as p(t)=2ﬁi1 S(t—1t,)
(spike response function) simply lose their meaning'. Note also
that the information theory (e.g., the Shannon theorem, stat-
ing that the sampling period must be less than half the period
corresponding to the highest signal frequency) is not applicable

'Obviously, one can immediately point out that (1) this situation is not plausible
if one thinks of biological neurons and (2) is not “generic” for IF models. Thus,
objection (1) implies that some conclusions drawn from IF models are not
biologically plausible, while objection (2) needs to be made mathematically clear.
This is one of the goals of this paper.

with unbounded frequencies. But IF models have an unbounded
frequencies spectrum (corresponding to instantaneous reset).
From the information theoretic point of view, it is a tempta-
tion to relate this spurious property to the erroneous fact that
the neuronal network information is not bounded. These few
examples illustrate that one should not be abused by the appar-
ent simplicity of IF models and must be careful in pushing too
much their validity in order to explore some general principles
of neurodynamics and coding.

The situation is not necessarily better when consider-
ing numerical implementations of IF neurons. Indeed, it is
known from a long time that the way the membrane poten-
tial is reset in a neuronal network simulation have significant
consequences for the dynamics of the model. In particular,
Hansel et al. (1998) showed that a naive implementation of IF
dynamics on a discrete time grid introduces spurious effects
and proposed an heuristic method to reduce the errors induced
by time discretization. In parallel, many people have developed
event based integration schemes (Brette et al., 2007), using the
fact that the time of spike of a neuron receiving instantaneous
spikes from other neurons can be computed analytically, thus
reducing consequently the computation time and affording
the simulation of very large networks. In addition, exact event
based computational schemes are typically used for the above-
mentioned analytically tractable model classes (see, e.g., Mirollo
and Strogatz, 1990; Timme et al., 2002). Unfortunately, this
approach suffers two handicaps. If one considers more elabo-
rated models than analytically tractable models, one is rapidly
faced to the difficulty of finding an analytical expression for
the next spike time (Rudolph and Destexhe, 2006). Moreover,
any numerical implementations of a neural network model will
necessarily introduce errors compared to the exact solution.
The question is: how does this error behave when iterating the
dynamics? Is it amplified or damped? In IF models, as set previ-
ously, these errors are due to the discontinuity in the membrane
potential reset and to the time discretization. This has been
nicely discussed by Hansel et al. (1998). These authors point
out two important effects. When a neuron fires a spike between
time tand ¢+ At a local error on the firing time is made when
using time discretization. First, this leads to an error on the
membrane potential and second this error is propagated to the
other neurons via the synaptic interaction term. Unfortunately,
this analysis, based on numerical simulations, was restricted to
a specific architecture (identical excitatory neurons) and there-
fore the conclusions drawn by the authors cannot be extended
as it is to arbitrary neural architectures. Indeed, as we show in
the present paper, the small error induced by time discretiza-
tion can be amplified or damped, depending on the synaptic
weights value. This leads to the necessity of considering care-
fully (that is mathematically) the spurious effects induced by
continuous time and instantaneous reset in IF models, as well
as the effects of time discretization. This is one aspect discussed
in the present paper.

More generally, this work contains several conclusions
forming a logical chain. After a discussion on the characteristic
times involved in real neurons and comparison to the assump-
tions used in IF models we argue that discrete time IF models
with synchronous dynamics can be used to model real neurons
as well, provided that the time scale discretization is sufficiently
small. More precisely, we claim that IF equations are inappro-
priate if one sticks to much on the instantaneous reset and
spike time, but that they provide a good and mathematically
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tractable model if one allows reset and spike to have some
duration. We therefore modify the reset and spike definition
(while keeping the differential equation for the dynamics of
the membrane potential below the threshold). The goal is how-
ever NOT to propose yet another numerical scheme for the
numerical integration of continuous time IF models. Instead,
our aim is to analyze mathematically the main properties of
the corresponding dynamical system, describing the evolution
of a network with an arbitrary, finite, size (i.e., we do not use
neither a mean-field approach nor a thermodynamic limit).
We also consider an arbitrary architecture. Finally, in our anal-
ysis the time discretization step is arbitrary small (thus pos-
sibly well below the numerical precision). For this, we use a
dynamical system approach developed formerly in Blanchard
etal. (2000) and Cessac et al. (2004). In particular, in Cessac
(2008) a discrete time version of a leaky IF network, was stud-
ied. It was shown that the dynamics is generically periodic,
but the periods can become arbitrary large (in particular, they
can be larger than any accessible computational time) and in
(non generic) regions of the synaptic weights space, dynamics
is chaotic. In fact, a complete classification of the dynamical
regimes exhibited by this class of IF models was proposed and
a one-to-one correspondence between membrane potential
trajectories and raster plots was exhibited (for recent contribu-
tions that study periodic orbits in large networks of IF neurons,
see Gong and van Leeuwen, 2007; Jahnke et al., 2008). Beyond
these mathematical results, this work warns one about some
conclusions drawn from numerical simulations and empha-
sizes the necessity to have, when possible, a rigorous analysis
of the dynamics.

The paper (Cessac, 2008) dealt however with a rather simple
version of IF neurons (leaky IF) and one may wonder whether
this analysis extend to models closer to biology. In the present
paper we extend these results, and give a mathematical treat-
ment of the dynamics of spikes generated in synaptic coupled
IF networks where synaptic currents are modeled in a biophysi-
cally plausible way (conductance based synapses). As developed
in the text, this extension is far from being straightforward and
requires a careful definition of dynamics incorporating the inte-
gration on the spikes arising in the past. This requires a relatively
technical construction but this provides a setting where a rigor-
ous classification of dynamics arising in IF neural networks with
conductance based synapse can be made, with possible further
extension to more elaborated models.

The paper is organized as follows. In Section 1 we give a short
presentation of continuous time IF models. Then, a careful dis-
cussion about the natural time scales involved in biological
neurons dynamics and how continuous time IF models violate
these conditions is presented. From this discussion we propose
the related discrete time model. Section 2 makes the mathemati-
cal analysis of the model and mathematical results characteriz-
ing its dynamics are presented. Moreover, we introduce an order
parameter, called d(Q2, S), which measures how close to the
threshold are neurons during their evolution. Dynamics is peri-
odic whenever d(€, S) is positive, but the typical orbit period
can diverge when it tends to 0. This parameter is therefore related
to an effective entropy within a finite time horizon, and to the
neural network capability of producing distinct spikes trains. In
other words, this is a way to measure the ability of the system to
emulate different input—output functions. See Bertschinger and
Natschlager (2004) and Langton (1990) for a discussion on the
link between the system dynamics and its related computational

Dynamics of IFNN with conductance based synapses

complexity?. The smaller d(€2, S), the larger is the set of distinct
spikes trains that the neural network is able to produce. This
implies in particular a larger variability in the responses to
stimuli. The vanishing of d(Q, S) corresponds to a region in the
parameters space, called “the edge of chaos”, and defined here in
mathematically precise way. In Section 3 we perform numerical
investigations of d(Q2, S) in different models from leaky IF to
conductance based models. These simulations suggest that there
is a wide region of synaptic conductances where conductance
based models display a large effective entropy, while this region
is thinner for leaky IF models. This provides a quantitative way
to measuring how conductances based synapses and currents
enhances the information capacity of IF models. Section 4 pro-
poses a discussion on these results.

GENERAL FRAMEWORK

GENERAL STRUCTURE OF INTEGRATE AND FIRE MODELS

We consider the (deterministic) evolution of a set of N neurons.
Call V,(#) the membrane potential of neuron k€ {1 ... N} at time
tand let V(1) be the vector [Vk(t)]szl. We denote by V =V(0) the

initial condition and the (forward) trajectory of V by:

~ def +oo

V = {V(}

where time can be either continuous or discrete. In the exam-
ples considered here the membrane potential of all neurons
is uniformly bounded, from above and below, by some values
V.,V . CalM=[V .,V ]~ Thisis the phase space of our
dynamical system.

We are focusing here on “IF models”, which always incorpo-
rate two regimes. For the clarity of the subsequent developments
we briefly review these regimes (in a reverse order).

The “fire” regime
Fix a real number 6 € [V_ , V__] called the firing threshold of

the neuron®. Define the firing times of neuron k, for the trajec-
tory* V, by:

=it {170, V0 20] v

where #\” = —co. The firing of neuron k corresponds to the fol-
lowing procedure. If V/(#) 2 0 then neuron membrane potential

is reset instantaneously to some constant reset value V. and a

It has been proposed that optimal computational capabilities are achieved
by systems whose dynamics is neither chaotic nor ordered but somewhere in-
between order and chaos. This has led to the idea of computation at “the edge
of chaos” Early evidence for this hypothesis has been reported by Kauffman
(1969) and Langton (1990) considering cellular automata behavior, and Packard
(1988) using a genetic algorithm. See Bertschinger and Natschliger (2004) for a
review. In relation, with these works, theoretical results by Derrida and Flyvbjerg
(1986) and Derrida and Pomeau (1986) allow to characterize analytically the
dynamics of random Boolean networks and for networks of threshold elements
(Derrida, 1987). Recently Bertschinger and Natschlidger (2004) have contributed
to this question, considering numerical experiments in the context of real-time
computation with recurrent neural networks.

*We assume that all neurons have the same firing threshold. The notion of
threshold is already an approximation which is not sharply defined in Hodgkin—
Huxley (Hodgkin and Huxley, 1952) or Fitzhugh—-Nagumo (FitzHugh, 1961;
Nagumo et al., 1962) models (more precisely it is not a constant but it depends
on the dynamical variables). Recent experiments (Naundorf et al., 2006, 2007;
McCormick etal., 2007) even suggest that there may be no real potential
threshold.

“Note that, since the dynamics is deterministic, it is equivalent to fix the forward
trajectory or the initial condition V = V(0).
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spike is emitted toward post-synaptic neurons. In mathematical
terms firing reads’:

V. ()=20=V,(t)=V,, (2)

) is called the “reset potential”. In the
sequel we assume, without loss of generality, that V. = 0. This
reset has a dramatic effect. Changing the initial values of the
membrane potential, one may expect some variability in the
evolution. Now, fix a neuron k and assume that there is a time
t>0 and an interval [a, b] such that, VV,(0) € [a, b], V(1) > 6.
Then, after reset, this interval is mapped to the point V, . Then,
all trajectories born from [a, b] collapse on the same point and
have obviously the same further evolution. Moreover, after reset,
the membrane potential evolution does not depend on its past
value. This induces an interesting property used in all the IF
models that we know (see e.g., Gerstner and Kistler, 2002b). The
dynamical evolution is essentially determined by the firing times of
the neurons, instead of their membrane potential value.

where V. e[V, V_

reset min’

The “Integrate regime”
Below the threshold, V, <0, neuron k’s dynamics is driven by an
equation of form:
C%+ V. =1, (3)
where C is the membrane capacity of neuron k. Without loss
of generality we normalize the quantities and fix C=1. In its
most general form, the neuron k’s membrane conductance g, > 0
depends on V, [see e.g., Hodgkin-Huxley equations (Hodgkin
and Huxley, 1952)] and time ¢, while the current 7, can also
depend on V, the membrane potential vector, on time ¢, and also
on the collection of past firing times. The current i_can include
various phenomenological terms. Note that (3) deals with neu-
rons considered as points instead of spatially extended objects.
Let us give two examples investigated in this paper.

The leaky IF model
In its simplest form equation (3) reads:

dv, V., .
k- k(¢ 4
it T, 1k( ) (4)

where g, is a constant, and T, = g,/C is the characteristic time
for membrane potential decay when no current is present. This
model has been introduced in Lapicque (1907).

Conductance based models with o profiles

More generally, conductance and currents depend on V only via
the previous firing times of the neurons (Rudolph and Destexhe,
2006). Namely, conductances (and currents) have the general
form®, gk &.(t, {t '},) where t;") is the nth firing time of neuron

jand {£" ; '}, is the list of firing times of all neurons up to time #.

*Note that the firing condition includes the possibility to have a membrane potential
value above the threshold. This extension of the standard definition affords some
discontinuous jumps in the dynamics. These jumps arise when considering addition
of (discontinuous) noise, or o, profiles with jumps (e.g., ou(t) =1 e ,t20). Theyalso
appear when considering a discrete time evolution. Note that strictly speaking, this
can happen, within the numerical precision, even with numerical schemes using
interpolations to locate more precisely the spike time (Hansel et al., 1998).

SThe rather cumbersome notation g, (t, {tj”) }, simply expresses thatin conductance
based models the conductance depends on the whole set (history) of (past) firing

times. Note that membrane potentials are reset after neuron firing, but #ot neuron
conductances.

This corresponds to the fact that the occurrence of a post-
synaptic potential on synapse j, at time t;") , results in a change
of the conductance g, of neuron k. As an example, we consider
models of form:

av, 1 s n ext
d_tkz—T—L(Vk—E =it (Vo] )+ (1) (%)

where the first term in the r.h.s. is a leak term, and where the
synaptic current reads:

MVt = (V- E*)i gt })

=1
N

+(Vi—E)Y gy(t.{t"]),
=1

where E* are reversal potential (typically E*= 0 mV and E- =
—75 mV) and where:

M](t,V)
+ (n) _ + + _ (n)
gkj(ta{tj }t) =Gy Z o (t t )
n=1

In this equation, Mj( 1, V) is the number’ of times neuron jhas
fired at time t. ij is the synaptic efficiency (or synaptic weight)
of the synapse j — k. (It is 0 if there is no synapse j — k), where
+ [—] expresses that synapse j — k is excitatory [inhibitory]. The
o function mimics the conductance time-course after the arrival
of a post-synaptic potential. A possible choice is:

() = H(r)rée'? (6)

with H the Heaviside function and t* being characteristic times.
This synaptic profile, with 0l(0) = 0 while a(#) is maximal for
t =1, allows us to smoothly delay the spike action on the post-
synaptic neuron. We are going to neglect other forms of delays
in the sequel.

Then, we may write (5) in the form (3) with:

M(zV)
s(tf7])=5 20 3 o)
N M;(t,V)
+ 2 Gy 2, a(t=1). )

1 n=1

-
Il

and

o)) = Sl

+EY, g,;.(t,{t;")}t)+ i (¢). (8)

DISCRETE TIME DYNAMICS

Characteristic time scales in neurons dynamics

IF models assume an instantaneous reset of the membrane
potential corollary to an infinite precision for the spike time.

"Henceforth, one assumes that there are finitely many spikes within a finite time
interval. For continuous time dynamics, this factis not guaranteed when neglecting
the refractory period. Note also that this number, as well as the list {t(”)} depends
on the initial condition V and a small change in the initial condition may induce
a drastic change of M| (t, V) at time t, as discussed later. This effect is sometimes
disregarded (Coombes, 1999b). This issue has also been discussed (for current
based IF-like models) as “phase history functions” in Ashwin and Timme (2005)
and Broer et al. (2008) (we thank one of the reviewers for this remark).
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We would like to discuss shortly this aspect. Looking at the spike
shape reveals some natural time scales: the spike duration T (a few
ms); the refractory period r = 1 ms; and the spike time precision.
Indeed, one can mathematically define the spike time as the time
where the action potential reaches some value (a threshold, or
the maximum of the membrane potential during the spike),
but, on practical ground, spike time is not determined with an
infinite precision. An immediate conclusion is that it is not cor-
rect, from an operational point of view, to speak about the “spike
time”, unless one precise that this time is known with a finite
precision &t. Thus the notion of list of firing time {t;")}t used in
Section 1, must be revisited, and a related question is “what is
the effect of this indeterminacy on the dynamical evolution?”
Note that this (evident?) fact is forgotten when modeling, e.g.,
spike with Dirac distributions. This is harmless as soon as the
characteristic time &t is smaller than all other characteristic times
involved in the neural network. This is essentially true in biologi-
cal networks but it is not true in IF models.

These time scales arise when considering experimental data
on spikes. When dealing with models, where membrane poten-
tial dynamics is represented by ordinary differential equations
usually derived from Hodgkin—Huxley model, other implicit
times scales must be considered. Indeed, Hodgkin-Huxley for-
mulation in term of ionic channel activity assumes an integra-
tion over a time scale dt which has to be (1) quite larger than the
characteristic time scale T, of opening/closing of the channels,
ensuring that the notion of probability as a meaning; (2) quite
larger than the correlation time T_between channel states ensur-
ing that the Markov approximation used in the equations of the
variable m, n, h is legal. This means that, although the math-
ematical definition of £ assumes a limit dt — 0, there is a time
scale below which the ordinary differential equations lose their
meaning. Actually, the mere notion of “membrane potential”
already assumes an average over microscopic time and space
scales. Note that the same is true for all differential equations
in physics! But this (evident?) fact is sometimes forgotten when
dealing with IF models. Indeed, to summarize, the range of
validity of an ODE modeling membrane potential dynamics
is max(T,, T,) < dt < 8T < 1. But the notion of instantaneous
reset implies T = 0 and the mere notion of spike time implies that
ot =0

There is a last time scale related to the notion of raster plot.
It is widely admitted that the “neural code” is contained in
the spike trains. Spike trains are represented by raster plots,
namely bi-dimensional diagrams with time on abscissa and
some neurons labeling on ordinate. If neuron k fires a spike “at
time t,” one represents a vertical bar at the point (t,, k). Beyond
the discussion above on the spike time precision, the physi-
cal measurement of a raster plot involves a time discretiza-
tion corresponding to the time resolution 8, of the apparatus.
When observing a set of neurons activity, this introduces an
apparent synchronization, since neurons firing between t and
t+ 0, will be considered as firing simultaneously. This raises
several deep questions. In such circumstances the “informa-
tion” contained in the observed raster plot depends on the
time resolution SA (Golomb et al., 1997; Panzeri and Treves,
1996) and it should increase as 8, decreases. But is there a
limit time resolution below which this information does not
grow anymore? In IF models this limit is §, = 0 This may lead
to the conclusion that neural networks have an unbounded
information capacity. But is this a property of real neurons or
only of IF models?

Dynamics of IFNN with conductance based synapses

The observation of raster plots corresponds to switching
from the continuous time dynamics of membrane potential to
the discrete time and synchronous dynamics of spike trains. One
obtains then, in some sense, a new dynamical system, of sym-
bolic type, where variables are bits (“0” for no spike, and “1”
otherwise). The main advantage of this new dynamical system is
that it focuses on the relevant variables as far as information and
neural coding is concerned, i.e., one focuses on spikes dynam-
ics instead of membrane potentials. In particular, membrane
potentials may still depend continuously on time, but one is only
interested in their values at the times corresponding to the time
grid imposed by the raster plot measurement. In some sense this
produces a stroboscopic dynamical system, with a frequency
given by the time resolution d,, producing a phenomenological
representation of the underlying continuous time evolution.

This has several advantages. (1) this simplifies the mathemati-
cal analysis of the dynamics avoiding the use of delta distribu-
tions, left-right limits, etc.... appearing in the continuous version;
(2) provided that mathematical results do not depend on the
finite time discretization scale, one can take it arbitrary small;
(3) it enhances the role of symbolic coding and raster plots.

Henceforth, from now on, we fix a positive time scale 3 >0
which can be mathematically arbitrary small, such that (1) a
neuron can fire at most once between [t, t+ 8[ (i.e., d < r, the
refractory period); (2) dt < 9, so that we can keep the continu-
ous time evolution of membrane potentials (3), taking into
account time scales smaller than §, and integrating membrane
potential dynamics on the intervals [¢, ¢+ [; (3) the spike time
is known within a precision 8. Therefore, the terminology,
“neuron k fires at time ¢~ has to be replaced by “neuron k fires
between tand t+ 0”; (4) the update of conductances is made at
times multiples® of 6.

Raster plot

In this context, we introduce a notion of “raster plot” which is
essentially the same as in biological measurements. A raster plot
. _ def oo def N
is a sequence @ = {w(t)}, ), of vectors w(t) = [wi ()],
such that the entry w,(t) is 1 if neuron k fires between [z, £+ [
and is 0 otherwise. Note however that for mathematical reasons,
explained later on, a raster plot corresponds to the list of firing
states {w(t)}; over an infinite time horizon, while on practical
grounds one always considers bounded times.

Now, for each k=1,..., N, one can decompose the interval
I=[V_,V JintoZ UZ withZ =[V_,0[,Z =1[6,V ]
If V_e I neuron kis quiescent, otherwise it fires. This splitting
induces a partition P of M, that we call the “natural partition”.
The elements of P have the following form. Call A = {O,I}N.
Let w= [w k]kN:1 € A. This is a N dimensional vector with binary
components 0, 1. We call such a vector a firing state. Then

M= U M, where:
WeA

My=|VeM|V,eT,_|. (9)

Therefore, the partition P corresponds to classifying the
membrane potential vectors according to their firing state.

#This could correspond to the following “experiment”. Assume that we measure
the spikes emitted by a set of in vitro neurons, and that we use this information
to update the conductances of a model like (5), in order to see how this model
“matches” the real neurons [see Jolivet et al. (2006) for a nice investigation in this
spirit]. Then, we would have to take into account that the information provided
by the experimental raster plot is discrete, with a clock-based grid, even if the
membrane potential evolves continuously.
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Indeed, to each point V(#) of the trajectory V corresponds a
firing state w(t) whose components are given by:

w(D) = Z[V (D], (10)
where Zis defined by:
Z(x) = x[x=8], (11)

where y is the indicator function that will later on allows us to
include the firing condition in the evolution equation of the
membrane potential (see (20)). On a more fundamental ground,
the introduction of raster plots leads to a switch from the dynam-
ical description of neurons, in terms of their membrane potential
evolution, to a description in terms of spike trains where & pro-
vides a natural “neural code”. From the dynamical systems point
of view, it introduces formally a symbolic coding and symbolic
sequences are easier to handle than continuous variables, in many
aspects such as the computation of topological or measure theo-
retic quantities like topological or Kolmogorov—Sinai entropy
(Katok and Hasselblatt, 1998). A natural related question is
whether there is a one-to-one correspondence between the mem-
brane potential trajectory and the raster plot (see theorem 2).

Note that in the deterministic models that we consider here,
the evolution, including the firing times of the neurons and
the raster plot, is entirely determined by the initial conditions.
Therefore, there is no need to introduce an exogenous process
(e.g., stochastic) for the generation of spikes (see Destexhe and
Contreras, 2006 for a nice discussion on these aspects).

Furthermore, this definition has a fundamental consequence
In the present context, current and conductances at time ¢
become functions of the raster plot up to time t. Indeed, we may
write (7) in the form:

M, (t, @)

Z at(s— t](-"))ds

n=1

gt @]) E Y G (12)
j

where [J)]t = {w(s)};o is the raster plot up to time tand Mj(t, @)

is the number of spikes emitted Py neuron j up to time # in the

raster plot @ (i.e., Mj(t, @)= 2;:1 w;(s)). But now t;”) is a mul-

tiple of 3.

Remark

In continuous time IF models & can assume uncountably many
values. This is because a neuron can fire at any time and because
firing is instantaneous. Therefore, the same property holds also
if one considers sequences of firing states over a bounded time
horizon. This is still the case even if one introduces a refrac-
tory period, because even if spikes produced by a given neuron
are separated by a time slot larger or equal than the refractory
period, the first spike can occur at any time (with an infinite
precision). If, on the opposite, we discretize time with a time
scale & small enough to ensure that each neuron can fire only
once between f and ¢+ 0, &, truncated at time TO can take at
most 2N values. For these reasons, the “computational power”
of IF models with continuous time is sometimes considered as
infinitely larger than a system with clocked based discretization
(Maass and Bishop, 2003). The question is however whether this
computational power is something that real neurons have, or if
we are dealing with a model-induced property.

Integrate regime
For this regime, as we already mentioned, we keep the possibil-
ity to have a continuous time (dt < 8) evolution of membrane

potential (3). This allows us to integrate V on time scales smaller
than 8. But, since conductances and currents depends now on
the raster plot @, we may now write (3) in the form:

ﬂ.,. gk(t’[‘b],) V, = ik(t’[‘:’],)’ whenever V, <6.

dt (13)

When neuron k does not fire between f, t+ 0 one has,
integrating the membrane potential on the interval f, t+ 8
(see Appendix):

V(t+8)=v,(t[®] Ve (t)+ T (t[2]). (14)
where
w(t [@],) & ol Tn @ (15)
and

- 1+ ~ ~
T (t,[w]r) = L i (s,[w]t)vk (s,t + 6,[w]1)d5, (16)
is the integrated current with:
vi(st+8]2])= R Aicirs a7

Remarks

1. In the sequel, we assume that the external current (see (8)) is
time-constant. Further developments with a time dependent
current, i.e., in the framework of an input-output computa-
tion (Bertschinger and Natschlidger, 2004), will be considered
next.

2. We note the following property, central in the subsequent
developments. Since g,(t,[@])>0,

v (6[@]) <LV Vo,V (18)

Firing regime

Let us now consider the case where neuron k fires between ¢
and ¢+ 3. In classical IF models this means that there is some
t\" e[t,t+ 8] such that V,(t\") = 0. Then, one sets V, (") =V,
(instantaneous reset). This corresponds to Figure 1B. Doing this
one makes some error compared to the real spike shape depicted
in Figure 1A. In our approach, one does not know exactly when
firing occurs but we use the approximation that the spike is
taken into account at time ¢+ 8. This means that we integrate
V, until £+ & then reset it. In this scheme V, can be larger than 0
as well. This explains why Z(x) =y (x> 0). This procedure cor-
responds to Figure 1C (Alternative I). One can also use a slightly
different procedure. We reset the membrane potential at ¢+ &
but we add to its value the integrated current between [#, ¢+ 9.
This corresponds to Figure 1D (Alternative IT). We have there-
fore three types of approximation for the real spike in Figure 1A.
Another one was proposed by Hansel et al. (1998), using a linear
interpolation scheme. Other schemes could be proposed as well.
One expects them to be all equivalent when & — 0. For finite §,
the question whether the error induced by these approximations
is crucial is discussed in Section 6.

In this paper we shall concentrate on Alternative II though
mathematical results can be extended to Alternative I in a
straightforward way. This corresponds to the initial choice of the
Beslon—-Mazet—Soula model (BMS) motivating the paper (Soula
et al., 2006) and the present work.
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Figure 1 | (A) “Real spike” shape; the sampling window is represented at a scale corresponding to a “small” sampling rate to enhance the related
bias. (B) Spike shape for an integrate and fire model with instantaneous reset, the real shape is in blue. (G) Spike shape when reset occurs at time ¢+ &
(Alternative ). (D) Spike shape with reset at time ¢+ & plus addition of the integrate current (green curve) (Alternative II).

In this case, the reset corresponds to:
Vk(t)29:>Vk(t+8)=]k(t,[&]t), (19)

(recall that V. =0).

reset

IF regime can now be included in a unique equation, using
the function Z defined in (11):

Vi(t+1) =7, (18] )[1- Z(i0) V) + 1 (1]2],),

where we set § = 1 from now on.

(20)

EXAMPLES

The Beslon-Mazet-Soula model

Consider the leaky IF model, where conductances are constant.
Set W,; =G E" (W, =G,E") for excitatory (inhibitory) syn-
apses. Then, replacing the a-profile by a Dirac distribution, (20)
reduces to:

Vi (t+1)=yV, (1) 1-Z2(Vi(0) ]+ i W, Z(Vj(t))+ v (21)

This model has been proposed by Soula etal. (2006). A
mathematical analysis of its asymptotic dynamics has been done
in Cessac (2008) and we extend these results to the more delicate
case of conductance based IF models in the present paper. [Note
that having constant conductances leads to a dynamics which
is independent of the past firing times (raster plot). In fact, the
dynamical system is essentially a cellular automaton but with a
highly non trivial dynamics].

Alpha-profile conductances
Consider now a conductance based model of form (3), leading to:

X (g e ()

v, (6[@])= Ke , (22)
where K is a constant:
K=e® <1 (23)
while, using the form (6) for o gives:
_ 1 _m 1 "‘5")
e et e
v (6[@])=Ke | P : (24)

One has therefore to handle an exponential of an exponential.
This example illustrates one of the main problem in IF models.
IF models have been introduced to simplify neurons description

and to simplify numerical calculations [compared, e.g., with
Hodgkin—Huxley’s model (Hodgkin and Huxley, 1952)]. Indeed,
their structure allows one to write an explicit expression for
the next firing times of each neurons, knowing the membrane
potential value. However, in case of 0. exponential profile, there is
no simple form for the integral and, even in the case of one neu-
ron, one has to use approximations with I" functions (Rudolph
and Destexhe, 2006) which reduce consequently the interest of IF
models and event based integration schemes.

THEORETICAL ANALYSIS OF THE DYNAMICS

THE GENERAL PICTURE

In this section we develop in words some important mathemati-
cal aspects of the dynamical system (20), mathematically proved
in the sequel.

Singularity set

The first important property is that the dynamics (20) (and the
dynamics of continuous time IF models as well) is not smooth,
but has singularities, due to the sharp threshold definition in
neurons firing. The singularity set is:

S={VeM|E|i=1,...,N,suchthatVi29}.

This is the set of membrane potential vectors such that at
least one of the neurons has a membrane potential exactly equal
to the threshold’. This set has a simple structure: it is a finite
union of N — 1 dimensional hyperplanes. Although Sis a “small”
set both from the topological (non residual set) and metric (zero
Lebesgue measure) point of view, it has an important effect on
the dynamics.

Local contraction

The other important aspect is that the dynamics is locally con-
tracting, because v, (r,[@] ) <1 (see Eq. (18)). This has the fol-
lowing consequence. Let us consider the trajectory of a point
V € M and perturbations with an amplitude <€ about V (this
can be some fluctuation in the current, or some additional noise,

°A sufficient condition for a neuron i to fire at time tis V(¢) = 6 hence V(¢)e S.
But this is not a necessary condition. Indeed, as pointed in the footnote 1, there
may exist discontinuous jumps in the dynamics, even if time is continuous, either
due to noise, or o profiles with jumps (e.g., ou(t) = %e%,t >0). Thus neuron i can
fire with V(1) >0 and V()¢ S. In the present case, this situation arises because
time is discrete and one can have V(¢ — 8) < 0 and V(¢) > 0. This holds as well even
if one uses numerical schemes using interpolations to locate more precisely the
spike time (Hansel et al., 1998).
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but it can also be some error due to a numerical implementa-
tion). Equivalently, consider the evolution of the e-ball B(V, ¢€).
If B(V,€) NS =0 then we shall see in the next section that the
image of B(V, ¢€) is a ball with a smaller diameter. This means,
that, under the condition B(V, €) NS =0, a perturbation is
damped. Now, if the images of the ball under the dynamics
never intersect S, any €-perturbation around V is exponentially
damped and the perturbed trajectories about V become asymp-
totically indistinguishable from the trajectory of V. Actually,
there is a more dramatic effect. If all neurons have fired after
a finite time ¢ then all perturbed trajectories collapse onto the
trajectory of V after t+ 1 iterations (see prop. 1 below).

Initial conditions sensitivity

On the opposite, assume that there is a time, £, such that the
image of the ball B(V, €) intersects S. By definition, this means
that there exists a subset of neurons {i,,..., ,} and V' € B(V, g),
such that Z(V(t,)) # Z(V! (t,)), i € {i,,..., i,}. For example, some
neuron does not fire when not perturbed but the application
of an €-perturbation induces it to fire (possibly with a mem-
brane potential strictly above the threshold). This requires obvi-
ously this neuron to be close enough to the threshold. Clearly,
the evolution of the unperturbed and perturbed trajectory may
then become drastically different (see Figure 2). Indeed, even if
only one neuron is lead to fire when perturbed, it may induce
other neurons to fire at the next time step, etc ..., inducing an
avalanche phenomenon leading to unpredictability and initial
condition sensitivity'.

It is tempting to call this behavior “chaos”, but there is an
important difference with the usual notion of chaos in differ-
entiable systems. In the present case, due to the sharp condition
defining the threshold, initial condition only occurs at sporadic

@

\ \
\
1 0
DR
\ /
- =

Vi

Figure 2 | Schematic representation, for two neurons, of the natural
partition P and the mapping discussed in the text. In this case, a firing

w
state is a vector with components w =( 1) labeling the partition elements.
w

A set of initial conditions, say a small (L) 2baII in M_, is contracted by leak
(neuron 1 in the example) and reset (neuron 2 in the example), but its image
can intersect the singularity set. This generates several branches of trajecto-
ries. Note that we have given some width to the projection of the image of the
ball on direction 2 in order to see it on the picture. But since neuron 2 fires
the width is in fact 0.

1°This effect is well known in the context of synfire chains (Abeles, 1982, 1991; Abeles
etal, 1993; Hertz, 1997) or self-organized criticality (Blanchard et al., 2000).

instants, whenever some neuron is close enough to the thresh-
old. Indeed, in certain periods of time the membrane potential
typically is quite far below threshold, so that the neuron can fire
only if it receives strong excitatory input over a short period of
time. It shows then a behavior that is robust against fluctuations.
On the other hand, when membrane potential is close to the
threshold a small perturbation may induce drastic change in the
evolution.

Stability with respect to small perturbations

Therefore, depending on parameters such as the synaptic
weights, the external current, it may happen that, in the station-
ary regime, the typical trajectories stay away from the singularity
set, say within a distance larger than € > 0, which can be arbitrary
small, (but positive). Thus, a small perturbation (smaller than €)
does not produce any change in the evolution. At a computa-
tional level, this robustness leads to stable input-output trans-
formations. In this case, as we shall see, the dynamics of (20) is
asymptotically periodic (but there may exist a large number of
possible orbits, with a large period). In this situation the system
has a vanishing entropy'!. This statement is made rigorous in
theorem 1 below.

On the other hand, if the distance between the set where the
asymptotic dynamics lives'? and the singularity set is arbitrary
small then the dynamics exhibit initial conditions sensitivity, and
chaos. Thus, a natural question is: is chaos a generic situation?
How does this depend on the parameters? A related question is:
how does the numerical errors induced by a time discretization
scheme evolve under dynamics (Hansel et al., 1998)?

Edge of chaos

It has been shown, in Cessac (2008) for the BMS model, that
there is a sharp transition' from fixed point to complex dynam-
ics, when crossing a critical manifold usually called the “edge of
chaos” in the literature. While this notion is usually not sharply
defined in the Neural Network literature, we shall give a math-
ematical definition which is moreover tractable numerically.
Strictly speaking chaos only occurs on this manifold, but from a
practical point of view, the dynamics is indistinguishable' from
chaos, close to this manifold. When the distance to the edge of
chaos further increases the dynamics is periodic with typical
periods compatible with simulation times. This manifold can be
characterized in the case where the synaptic weights are inde-
pendent, identically distributed with a variance <.

In BMS model (e.g., time discretized gIF model with constant
conductances) it can be proved that the chaotic situation is non
generic (Cessac, 2008). We now develop the same lines of inves-
tigation and discuss how these result extend to the model (20).
Especially, the “edge of chaos” is numerically computed and com-
pared to the BMS situation.

Let us now switch to the related mathematical results. Proofs
are given in the Appendix.

"More precisely the topological entropy (average bit rate production considered
over an infinite time horizon) is zero but this implies that the Shannon entropy
is also zero.

2Say the “attractor”, though one must be cautious with this notion, as we shall
see below.

BThis transition is reminiscent of the one exhibited in Keener et al. (1981) for
an isolated neuron submitted to a periodic excitation, but the analysis in Cessac
(2008) and the present analysis hold at the network level.

““Namely, though the dynamics is periodic, the periods are well beyond the times
numerically accessible.
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PIECEWISE AFFINE MAP

Let us first return to the notion of raster plot developed in
Section 2. At time ¢, the firing state w(f) € A can take at most
2N values. Thus, the list of firing states w(0),..., w(f) e A""! can
take at most 2M'*V values. (In fact, as discussed below, only a
subset of these possibilities is selected by the dynamics). This
list is the raster plot up to time t and we have denoted by [@].
Once the raster plot up to time ¢ has been fixed the coefficients y,
and the integrated currents J, in (20) are determined. Fixing the
raster plot up to time t amounts to construct branches for the
discrete flow of the dynamics, corresponding to sub-domains of
M constructed iteratively, via the natural partition (9), in the
following way.

Fix >0 and [@]. Note:

M= (Ve M|V e My, o}
This is the set (possibly empty) of initial membrane poten-

tials vectors V=V(0) whose firing pattern at time s is w(s),
s=0,..., t. Consequently, YV € M, , we have:

(t+1) Hyk( 1)[1-w. 9]V, (0)
+3 7,(n13]) TT (s

n=0 s=n+l

3] )1-w (9] k=1,...,N (25)

as easily found by recursion on (20). We used the convention

H Y k(s 1 —w (s)]
Then, deﬁne the map:
- M

(26)

FHl = M[@']r
“ A

with V(¢+ 1) given by (25) and F) = Id. Note that E."' is affine.
Finally define:

- EIV=V(+1)

FM M
(27)

VeM, — EN(V)

such that the restriction of F'*! to the domain MM is precisely
F/"'. This mapping is the flow of the model (20) where:

V(t+1)=F*'V,VeM

A central property of this map is that it is piecewise affine and
it has at most 2V+" branches F." parameterized by the legal
sequences [@], which parameterize the possible histories of the
conductance/currents up to time ¢.

Let us give a bit of explanation of this construction. Take
V=V(0)e M, This amounts to fixing the firing pattern at
time 0 with the relation w,(0) = Z(V,(0)), k=1,...,N. Therefore,
V(1) =7,(0,w(0))[1-w,(0)]V;(0) + J,(0,w(0)), where v, J, do
not depend on V(0) but only on the spike state of neurons
at time 0. Therefore, the mapping F, :M,,,— M such that
E..V=7,(0, JJ)[I (0 )] (0)+ J,(0,0),k=1...N is affine (and
continuous on the interior of M_,,). Since w(0) is an hyper-
cube, F;— M, is a convex connected domain. This domain
typically intersects several domains of the natural partition P.
This corresponds to the following situation. Though the pattern
of neuron firing at time 0 is fixed as soon as V(0) € M, the
list of neurons firing at the next time depends on the value of the

Dynamics of IFNN with conductance based synapses

membrane potentials V(0), and not only on the spiking pattern
at time 0. But, by definition, the domain:

-1
Mw(l)w(u): M[;v]l: (Fé) Mw(l)m Mw(m

is such that VV(0) € M, 0, the spiking pattern at time 0 is
w(0) and it is w(1) at time 1. If the intersection is empty this
simply means that one cannot find a membrane potential vector
such that neurons fire according to the spiking pattern w(0) at
time ¢ = 0 then fire according to the spiking pattern w(1) at time
t = 1. If the intersection is not empty we say that “the transition
w(0) > w(1) is legal™®.

Proceeding recursively as above one constructs a hierarchy of
domains M, ] and maps F.". Incidentally, an equivalent defini-
tion of M, J is:

M= O (Fﬁ-)_le(s)'

As stated before, ./\/l is the set of membrane potential vec-
tors V such that the ﬁrlng patterns up to time tare w(0) ,..., w(t).
If this set is non empty we say that the sequence w(0) ,..., w(¢)
is legal. Though there are at most 2M'* ! possible raster plots at
time ¢ the number of legal raster plots is typically smaller. This
number can increase either exponentially with f or slower. We
shall denote by X} the set of all legal (infinite) raster plots (legal
infinite sequences of firing states). Note that X} is a topological
space for the product topology generated by cylinder sets (Katok
and Hasselblatt, 1998). The set [@], of raster plots having the
same first t+ 1 firing patterns is a cylinder set.

(28)

PHASE SPACE CONTRACTION
Now, we have the following:

Proposition 1. For all € £} ,V¢ >0, the mapping V € M~ 1
F."(V) is affine, with a ]acoblan matrix and an affine constant
depending on t,[& ]t Moreover, the Jacobian matrix is diagonal
with eigenvalues

HYk(S

s=0

(1 —w,(s))<Lk=1,..,N.

Consequently, F."' (V) is a contraction.

Proof. The proof results directly from the definition (26) and
(25) with yk(s,[&]s) <1,Vs=>0 [see (18)].

Since the domains M of the natural partition are convex
and connected, and since F is affine on each domain (therefore
continuous on its interior), there is a straightforward corollary:

Corrollary 1. The domains MM are convex and connected.
There is a more important, but still straightforward
consequence:
Corrollary 2. F'*' is a non uniform contraction on M where
t ~
the contraction rate in direction k is LZSZO log[ck(s, w)],

t+1
VVeMy,
Then, we have the following:

Proposition 2. Fix v € X},

1. Ifdt<oeo,suchthat,Vk=1,..., N,ds=s(k) < twherew (s) = 1
then F;”[M[QJ’] is a point. That is, all orbits born from the
domain M[@'L converge to the same orbit in a finite time.

>Conditions ensuring that a transition is legal depend on the parameters of the
dynamical systems, such as the synaptic weights.
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2. Ifdke {1 o N} such that V> 0, w () = 0 then Fi''is con-
tracting in direction k, with a Lyapunov exponent A, (&), such
that:

1 t
lim inf _12 logy, (s,[&;]s) <A (@)
toee s=0

t

<lim sup ﬁz logyk(s,[&;]s) <0

t—eo 5=0

Proof. Statement 1 holds since, under these hypotheses, all
eigenvalues of F."' are 0. For 2, since DF." is diagonal, the
Lyapunov exponent in direction k is defined by A (&)=
limtﬁmﬁzz:o log(c,(t,&)) whenever the limit exists (it exists
almost surely for any F invariant measure from Birkhoff theorem).

Remark

An alternative definition of Lyapunov exponent has been intro-
duced by Coombes (1999a,b), for IF neurons. His definition,
based on ideas developed for impact oscillators (Muller, 1995),
takes care of the discontinuity in the trajectories arising when
crossing S. Unfortunately, his explicit computation at the net-
work level (with continuous time dynamics), makes several
implicit assumptions [see Eq. 6 in Coombes (1999a)]: (1) there is
a finite number of spikes within a bounded time interval; (2) the
number of spikes that have been fired up to time t, V¢> 0, is the
same for the mother trajectory and for a daughter trajectory,
generated by a small perturbation of the mother trajectory at
t=0; (3) call T*, in Coombes’ notations, the kth spike time for
neuron i in the mother trajectory, and T the kth spike time for
neuron i in the daughter trajectory. Then T = T* + 85, where &
is assumed to become arbitrary small, Vk >0, when the initial
perturbation amplitude tends to 0. While assumption (1) can be
easily fulfilled (e.g., by adding a refractory period) assumptions
(2) and (3) are more delicate.

Transposing this computation to the present analysis, this
requires that both trajectories are never separated by the sin-
gularity set. A sufficient condition is that the mother trajec-
tory stays sufficiently far from the singularity set. In this case
the Lyapunov exponent defined by Coombes coincides with our
definition and it is negative. On the other hand, in the “chaotic”
situation (see Section 3), assumptions (2) and (3) can typically
fail. For example, it is possible that neuron i stops firing after a
certain time, in the daughter trajectory, while it was firing in the
mother trajectory, and this can happen even if the perturbation
is arbitrary small. This essentially means that the explicit for-
mula for the Lyapunov exponent proposed in Coombes (1999a)
cannot be applied as well in the “chaotic” regime.

ASYMPTQTIC DYNAMICS

Attracting set .4 and w-limit set

The main notion that we shall be interested in from now on con-
cerns the invariant set where the asymptotic dynamics lives.

Definition 1 (From Guckenheimer and Holmes, 1983 and Katok
and Hasselblatt, 1998)

A point ye M is called an w-limit point for a point xe M
if there exists a sequence of times {tk}zo, such that x(t) — y
as t, — +co. The w-limit set of x, w(x), is the set of all w-limit
points of x. The w-limit set of M, denoted by €, is the set
Q=U, yw(x).

Equivalently, since M is closed and invariant, we have

Q=N F(M),

Basically, Q is the union of attractors. But for technical rea-
sons, related to the case considered in Section 3, it is more con-
venient to use the notion of w-limit set.

A theorem about the structure of Q
Theorem 1. Assume that 3¢ > 0 and 3T < o such that, VVe M,
Vie{l,...,N},

1. Either 3¢< T'such that V(1) 2 6;
2. Or3dt =t (V,e)suchthat Vi ¢, V(1) <0 -¢

Then, Q is composed by finitely many periodic orbits with
aperiod <T.

The proof is given in the Appendix 2.

Note that conditions (1) and (2) are not disjoint. The mean-
ing of these conditions is the following. (1) corresponds to
imposing that a neuron has fired after a finite time T (uniformly
bounded, i.e., independent of V and 7). (2) amounts to requir-
ing that after a certain time ¢, the membrane potential stays
below the threshold value and it cannot accumulate on 6. We
essentially want to avoid a situation when a neuron can fire for
the first time after an unbounded time (see Section 3 for a dis-
cussion of this case). Thus assumptions (1) and (2) look quite
reasonable. Under these assumptions the asymptotic dynamics
is periodic and one can predict the evolution after observing the
system on a finite time horizon T, whatever the initial condition.
Note however that T can be quite a bit large.

There is a remarkable corollary result, somehow hidden in the
proof given in the Appendix. The neurons that do not fire after
a finite time are still driven by the dynamics of firing neurons. It
results that, in the asymptotic regime, non firing neurons have a
membrane potential which oscillates below the threshold. This
exactly corresponds to what people call “sub-threshold oscil-
lations” In particular, there are times where those membrane
potentials are very close to the threshold, and a small pertur-
bation can completely changes further evolution. This issue is
developed in the next section. Possible biological interpretations
are presented in the discussion section.

Ghost orbits

The advantage of the previous theorem is that we define condi-
tions where one can relatively easily controls dynamics. However,
what happens if we consider the complementary situation cor-
responding to the following definition?

Definition 2 An orbit V is a ghost orbit if 3i such that:
(HVt>0,V(1)<0
and

(#1) lim sup V;(¢) =0
t—>+oo

Namely there exists at least one initial condition V and one
neuron i such that one cannot uniformly bound the first time
of firing, and V() approaches arbitrary close the threshold. In
other words sub-threshold oscillations drive the neuron “dan-
gerously close” to the threshold, though we are not able to pre-
dict when the neuron will fire. This may look a “strange” case
from a practical point of view, but it has deep implications. This
indeed means that we can observe the dynamics on arbitrary
long times without being able to predict what will happen later
on, because when this neuron eventually fire, it may drastically
change the evolution. This case is exactly related to the chaotic
or unpredictable regime of IF models.
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One may wonder whether the existence of ghost orbits is
“generic”. To reply to this question one has first to give a definition
of genericity. In the present context, it is natural to consider the
dynamical system describing the time evolution of our neural net-
work as a point in a space H of parameters. These parameters can
be, e.g., the synaptic weights, or parameters fixing the time scales,
the reversal potentials, the external currents, etc... Varying these
parameters (i.e., moving the point representing our dynamical sys-
tem in ) can have two possible effects. Either there is no qualita-
tive change in the dynamics and observable quantities such as, e.g.,
firing rates, average inter-spikes interval, etc, are varying continu-
ously. Or, a sharp change (bifurcation) occurs. This corresponds
to the crossing of a critical or bifurcation manifold in . Now, a
behavior is generic if it is “typical”> On mathematical grounds this
can have two meanings. Either this behavior is obtained, with a
positive probability, when drawing the parameters (the corre-
sponding point in ) at random with some natural probability
(e.g., Gaussian). In this case one speaks of “metric genericity”. Or,
this behavior holds in a dense subset of H. One speaks then of
“topological genericity”. The two notions usually do not coincide.

In the BMS model, ghost orbits are non generic in both senses
(Cessac, 2008). The proof does not extend to more general mod-
els such as (20) because it heavily uses the fact that the synaptic
current takes only finitely many values in the BMS model. As
soon as we introduce a dependence in @ this is not the case any-
more. We do not know yet how to extend this proof.

EDGE OF CHAOS
On practical grounds ghost orbits involve a notion of limit ¢ — +eo
which has no empirical meaning. Therefore the right question
is: are there situations where a neuron can fire for the first time
after a time which is well beyond the observation time? One way
to analyze this effect is to consider how close the neurons are to
the threshold in their evolution. On mathematical grounds this is
given by the distance from the singularity set to the ®-limit set:
d(Q, S) =infinf min | V,(t)-0]. (29)
VeQ 20 i=1 N

The advantage of this definition, is that it can easily be
adapted to the plausible case where observation time is bounded
(see Section 3).

Now, the following theorem holds.

Theorem 2.

1. If d(Q, S) > 0 then Q is composed by finitely many periodic
orbits with a finite period.

2. There is a one-to-one correspondence between a trajectory
on Q and its raster plot.

The proof is exactly the same as in (Cessac, 2008) so we do not
reproduce it here. It uses the fact that if d(€2, S) >0 then there is a
finite time 7T, depending on d(€2, S) and diverging as d(Q2, S) — 0,
such that F” has a Markov partition (constituted by local stable
manifolds since dynamics is contracting) where the elements of the
partition are the domains M[&]T' Note, however, that d(Q2, S) >0
is a sufficient but not a necessary condition to have a periodic
dynamics. In particular, according to theorem 1 one can have d(€2,
S) =0 and still have a periodic dynamics, if at some finite time
t, for some neuron 4, V () = 0. This strict equality is however not
structurally stable, since a slight change, e.g., in the parameters will
remove it. The main role of the condition d(Q, S) > 0 is therefore
to avoid situations where the membrane potential of some neuron
accumulates on 0 from below (ghost orbits). See the discussion sec-
tion for a possible biological interpretation on this.

Dynamics of IFNN with conductance based synapses

But d(€2, S) plays another important role concerning the effect
of perturbations on the dynamics. Indeed, if d(€2, S) > 0 then the
contraction property (corollary 2) implies that any perturbation
smaller than d(Q, S) will be damped by dynamics. In particular,
making a small error on the spike time, or any other type of error
leading to an indeterminacy of V smaller than d(Q, S) will be
harmless.

Let us now discuss the second item of theorem 2. It expresses
that the raster plot is a symbolic coding for the membrane poten-
tial trajectory. In other words there is no loss of information on
the dynamics when switching from the membrane potential
description to the raster plot description. This is not true any-
more if d(Q, S) = 0.

The first item tells us that dynamics is periodic, but period
can be arbitrary long. Indeed, following (Cessac, 2008) an esti-
mate for an upper bound on the orbits period is given by:

log(d(9.5))
Tog(<1>)

1y, =2 (30)

where <y> denotes the value of y averaged over time and ini-
tial conditions'® (see Appendix for details). Though this is
only an upper bound this suggests that periods diverge when
d(Q, S) — 0. In BMS model, this is consistent with the fact that
when d(€, S) is close to 0 dynamics “looks chaotic”. Therefore,
d(Q, S) is what a physicist could call an “order parameter’,
quantifying somehow the dynamics complexity. The distance
d(Q, S) can be numerically estimated as done in (33) and (34),
Section 3.

Before, we need the following list of (operational) definitions.

Definition 3 (Edge of chaos)
The edge of chaos is the set of points £ in the parameter space
‘H where d(Q, S) = 0.

The topological structure of £ can be quite complicated as
we checked in the simplest examples (e.g., the BMS model with
Laplacian coupling) and suggested by the papers (Bressloff and
Coombes, 2000a,b) (see Discussion). There are good reasons to
believe that this set coincides with the set of points where the
entropy is positive [see Kruglikov and Rypdal (2006a,b) and
discussion below]. The set of points where the entropy is posi-
tive can have a fractal structure even in the simplest examples of
one dimensional maps (Mackay and Tresser, 1986; Gambaudo
and Tresser, 1988). Therefore, there is no hope to characterize
€ rigorously in a next future. Instead, we use below a numerical
characterization.

The edge of chaos is a non generic set in the BMS model,
and the same could hold as well in model (20). Nevertheless, it
has a strong influence on the dynamics, since crossing it leads to
drastic dynamical changes. Moreover, close to £ dynamics can
be operationally indistinguishable from chaos. More precisely,
let us now propose another definition.

Definition 4 (Effective entropy)

Fix T, called “the observational time” This is the largest
accessible duration of an experiment. Call n(f) the number of
(legal) truncated raster plots up to time f. Then, the effective
entropy is;

e z%log n(T,) (31)

0

!“Note that the system is not uniquely ergodic [see Katok and Hasselblatt (1998)
for a definition of unique ergodicity].
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Note that in the cases where raster plots provide a symbolic
coding for the dynamics then lim, _, . K = B the topologi-
cal entropy.

On practical grounds, this definition corresponds to the follow-
ing notion. The larger the effective entropy, the more the system
is able to produce distinct neural codes. This provides one way to
measure the “complexity” of the dynamics. On more “neuronal”
grounds this quantity measures the variability in the dynamical
response of the neuronal network to a given stimulus (external cur-
rent) or its ability to produce distinct “functions” (a function being
the response to a stimulus in terms of a spikes train). Thinking of
learning mechanisms (e.g., Hebbian) and synaptic plasticity (LTD,
LTP, STDP) one may expect to having the largest learning capaci-
ties when this entropy is large. This aspect will be developed in a
separated paper (for the effect of Hebbian learning and entropy
reduction in firing rate neural networks see Siri et al., 2008).

Finally, a positive effective entropy means that the system
essentially behaves like a chaotic system during the time of the
experiment. Indeed, the entropy is closely related to the distance
d(Q, S), since, from (30), a rough estimate/bound of h® is eas-
ily obtained from (30), (31):

log(d(Q, S))
T, log(<y>)

h(eff)

0g(2) (32)

The notion of effective entropy provides some notion of “width”
to the edge of chaos £. For a fixed T} the system behaves chaotically
in a thick region £, O € in H such that KM > 0. And from (32) one
expects that this entropy gets larger when d(Q, S) gets smaller.

EFFECTS OF TIME DISCRETIZATION

Under the light of the previous results, let us reconsider the
approximation where spikes are taken into account at multiple of
the characteristic time scale §, for the conductances update. Doing
this, we make some error in the computation of the membrane
potential, compared to the value obtained when using the “exact”
spike time value. Now, the question is whether this error will be
amplified by the dynamics, or damped. As we saw, dynamics (20)
is contracting but the effect of a small error can have dramatic
consequences when approaching the singularity set. The distance
d(Q, S) provides a criterion to define a “safe” region where a
small error of amplitude € > 0 in the membrane potential value is
harmless, basically, if € < d(€2, S). On the other hand, if we are in
a region of the parameters space where d(€2, S) = 0 then a slight
perturbation has an incidence on the further evolution. Since &
can be arbitrary small in our theorems we have a good control on
the dynamics of the continuous time IF models except at the edge
of chaos where d(€2, S) = 0. This enhances the question of math-
ematically characterizing this region in the parameter space H.
Note indeed that numerical investigations are of little help here
since we are looking for a parameter region where the distance
d(Q, S) defined as an asymptotic limit, has to be exactly 0. The
problem is that even sophisticated schemes (e.g., event based) are
also submitted to round off errors. Therefore, as a conclusion, it
might well be that all numerical schemes designed to approxi-
mate continuous time IF models display trajectory sensitivity to
spike time errors, when approaching d(Q2, S) = 0.

A NUMERICAL CHARACTERIZATION OF THE “EDGE OF CHAOS”
A “COARSE-GRAINED” CHARACTERIZATION

As mentioned in the previous section an exact analytic com-
putation of the edge of chaos in the general case seems to be

out of reach. However, a “coarse grained” characterization can
be performed at the numerical level and possibly some ana-
lytic approximation could be obtained. For this, we choose the
synaptic weights (resp. the synaptic conductances) (and/or the
external currents) randomly, with some probability P, (P,
where W is the matrix of synaptic weights (W, = E*G;) and
i the vector of external currents (recall that external currents
are time constant in this paper). A natural starting point is the
use of Gaussian independent, identically distributed variables,
where one varies the parameters, mean and variance, defining
the probability definition [we call them statistical parameters,
see Cessac and Samuelides (2007) and Samuelides and Cessac
(2007) for further developments on this approach]. Doing
these, one performs a kind of fuzzy sampling of the parameters
space, and one somehow expects the behavior observed for a
given value of the statistical parameters to be characteristic
of the region of W, i that the probabilities P,,, P Weight
[more precisely, one expects to observe a “prevalent” behavior in
the sense of Hunt et al. (1992)].

The idea is then to estimate numerically d(€2, S) in order to
characterize how it varies when changing the statistical parame-
ters. As an example, in the present paper, we select conductances
(resp. synaptic weights) randomly with a Gaussian probability
with a fixed mean and a variance %, and we study the behav-
ior of d(Q, S) when G is varying. Note that the neural network
is almost surely fully connected. We compute numerically an
approximation of the distance d(€2, S), where we fix a transient
time T and an observation time T, and average over several ini-
tial conditions V", n=1,..., N, for a given sample of synap-
tic weights. Then we perform an average over several synaptic
weights samples W , m=1,..., N, . In a more compact form,
we compute:

1 Ny
d(exp)(_Q’ S) — _z d{:}x}’), (33)
W m=1 "
where
d(Vf,"p) = min min min |V,.(”)(Tr +1)-0]. (34)
V) n=1,.. Ny t=1. T, i=1,...N

In this way, we obtain a rough and coarse grained location of
the edge of chaos where the distance d(€, S) vanishes.

We have performed the following experiments with two con-
trol parameters.

+ Variance of random synaptic weights. We randomly select
the synaptic strength which modulates the synaptic conduct-
ance using a Gaussian distribution so that 80% of the synapses
are excitatory and 20% inhibitory. The average standard-
variation © is varied. The value ¢ = 0.5 corresponds, in our
units, to what is chosen in the literature when considering
the biological dispersion in the cortex (e.g., Rudolph and
Destexhe, 2006). Note however that, at the present stage of
investigation, Dale’s principle is not taken into account.

+ Membrane leak time-constant. As an additional control
parameter we vary the membrane leak around the usual T, =
1,..., 20 msvalues. This choice is two-fold. The value T, = 20 ms
corresponds to in vitro measurement, while T, — 1 ms allows
to represent in vivo conditions in the cortex. On the other
hand, it acts directly on the average contraction rate <y> which
is a natural control parameter.

Each simulation randomly selects the initial potential values in
a —70,...,30 mV range. For each condition the simulation is
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run for N, = 100 initial conditions and N, = 10 random selec-
tion of the synaptic weights. With a sampling period of 0.1 ms,
the network is run during T = 1000 steps in order to “skip” the
transients'” and then observed during T, = 1000 steps. In order
to explore the role of history dependent conductances on the
dynamics we considered different models from the biologically
plausible IF model to BMS model. More precisely we explore
four modeling variants:

1. Model I, defined in (20).
2. Model II (20) with a fixed Y. The evolution equation of mem-
brane potentials is thus given by:

Vi(t+1)= (Vi1 Z(v,0) ]+ 1. (1[2])

where the average () is the value observed during the numeri-
cal simulation of model I. Note that (Y ) depends on the param-
eters G,7T,. The goal of this simulation is to check the role of the
fluctuations of y(t,[dz]t) , controlling the instantaneous con-
traction rate, compared to a mean-field model where y(t,[&;]t)
is replaced by its average. This corresponds to what is called
“current based” synapses instead of “conductance based” syn-
apses in the literature (see e.g., Brette et al., 2007).

3. Model III (20) approximation with a fixed y and simplified
synapses. The evolution equation of membrane potentials is
given by:

Vi (t+1) = (1) Vi (t)[1- Z(V,(0) ]+ E*Z G; Z(Vj(t—S*))
+EY, G, Z(V(t-8)

In addition to the previous simplification, we consider so-
called “current jump” synapses where the synaptic input
simply corresponds to an impulse, added to the membrane
potential equation. Here the magnitude of the impulse and
its delay - = 2 ms and &* = 10 ms in order to keep both char-
acteristics as closed as possible to the previous condition.

4. Model IV (20) with a fixed y and instantaneous simplified
synapses. The evolution equation of membrane potentials is
given by:

Vi(t+1)=<y>V,(0[1- Z(V,(0) ]+ X, W, 2(V,(0)

where in addition to the previous simplification, the delay
has been suppressed and where W, = EiGg. This last condi-
tion strictly correspond to the original BMS model (Soula
et al., 2006).

The results are given below. We have first represented the
average value (y) for the model I in the range 6 €[0.01, 1],
T,€[10,40]ms (see Figure 3). The quantity related to the con-
traction rate, is remarkably constant (with small variations
within the range [0.965, 0.995]).

Then, we have considered the average value of the current
J(t,[@])), averaged over time, initial conditions and neurons
and denoted by I to alleviate the notations (Figure 4), the loga-
rithm of the distance d(Q, S) (Figures 5 and 7), and the aver-
age Inter Spike Interval (ISI, Figure 6), for the four models. The
main observations are the following. Average current and ISIs

"Note the transients depend on the parameters and on the distance to the
singularity set too. In particular, one can have transients that are well beyond the
current capacity of existing computers. Therefore, our procedure gives a rough
localization of the edge of chaos. Analytic computation would give a more precise
localization.

Dynamics of IFNN with conductance based synapses

Model |

0.995
0.99
0.985
0.98
0.975
0.97
0.965

Figure 3 | Average value of y for model | 6 [0.01, 1], T,€ [10, 40]ms. The
profile is very similar for other models.

have essentially the same form for all models. This means that
these quantities are not really relevant if one wants to discrimi-
nate the various models in their dynamical complexity.

The observation of the distance d(€2, S) is quite more inter-
esting (Figure 7). First, in the four models, the distance becomes
very small when crossing some “critical region” in the plane t,,
v. This region has a regular structure for the BMS model, but
its structure seems more complex for (20). Note however that
the numerical investigations used here do not allow us to really
conclude on this point. The most remarkable fact is that, in mod-
els IIT and IV, the distance increases when G increases beyond
this region, while it does not in models I and II. This corre-
sponds to the following observation. When the d(€2, S) is small,
one observes a complex dynamics with no apparent period.
One naturally concludes to a chaotic regime. As we saw, strictly
speaking it is in fact periodic but since periods are well beyond
observable times, the situation is virtually chaotic’®. When the
distance increases, the orbits period decreases. Therefore, there
is a range of ¢ values where period become smaller than obser-
vational time and one concludes that dynamics is periodic.

The situation is different for models I and II since the distance
does not apparently increases with . This suggests that intro-
ducing conductance based synapses and currents enhances con-
siderably the width of the edge of chaos. On practical grounds,
this means that models I and II have the capacity to display a
very large number of distinct codes for wide choices of param-
eters. This is somewhat expected since the opposite conclusion
would mean that introducing spike dependent conductances
and current does not increases the complexity and information
capacity of the system. But it is one thing to guess some behav-
ior and another thing to measure it. Our investigations on the
distance d(£2, S), a concept based on the previous mathematical
analysis, makes a step forward in this direction.

One step further, we have represented examples of raster
plots in Figures 8 and 9 for models I and IV. The Figure 8 essen-
tially illustrates the discussion above on the relation between
the distance d(Q2, S) and the dynamics; for ¢ = 0.05, where

"Moreover, it is likely that the phase space structure has some analogies with
spin-glasses. For example, if Y= 0 the dynamics is essentially equivalent to the
Kauffman’s cellular automaton (Kauffman, 1969). It has been shown by Derrida
and colleagues (Derrida and Flyvbjerg, 1986; Derrida and Pomeau, 1986) that
the Kauffman’s model has a structure similar to the Sherrington—Kirckpatrick
spin-glass model (Mézard et al., 1987). The situation is even more complex when
v # 0. It is likely that we have in fact a situation very similar to discrete time neural
networks with firing rates where a similar analogy has been exhibited (Cessac,
1994, 1995).
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Figure 4 | Average current I for the models I (top left)-1l (top right)- lll (bottom left)- IV (bottom right) with & €[0.01, 1], T,€[10, 40]ms.
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the vertical bars correspond to the variations with <. It allows us to verify the stability of the previous result for higher variability of the synaptic weights. (mid-
dle) T,e[1,1,..., 2lms below the usual 20 ms value, o< [1, 10]. Such range corresponds to cortical neurons in high-conductance state. It allows to check the
behavior of d(Q2, S) in this case. (right) Sampling period of 1 ms, in order to verify the robustness of the numerical results with respect to the sampling rate.
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Figure 8 | Examples of raster plots for the conductance based model (Model I, top row) and the leaky integrate and fire model (Model IV, bottom
row). A time window of 100 samples is shown in each case. The control parameter is T, = 20 ms. As visible in Figure 5, ¢ = 0.05 corresponds to a small order
dynamics where the periodic behavior is clearly visible, and o = 0.40 to the “edge of chaos”. One blob width is 1 msec.
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Figure 9 | Raster plots for models I (upper row) and IV (lower row), with ¢ = 10.00 and the same condition as in Figure 8. First column: model | and
model without noise. Second column: same realization of synaptic weights and same initial conditions but with a small amount of noise in the external current.
The noise is added to the membrane potential and its magnitude is very small (10~ x 6). One blob width is 1 msec.

d(Q, S) is “large”, and dynamics is periodic; and for 6 =0.4, raster plots for models I and IV, with 6 = 10, where we study
where d(Q,S) is small, and dynamics looks more chaotic, the effect of a small amount of noise, of amplitude 10™* X 6 in
for the two models. The difference between the two models  the external current. This has no effect on model IV while it
becomes more accurate as G increases. Figure 9 represents  changes slightly the raster plot for model I, as expected. There
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is another remarkable difference. The code is sparser for model
I than for model IV. This suggests that model I is in some sense
optimal with respect to coding since it is able to detect very
small changes in an input but the changes is not drastic and the
neural code remains very sparse.

DISCUSSION

We have thus an operational definition for the “edge of chaos”
where an “order parameter”, the distance of orbits to the singu-
larity has been defined. This parameter has a deep meaning. It
controls how much the system is sensitive to perturbations. Such
perturbations can be noise, but they can also be a small varia-
tion in the external current, corresponding, e.g., to an input. If
the amplitude of this perturbation is smaller than d(€2, S) then
it has no effect on the long term dynamics, and the neural code
(raster plot) is unchanged. On the other hand, when the distance
is small, even a tiny perturbation has a dramatic effect on the
raster plot: the system produces a different code. As a corollary,
the effective entropy is maximal when the distance is minimal.
On practical ground, having a positive distance with a large effec-
tive entropy corresponds to situations where the system is able
to produce a large number of distinct codes within the observa-
tional time, while this code is nevertheless robust to small pertur-
bations of the input. Thus, we have a good compromise between
the variability of the responses to distinct inputs and robustness
of the code when an input is subject to small variations.

Several questions are now open. A first one concerns the way
how we measured this distance. We used a random sampling
with independent synaptic weights. But these weights are, in real-
ity, highly correlated, via synaptic plasticity mechanism. What
is the effect of, e.g., STPD or Hebbian learning on the effective
entropy is a perspective for a future work. Recent results in Soula
(2005) and Siri et al. (2007, 2008) suggest that synaptic plastic-
ity reduces the entropy by diminishing the variability of raster
plots and increasing the robustness of the response to an input.
Some general (variational) mechanism could be at work here.
This aspect is under investigation.

Another important issue is the effect of noise. It is usual in
neural network modeling to add Brownian noise to the deter-
ministic dynamics. This noise accounts for different effects such
as the diffusion of neurotransmitters involved in the synaptic
transmission, the degrees of freedom neglected by the model,
external perturbations, etc... Though it is not evident that the
“real noise” is Brownian, using this kind of perturbations has
the advantage of providing a tractable model where standard
theorems in the theory of stochastic processes (Touboul and
Faugeras, 2007) or methods in non equilibrium statistical phys-
ics [e.g., Fokker—Planck equations (Brunel and Hakim, 1999)]
can be applied.

Though we do not treat explicitly this case in the present
work, the formalism has been designed to handle noise effects
as well. As a matter of fact, the effect of Brownian noise on the
dynamics of our model can be analyzed with standard techniques
in probability theory and stochastic perturbations of dynamical
systems (Freidlin and Wentzell, 1998). In particular, the prob-
ability distribution of the membrane potential trajectory can be
obtained by using a discrete time version of Girsanov theorem
(Samuelides and Cessac, 2007). Noise have several effects. Firstly,
the stochastic trajectories stay around the unperturbed orbits
until they jump to another attraction basin, the characteristic
time depending on the noise intensity (“Arrhenius law”). This
has the effect of rendering the dynamics uniquely ergodic, which
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somehow simplifies the statistical analysis. The effect of noise
will be essentially prominent in the region where d(€, S) is small,
leading to an effective initial condition sensitivity and an effec-
tive positive Lyapunov exponent, that could be computed using
mean-field approaches (Cessac, 1995). It is possible to estimate
the probability that a trajectory approaches the singularity set S
within a finite time 7 and a distance d by using Freidlin—Wentzell
estimates (Freidlin and Wentzell, 1998). One can also construct a
Markov chain for the transition between the attraction basin of
the periodic orbits of the unperturbed dynamics. The overall pic-
ture could be very similar (at least for BMS model) to what hap-
pens when stochastically perturbing Kauffman’s model (Golinelli
and Derrida, 1989), with possibly a phase space structure remi-
niscent of spin-glasses (where noise plays the role of the tempera-
ture). This study is under investigations.

Yet another important issue relates to the fact that spikes
can also be lost. This aspect is not yet taken into account in the
present formalism, but annihilation of spikes is a future issue to
address.

A final issue is the relation of this work with possible biologi-
cal observations. We would like in particular to come back to the
abstract notion of ghost orbit. As said in the text, this notion
corresponds to situation where the membrane potential of some
“vicious” neuron fluctuates below the threshold, and approaches
it arbitrary close, with no possible anticipation of its first firing
time. This leads to an effective unpredictability in the network
evolution, since when this neuron eventually fire, it may drasti-
cally change the dynamics of the other neurons, and therefore
the observation of the past evolution does not allow one to
anticipate what will be the future. In some sense, the system is in
sort of a metastable state but it is not in a stationary state.

Now, the biological intuition tends to consider that a neu-
ron cannot suddenly fire after a very long time, unless its input
changes. This suggests therefore that “vicious” neurons are bio-
logically implausible. However, this argument, to be correct,
must precisely define what is a “very long time”. In fact, one has
to compare the time scale of the experiment to the characteristic
time where the vicious neurons will eventually fire. Note also that
since only a very small portion of neurons can be observed, e.g.,
in a given cortex area, some “vicious” neurons could be present
(without being observed since not firing), with the important
consequence discussed in this paper. The observation of “tem-
porarily silent” neurons which firing induces a large dynamic
change would be an interesting issue in this context.

As a final remark we would like to point out the remarkable
work of Latham and collaborators discussing the effects induced
by the addition or removal of a single spike in a raster plot. A
central question is whether this “perturbation” (which is not
necessarily “weak”) will have a dramatic effect on the further
evolution [see Latham et al. (2006) and the talk of P. Latham
available on line at http://www.archive.org/details/Redwood_
Center_2006_09_25_Latham]. Especially the questions and dis-
cussions formulated during the talk of P. Latham are particularly
salient in view of the present work. As an additional remark note
that a perturbation may have an effect on trajectories but not on
the statistics build on these trajectories (e.g., frequency rates)
(Cessac and Sepulchre, 2006).
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APPENDIX
A.1. COMPUTATION OF V(¢ + d)
Fix ¢, t,e [+ 8]. Set:

[P aslahas -] gsla)ds

Vk(tl,tz,[&]r)=e_ g =e ,

where the last equality holds from our assumption that spikes
are taken into account at times multiples of 0; therefore

[@] =[@],selt,t+3[.
We have:

vi(t.6.[0])=1,
v, (tl,tz,[dz]t) =v, (tl,tl',[d)]r)vk(tl’,tz,[&][),

for #'e [t, t+ 8[. Moreover:

v, (t,.1,.[@])

sl lal)
This leads to:
d

_(Vk(tl’tz’[&][)vk(tl))

dt,
= vk(tl,tz,[w]f)[i—‘:‘+ gk(tl,[dz]t)vk(tl):|
=v,(t.6,.[@] )i (6.[2])-

If neuron k does not fire between t and ¢+ & we have, inte-
grating the previous equation for te(t, t+0[ and setting
t,=t+0:

V(t+8)= v, (t.t+8,[@] ) Vi (1)
i (s8] vi(sr +815])ds

A.2. PROOF OF THEOREM 1
The proof uses the following lemma.

(35)

(36)

(37)

Lemma 1. Fix F a subset of {1,..., N} and let F be the comple-

mentary set of F. Call
Tire=
(1) VieF, J¢<T,such that V(1) >0
VeM| . . = .
(H)VjeF, EltoEtO(V,])<<><>,suchthatVt>t0,Vj(t)<9—£

then Q(I" ), the w-limit set of I, , is composed by finitely
many periodic orbits with a period <T.

Proof of theorem 1

Note that there are finitely many subsets F of {1,..., N}. Note
also that Fﬁr’sc l"f’n e and that r, e C F whenever g <e.
We have therefore:

McUUUT e =UTs o

F T>0¢>0

But, under hypothesis (1) and (2) of theorem 1, there exists
€>0, T<oo such that M=U,T ., where the union on F
is finite. Since (M) C U, F(T', ;.,), QcU, QI , ;). Under
lemma 1 Q is therefore a subset of a finite union of sets contain-
ing finitely many periodic orbits with a period <T.

Proof of lemma 1 Call IT, (resp. IT;) the projection onto the
subspace generated by the ba51s vectors e;, i€ F (resp. e;, j€ F)

andset V, =11,V (V. =11,V ),F. =TIF (F;
each neuron je F is such that (25):

v,(t)= 2 Ji(n[®],) 1 v(s[@] )0

n=1 s=n+l

=II.F). Since

—w,(s))<0-¢, (38)

for tsufficiently large, [larger than the last (finite) firing time #],
these neurons do not act on the other neurons and their
membrane potential is only a function of the synaptic current
generated by the neurons € 7. Thus, the asymptotic dynam-
ics is generated by the neurons ieF. Then, VVeQ(l”ﬁR),
V. (t+1)=F [V ()] and V:(t+1)=F;[V.()] One can
therefore focus the analysis of the w hm1t set to its projection
QI =TL.Q(T",, ) (and infer the dynamics of the neurons

Jf,T,e) FTe
je F via (38)).
Construct now the partition P'7, with convex elements given
by ./\/l » where T'is the same as in the definition of I' ., . By
constructlon, FT*!is continuous on each element PV and fixing

M[Q]T amounts to fix the affinity constant of F**!. By definition

of T, DF;" ,» the derivative of F;/" at V, has all its eigenval-
ues equal to 0 whenever Ve Qf(l"ﬁm) (prop. 1). Therefore

F My, NQ (T ;)]s a point. Since

M@, ) =E (UM, ne, )
U (M, 0@, (T550)),

the image of Q (I',, ) under FI*' is a finite union of points
belonging to M. Since, Q (I" .. ) is invariant, this a finite union
of points, and thus a finite union of periodic orbits.

The dynamics of neurons € F is driven by the periodic
dynamics of firing neurons and it is easy to see that their trajec-
tory is asymptotically periodic. Finally, since M = U (", ) the
w limit set of M is a finite union of periodic orbits.

A.3. AVERAGE OF A FUNCTION

Since the dynamics is not uniquely ergodic (there are typically
many periodic attractors), one has to be careful with the notion
of average of a function ¢. We have first to perform a time aver-
age for each attractor i, $(i> =lim, 2?—1 O(V(t)), where V@ is
an initial condition in the attraction basin of attractor i. Then, we
have to average over all attractors, with a weight corresponding
to the Lebesgue measure p'” of its attraction basin. This gives:

18 =i
y=— (39)
NN
where N is the number of attractors.
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