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When humans perform closed loop control tasks like in upright standing or while balancing a stick, their behavior exhibits non-Gaussian
fluctuations with long-tailed distributions. The origin of these fluctuations is not known. Here, we investigate if they are caused by self-
organized critical noise amplification which emerges in control systems when an unstable dynamics becomes stabilized by an adaptive
controller that has finite memory. Starting from this theory, we formulate a realistic model of adaptive closed loop control by including
constraints on memory and delays. To test this model, we performed psychophysical experiments where humans balanced an unstable
target on a screen. It turned out that the model reproduces the long tails of the distributions together with other characteristic features of
the human control dynamics. Fine-tuning the model to match the experimental dynamics identifies parameters characterizing a subject’s
control system which can be independently tested. Our results suggest that the nervous system involved in closed loop motor control
nearly optimally estimates system parameters on-line from very short epochs of past observations.
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INTRODUCTION
Physical behavior in the world is confronted with the ongoing changes of
the body as well as the controlled situation. For instance, muscles fatigue
and environmental conditions may vary rapidly. While the dynamics of a
given closed loop control situation could be known by the nervous system,
for example, by previous learning over long periods of time, the actual
parameters permanently need to be adjusted on-line. In other words,
brains realize adaptive control in non-stationary closed loop situations.
Here, we investigate the consequences of rapid adaptivity for the dynamics
of motor control in theory, simulations, and human experiments.

Many complex systems exhibit non-Gaussian fluctuations of state vari-
ables x with distributions P (x) that are well described by P (x) ∝ x−δ

(δ > 0) for large magnitudes. Examples include sizes of avalanches of
granular matter, the distribution of earthquake magnitudes (Gutenberg–
Richter law) and stock-market log-return fluctuations (Sornette, 2004).
Recently, theoretically predicted power law distributions (Eurich et al.,
2002) were experimentally found (Beggs and Plenz, 2003) also in the
firing behavior of neural populations in cortical tissue.

Scaling behavior has also been identified in human sensory-motor
control systems such as the balancing of a stick at the fingertip (Cabrera
and Milton, 2002; Cabrera et al., 2004) and the visuomotor control of a
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virtual target on a computer screen (Bormann et al., 2004). Generally,
scaling of fluctuations is indicative of scale invariance of the considered
system’s dynamics. In physics, this occurs in extended systems close
to a phase transition (bifurcation), that is, when a system is in a criti-
cal state. Alternatively, the system could also be close to intermittency,
which in the case of stick balancing has been suggested as the reason
for the occurrence of power law tails (Heagy et al., 1994) where it was
argued that it results from the existence of multiplicative noise and a
fine-tuning of system parameters to a stability boundary (Cabrera et al.,
2004).

A problem with these explanations is their dependency on parameters:
power law behavior emerges only when they are carefully adjusted, in
other word, the criticality in these models is not generic. Critical dynamics
could in principle also emerge from the so-called self-organized criticality
(SOC) (Bak et al., 1987), a mechanism by which high-dimensional systems
may settle into critical states instead of evolving toward equilibria. While
this phenomenon might be relevant for some neuronal systems (Levina et
al., 2006), it is not clear how SOC might be involved in control performed
by the human nervous system.

Here, we discuss a control mechanism that yields critical behavior
without the need of parameter tuning or high dimensionality. Since real
world situations are non-stationary, we are particularly interested in a
controller with finite memory that uses only few past observations for
estimation. Previously, we already showed that optimal on-line adaptation
of a controller using finite memory generically leads to a critical situation
which entails power-law-fluctuations (Eurich and Pawelzik, 2005). Fur-
thermore, we investigate if human behavioral control might originate from
such critical noise amplification by performing experiments with humans
in a control situation which closely matches the conditions of the theory.
We include realistic constraints in the model and investigated their influ-
ence on the dynamics of the overall system. By matching characteristic
statistical properties of the dynamics of the model to the experiments, we
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determine basic parameters governing the control dynamics of individual
subjects.

MATERIALS AND METHODS
Basic model
A time-discrete random map

yt+1 = α0yt + βt, (1)

defines a control problem where the dynamical variable yt denotes the
deviation of a system from some target value at time t(t = 0, 1, 2, . . .).
α0 is a system parameter unknown to the controller and assumed to be
constant for at least some period of time. For α0 > 1, the fixed point
at the origin is linearly unstable. βt ∼ N(0, σ2) is a Gaussian random
variable describing non-predictable fluctuations. Its variance σ2 ≡ const.
is a second hidden system parameter.

The controller is assumed to know the form of the dynamical Equation
(1). The strategy consists in computing an estimate αt of the parameter α0

from previous observations yt , yt−1, . . . of the system. The controller uses
this estimate and the observed previous deviation yt to remove the term
αtyt which corresponds to the predicted next deviation from the target.
When control is switched on, Equation (1) is replaced by

yt+1 = (α0 − αt )yt + βt. (2)

In the following, we employ a minimum mean squared error approach for

a controller’s estimation of the control parameter α0, that is, 〈y2〉 != min
where the brackets denote the expectation with respect to the additive
noise. The expectation value of the squared deviation from the target is〈
y2

t+1

〉 =
〈[

(α0 − αt )yt + βt

]2
〉

(3)

For simplicity, we here assume that only the observable values of yt and
yt−1 are taken into account by the controller and we use

α0 = yt − βt−1

yt−1
+ αt−1 (4)

(obtained from rearranging Equation (2) where we replaced t by t − 1) to
eliminate α0 in Equation (3). It is now straightforward to minimize Equation
(3) with respect to αt by setting

∂〈y2
t+1〉

∂αt

!= 0, (5)

which yields the optimal estimator for αt from the two very recent obser-
vations:

αt = yt

yt−1
+ αt−1. (6)

Equations (2) and (6) represent the dynamics of the basic adaptive
control system as a two-dimensional map. By inserting the right-hand
side of Equation (2) into Equation (6), the estimator can be written in the
form

αt = βt−1

yt−1
+ α0. (7)

This form of the equation shows that the estimated value of the system’s
parameter becomes dominated by the noise βt when yt has small values.
In the Results Section, we present a proof that this mechanism generically
leads to power law distributed y independently of α and the noise level.

A simple control experiment
We investigated control behavior of humans in a simple balancing task.
A target and a cursor were presented on a computer screen. The x- and
y-components of the target position T moved according to

Ti
t+1 = Ti

t + α0(Ti
t − Mi

t ) + βi
t, i ∈ {x, y} (8)

Figure 1. Control of a virtual target T (circle) on a computer screen (rect-
angle) by movements of a computer mouse M (black dot). The arrow
indicates that the movement of the target depends on the relative position of
T and M.

and the cursor position M was controlled by the subjects using a computer
mouse. The task of the subjects was to stabilize the target by moving M as
close to T as possible. This situation is for each component equivalent to
the basic control problem described above if the controller would move the
cursor to the target prediction Mi

t+1 = Ti
t + αt (Ti

t − Mi
t ) which defines

his estimation of the control parameter αt . Subtracting Mi
t+1 on both sides

in Equation (8) then yields Equation (2) with yi
t = Ti

t − Mi
t . Furthermore,

we assumed that the noise βt in the experiment is realized by noise inside
the brain and the motor system controlling the hand guiding the mouse.

The computer was a PC with 1800 Mhz and 512 MB working memory,
a graphics card with a GeForce FX chip set and 64 MB memory, an USB
computer mouse with 800 dpi resolution and a sampling rate increased
to its maximum of 500 Hz, and a 19 inch color monitor with 85 Hz and
resolution of 1280 × 1024 pixels. The movement of the mouse was con-
strained to a low friction glass mouse pad of 25 × 30 cm2 size. Target
and mouse were presented on the screen as rectangles of 5 pixels side
length. The program controlling the experiments was designed to nearly
achieve real-time processing. Operating system was Linux Fedora Core 3
(Version 11/2004) with real-time capability provided by the RTAI 3.1 pack-
age (http://www.rtai.org). Movement of target and cursor was controlled
by a program written in C using OpenGL as a graphical frontend. Real time
operation of this system was verified, occasional time errors were of the
order of 2 ms.

Seven subjects participated in the experiments, filled a questionnaire
according to the ethical requirements of human experimentation, and
declared their informed consent. The subjects were of ages 21 to 59,
right-handed and one subject was female. During experiments, each sub-
ject was positioned 60 cm in front of the screen in a closed room without
window, which was only weakly lighted from the back. During a trial, two
circles were presented on the screen: a green one (M) for the mouse and
a one red (T) for the target (Figure 1). M was moved linearly propor-
tional to the position of the subject’s hand using the mouse, limited by the
screen border. 10 millimeter mouse movement corresponded to 445 pix-
els. Temporal resolution of the mouse was 2 ms and its spatial resolution
corresponded to 1.41 pixels. Task was to keep M and T together as close
as possible without one of them running out of the screen, a situation
similar to balancing a stick on the tip of a finger. A trial was started by
pressing a button on the keyboard and began with M and T being placed
in the middle of the screen.

The parameter α0 was chosen larger than one. Thereby, M represents
an unstable fixed point of the dynamics of T. The larger α0, the more
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difficult was the task. Subjects 1, 2, and 3 performed the tasks with
α0 = const., for the others α0 was randomly switched every second to a
value in {3, 4, 5, 6}.

During a trial, the x- and y-positions of mouse and target were
recorded as events with a frequency that was coupled to the refresh
rate of 85 Hz of the screen. A trial ended if either one of the points left the
screen or the maximal recording time of 3 minutes had expired. Before
the subsequent trial a break of 5 minutes allowed for relaxation. At least 5
trials per day were recorded. Experiments were authorized by the ethics
committee of the University Bremen.

Realistic constraints
An application of our therory to realistic systems (such as the balancing
of a stick or human postural sway) will only be possible if the mechanism
of generating power law behavior in the model is robust with respect to
the introduction of delays, memory, and changes in the dynamics of the
controlled system. Here, we introduce two extensions: delay and memory.

Interaction delays are ubiquitous in motor control (e.g., Cabrera and
Milton, 2002; Cabrera et al., 2004; Eurich and Milton 1996; Woollacott et
al., 1998). One can introduce a delay n = 0, 1, 2, . . . to shift the obser-
vations used for estimation further into the past. Then, Equation (6) is
replaced by

αt+n = αt−1 + yt

yt−1
(9)

which will be referred to as system with delay n. Note that due to causality
an application of the basic model to the experimental situation requires a
delay of n > 0.

A second extension of the basic model takes into account more past
observations than only yt and yt−1, that is, a longer memory. For the basic
model, we derived the control Equation (6) by minimizing the mean square
error of the estimator. This is equivalent to maximizing the likelihood of the
predicted target position. It is straightforward to expand this approach to a
longer memory by using the joint probability density (Eurich and Pawelzik,
2005):

αt = argmax
α0

p(yt, yt−1, yt−2, . . . , yt−1−m|α0, αt−1, αt−2, . . . , αt−1−m).

Evaluation of this equation yields the optimal estimation of α0 when
m past observations are considered additionally to the two steps used for
the basic model. In this case, the estimation equation reads

αt+n =
∑m

i=0 yt−i · yt−i−1 + αt−i−1 · y2
t−i−1∑m

i=0 y2
t−i−1

. (10)

To make this extension biologically more realistic, exponentially decay-
ing weights e−i/τ with time constant τ can be assigned to the summands
in the numerator as well as in the denominator to replace the artificially
box-shaped memory (10) by an exponentially fading one. Taking the limits
m → ∞, this leads to a set of estimation equations with exponentially
decaying memory

At = (1 − ε)At−1 + yt · yt−1 + αt−1 · y2
t−1

Bt = (1 − ε)Bt−1 + y2
t−1

αt+n = At

Bt

(11)

Together with Equation (2), these equations represent a biologically more
plausible version of a closed loop control system with only two parameters:
ε and n. For ε = 1, these equations are equivalent to the basic control
system without memory and for ε = 0, the memory becomes infinite.
The characteristic decay time of the memory is τ = −ln(1 − ε)−1, which
becomes τ ≈ 1/ε for small ε.

Finally, the control Equation (11) could also be equipped with con-
straints to suppress unrealistically large estimates of α0, for example, by

adding a small positive term to Bt . We found that also this extension of the
system yields power law tails of p(yt ) which, however, then have an expo-
nential cutoff. Because the inclusion of such a truncation complicates the
system’s dynamics without providing substantial benefits for the following
discussion, it will not be considered here.

Simulations
For comparison with the experimental data, datasets of the basic model
and of the model with exponentially decaying memory have been gen-
erated. These datasets comprised 106 iterations and parameters were
α0 = 2, σ2 = 0.8. The realistic model had a delay of n = 10 steps and
a memory with parameter ε = 0.85. These datasets have been analyzed
analogously to the experimental data sets (Figures 2 and 4).

To further examine the dependence of the probability density tail expo-
nent on the parameters of the system defined by Equations (2) and (11),
time series have been simulated for different combinations of n and ε

(Figures 5 and 6). To reduce statistical fluctuations in the tails, the rank-
ordered absolute values of |y| from 10 simulations with 109 iterations each
have been averaged. Then, the tail exponents have been calculated using
the Hill estimator as described in the following section. In one series of
simulations (Figure 5), the parameters were fixed to α = 2 and σ2 = 0.8.
In a second one (Figure 6), α0 was randomly chosen from {2, 3, 4} every
30 time steps. Using very long time series also helps fitting densities with
very high tail exponents, because these tend to have a very slow transition
with a low curvature leading to the power law regime.

Data analysis
Both experimental and simulated data were analyzed with different sta-
tistical methods. To obtain better statistics, the repeated trials of the
participants from day 1 were combined into one time series with a length
of some 105 events.

Because the experimental task was to align mouse and target on a
two-dimensional computer screen, the resulting data has two components
for both, the positions of mouse and target. The differences

yi
t = T i

t − Mi
t , i ∈ {x, y} (12)

are the distances between mouse and target in the x- or y-direction on
the screen in pixel units at time t. Since the axes of the screen represent
an artificial coordinate system, it seems unlikely that the separate rep-
resentation in x- and y-position is of any meaning to the brain. For that
reason, we focused on the Euclidean radial distance between mouse and
target

Yt =
√

(yx
t )2 + (yy

t )2 (13)

The main difference between the distance and the differences in the com-
ponents is, that Y is always positive. However, we found that the radial
distance and the absolute values of the differences in the components
have almost identical statistical properties (not shown). Since the prob-
ability distributions of the components of the differences are symmetric,
the positive part and the mirrored negative part of the difference distribu-
tions and the distributions of the absolute values of the distances overlap
perfectly.

To compare the simulated time series with the experimental ones, the
absolute values of y have been analyzed analogously to Y . In the following,
we will refer only to the distances Y where for the simulated data |y| is
implied.

Estimating parameters of distributions of rare, extreme events in gen-
eral is quite difficult and therefore has to be done carefully. We obtained the
tail exponents for the probability distributions by using the maximum like-
lihood estimator for rank-ordered distances Y known as “Hill estimator”
(Sornette, 2004). This estimator uses the first r ranks, which correspond to
the largest events up to a cutoff rank r. Smaller events which may belong
to a different regime are discarded. This method takes into account the
strong statistical fluctuations in the largest events and has therefore the
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Figure 2. Results for the basic model. (A) Time series of the distances Y = |y| versus iteration steps. (B) Complementary cumulative distribution function of
Y . The linear dependency observed in double logarithmic presentation exhibits clear power law behavior for large Y with a corresponding exponent δ = 2.0 as
predicted analytically (24). (C) The power spectrum for large frequencies scales with exponent 0.33. For low frequencies, it is constant. (D) The variance of the
cumulated magnitudes scales with a Hurst exponent close to 0.5. (E), (F) Autocorrelation of Y on different lag ranges. Contrary to intuition, no anti-correlation
occurs.

advantage of being mathematically well founded, requiring only one cut-
off, and no binning. This estimator is sensitive to the cutoff because the
beginning of the power-law regime varies between trials and simulations
with different exponents. To estimate the optimal cutoff, the exponents
for 100 different logarithmically spaced cutoffs are calculated. For time
series of the order of 105 to 106 steps, like the experimental datasets and
the simulations analyzed for comparison, it turned out that the first 45%
and the last 30% of the log of the range of the ranks can be regarded as
not being well suited as a cutoff rank, which therefore has to lie within
this range. For the larger and averaged simulations (Figures 5 and 6),
these restrictions on the cutoff could be relaxed, since the criterion used
to determine the cutoff could not be fooled by random bumps or kinks.
The exponent of the fit with a cutoff in the relevant range and the least
square error per rank is regarded as being optimal. This method has been
tested on all datasets from whole days as well as from all single trials

and from the simulated data. It turned out to provide reasonable results
for all but few very crooked experimental distributions. Another method
we tested was to search for the minimum of the slope of the estimated
exponent when varying the cutoff. This method on average delivers results
consistent with the first method, but is less robust and is therefore not
considered in the following.

Results for experimental data and simulations are presented in Figures
2 through 6 and summarized in Table 1. In Figures 2, 3 and 4, the
respective six subplots show:

A. The time series Y plotted over the time measured in seconds
or steps.

B. The complementary cumulative distribution function Fc(Yt ) =
P (Y > Yt ) plotted in double logarithmic axes. The exponents
δ of the tails of the probability densities of Y have been calcu-
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Table 1. Mean of the exponents δ of the distributions of |Y|, of the exponents of both regimes of power-law scaling in the spectral density, of
the Hurst exponents and characteristic decay constants of the autocorrelations for the different subjects.

Subject (days/trials) #1 (4/36) #2 (4/36) #3 (13/74) #4 (5/56) #5 (5/50) #6 (4/40) #7 (4/17)

Tail exponent δ 3.7 ± 0.1 3.5 ± 0.1 4.2 ± 0.2 3.5 ± 0.4 4.3 ± 0.2 3.8 ± 0.2 4.4 ± 0.1
Spectrum exponent 1 0.75 ± 0.09 0.9 ± 0.1 0.9 ± 0.1 1.00 ± 0.05 0.90 ± 0.09 0.93 ± 0.04 0.56 ± 0.07
Spectrum exponent 2 2.1 ± 0.4 2.6 ± 0.1 2.7 ± 0.2 2.7 ± 0.2 2.79 ± 0.04 3.00 ± 0.08 2.40 ± 0.03
Hurst exponent before crossover 0.968 ± 0.0020.982 ± 0.0020.980 ± 0.0030.973 ± 0.0020.975 ± 0.0020.971 ± 0.0010.965 ± 0
Autocorrelation decay constant [seconds] 1.2 ± 0.1 1.1 ± 0.2 3 ± 1 0.92 ± 0.09 1.0 ± 0.3 0.4 ± 0.1 1.0 ± 0.4

For each day, the values have been calculated from the combined time series. These fitted values have then been averaged. Errors are standard errors.
The all values for experiments with constant conditions are in the same range as for experiments with changing conditions. For subjects 1, 2, 3 α0 was
constant while for subjects 4, 5, 6, 7 α0 was switched every second to a random value in {3, 4, 5, 6}.

lated using the Hill estimator as described above. Note that the
exponent µ from the complementary cumulative distribution
functions is related to δ as µ = δ − 1.

C. Power spectrum of Y . To reduce noise, for the combined time
series from day 1, the time series is divided into 10 parts for each
of which the power spectrum is computed individually. These
10 spectra are then averaged. The resulting spectrum has a
lower noise level at the cost of raising the lowest frequency
representable. Since the power spectrum is constant for low
frequencies, the number of parts has been selected to obtain
more information on the decay at high frequencies at the cost
of the low frequencies. For the simulated time series, power
spectra of 103 parts are averaged.

D. Scaling of the variance of the sums of subsequent values of Y .
For i.i.d. random variables with finite variance, it scales with the
number n of summands as n2H = n1 (random walk), where H

is the Hurst exponent.
E. and F. Autocorrelation function of Y plotted against the lag.

In all sub-plots, green and cyan colored lines mark the fitted part while
black lines are extrapolations. Fits in sub-plots C to F have been obtained
using the method of least square errors.

RESULTS
Self-organized critical control
The simple map (Equations 2 and 6) generates time series which exhibit
power law distributions of Y (Figure 2). While this controller is optimal in
the sense that it uses the minimum mean squared error estimate of the
system’s parameter α0 from two past observations, the large fluctuations
indicate that the system is sub-optimal from a global perspective when
the control is rather successful, that is, when the values of yt become
small. Intuitively, for small amplitudes estimating the parameters does
not make sense because the dynamics is then dominated by the noise.
In other words, a controller with unlimited sensitivity will always run into
the point where its estimate fits only the noise. In this sense, our simple
model system exhibits self-organized criticality.

The power law behavior of the basic system for large fluctuations can
be determined from an analytical treatment. Starting point is the iterative
equation

yt+1 = −βt−1

yt−1
yt + βt, (14)

which follows from our control equations if we insert the controller into
the dynamics. For the formal solution of the density P (y), we have the

1 This is an exponent!

general equation

Py(y) =
∫ ∞

−∞
dyt

∫ ∞

−∞
dyt−1

∫ ∞

−∞
dβt

×
∫ ∞

−∞
dβt−1P (y|yt, yt−1, βt, βt−1)P (yt, yt−1, βt, βt−1). (15)

The conditional probability density is given by the dynamics

P (y|yt, yt−1, βt, βt−1) = δ

(
y + βt−1

yt−1
yt − βt

)
(16)

where δ is the Dirac Delta distribution. The joint density is obtained from
marginalization over the densities P (y) and Pβ(β)

P (yt, yt−1, βt, βt−1)

= P (yt |yt−1, βt, βt−1)P (yt−1, βt, βt−1) (17)

= P (yt |yt−1, βt−1)P (yt−1)Pβ(βt )Pβ(βt−1) (18)

=
∫ ∞

−∞
dyt−2

∫ ∞

−∞
dβt−2δ

(
yt + βt−2

yt−2
yt−1 − βt−1

)
× P (yt−1)P (yt−2)Pβ(βt )Pβ(βt−1)Pβ(βt−2) (19)

After integrating over βt−2, this does not look too bad,

P (yt, yt−1, βt, βt−1) = P (yt−1)Pβ(βt )Pβ(βt−1)

×
∫ ∞

−∞
dyt−2

∣∣∣∣yt−2

yt−1

∣∣∣∣P (yt−2)Pβ

×
(

(βt−1 − yt )yt−2

yt−1

)
(20)

Putting everything together, we then have

P (y)

=
∫ ∞

−∞
dyt

∫ ∞

−∞
dyt−1

∫ ∞

−∞
dβt

∫ ∞

−∞
dβt−1δ

(
y + βt−1

yt−1
yt − βt

)

× P (yt−1)Pβ(βt )Pβ(βt−1) ·
∫ ∞

−∞
dyt−2

∣∣∣∣yt−2

yt−1

∣∣∣∣
× P (yt−2)Pβ

(
(βt−1 − yt )yt−2

yt−1

)
(21)

=
∫ ∞

−∞
dyt

∫ ∞

−∞
dyt−1

∫ ∞

−∞
dβt−1P (yt−1)

× Pβ

(
y + βt−1

yt−1
yt

)
Pβ(βt−1) ·

∫ ∞

−∞
dyt−2

∣∣∣∣yt−2

yt−1

∣∣∣∣
5
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Figure 3. Analysis of the combined time series from day 3 of subject 4. (A) Time series of the distances Y over iteration steps. (B) Complementary cumulative
distribution function of Y . The linear behavior in double logarithmic scaling exhibits clear power law behavior for large Y with a corresponding exponent of
δ = 3.0 in P (Y ). (C) The power spectrum for large frequencies initially scales with exponent 1.56 and then with an exponent 2.38. For low frequencies, it
is constant. (D) Variance of the cumulated magnitudes scales with a Hurst Exponent of H = 1.0 and then evolves to a Hurst exponent close to 0.5. (E) The
autocorrelation of Y shows an exponential decay for short lags. (F) It quickly decays to zero without overshoot.

× P (yt−2)Pβ

(
(βt−1 − yt )yt−2

yt−1

)
(22)

Next, we integrate over yt because it appears only in two of the
Gaussian densities. We obtain

P (y) =
∫ ∞

−∞
dyt−1

∫ ∞

−∞
dyt−2

∫ ∞

−∞
dβt−1P (yt−1)P (yt−2)Pβ(βt−1)

· Pβ

([(
y + β2

t−1

yt−1

)
yt−2√

β2
t−1 + y2

t−2

]
|yt−2|√

β2
t−1 + y2

t−2

)
(23)

Now we integrate over yt−1 which appears in P and as its reciprocal in
one of the Gaussian densities. It is straightforward to estimate this integral

for very large y which finally yields

P (y) � 1/y2 (24)

and proves that the asymptotic exponent is −2. This requires that the
desired distribution P (x) is finite for small arguments x (which is heuristi-
cally obvious and a numerical fact). Namely, with f (x) = const. for x → 0
and y large compared to the variance of a Gaussian density g we have
the general relation

F (y) =
∫ ∞

−∞
g

(
y + 1

x

)
f (x)dx

�
∫ ∞

−∞

g(x1)
y2

f

(
−
(

1
y

+ x1

y2

))
dx1 � y−2 (25)
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Figure 4. Simulation of the extended model with a delay of n = 10 steps and memory with � = 0.85. These parameters lead to statistical properties
that qualitatively resemble the properties of the experimental data. (A) Time series of the distances Y = |y| over iteration steps. (B) Complementary
cumulative distribution function of Y . The linear dependency in double logarithmic scaling exhibits clear power law behavior for large Y with a corresponding
exponent δ = 3.0 in P (Y ). (C) The power spectrum for large frequencies initially scales with exponent 0.63 and then with an exponent 2.04. For low frequencies,
it is constant. (D) Variance of the cumulated magnitudes scales with a Hurst Exponent of H = 0.7 and after 10 steps it then evolves to a scaling behavior with
a Hurst exponent close to 0.5. (E) The autocorrelation of Y shows an exponential decay for short lags. (F) The autocorrelation quickly decays to zero and shows
only very marginal anti-correlation.

The remaining integrals exist and do not depend on y. Therefore, they
contribute only a constant factor in Equation (23).

Numerical investigations indicate that for the system with memory
m (Equation (10)) and no delay, the probability density p(m)(yt |α0) has a
tail exponent δ(m) = −(m + 2), independently of the value of α0 and the
constant noise level (not shown).

Complex dynamics of human control behavior
Figure 3 shows statistics of subject 4 on his third day of measurement.
Similar results were obtained for all subjects. The experimental data show
similarities as well as differences to the basic model.

In particular, for all subjects, a power law is found in the probabil-
ity densities. In individual trials, most tail exponents are between three

and five. An average autocorrelation decays quickly to zero and does
not become significantly negative. In single trials, anti-correlations occur
which, however, are always within the noise range. The power spectrum
is constant for low frequencies and then exhibits two regimes of power
law decay which are more distinct for some trials than for others. The
scaling of the variance for the sums of values of Y exhibits a Hurst expo-
nent H > 0.5 for short times. A crossover to a Hurst exponent close to
0.5 occurs where the sums are over times of the order of few seconds.
The results for all subjects are summarized in Table 1.

Influence of constraints
Figure 4 shows the results from analyzing the extended model (Equations
2 and 11) for a choice of parameters that give results similar to the
experimental data in Figure 3.
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The exponent depends on the memory available to the controller.
Larger memory leads to larger exponents, while long delays reduce the
exponents. A controller with no memory and positive delay leads to tail
exponents smaller than 2. The power spectrum is always constant for
low frequencies and shows a power law decay over one to two orders
of magnitude at high frequencies. For some parameter combinations, the
power spectrum shows two regimes with different exponents, in particular
when the memory and the delay are sufficiently large. The autocorrela-
tion decays very quickly. Anti-correlations of the order of −0.1 occur
for simulations with small ε (large memory) and short delays. For longer
delays, anti-correlation is strongly suppressed and would not be visi-
ble in more noisy data. Using a varying α0 throughout the simulation
effectively supresses all anticorrelations. Varying the model parameters
makes it possible to closely match each property of an experimental time
series individually, while generating data which shares all properties of
a given experimental time series at the same time turned out to be dif-
ficult. But even for different simulations with the same parameters, the
generated time series may have varying properties due to random fluc-
tuations. In Figure 4, we chose the parameters to quantitatively match
the scaling exponent of Figure3 in the distribution of Y while achieving
close qualitative matching in other features. Nevertheless, comparison
with Table 1 shows, that these features are quantitatively still close to the
range observed in the experimental data.

To get an impression of the parameter dependence of the tail expo-
nent δ of the distribution of the distances Y , Figure 5 shows δ versus
memory length and delay. To examine the influence of non-stationary cir-
cumstances, Figure 6 shows the same representation but for the case of
varying α0. For the static situation, the exponent rises monotonically with
memory length while for varying α0, a long memory can be disadvan-
tagous and reduces the exponent. To suppress large errors, the memory
used by the controller has to be chosen according to the delay and the
time scale of variation of the system to be controlled.

A reduction of the exponent for a longer memory even occurs, when
the rate at which α0 changes is very low compared to the delay length. The
worst case for the controller is when α0 is constant over a time interval
being exactly as long as the delay time. This situation yields exponents
much below 2 that rise again, when α0 is changed in periods being shorter
than the delay time (not shown). This effect could allow to determine the
delay experimentally. In these simulations, the controller was still able
to control the system, because α0 was varied only over a limited range.
This corresponds to the experiments, where the possible values for α0

were chosen in a range where the subjects where still able to stabilize the
target. However, in different simulations the controller could handle much
stronger variations in α0 when the intervals in which α0 stayed constant
where longer than the delay, than in simulations, where these intervals
where shorter than the delay.

SUMMARY AND DISCUSSION
Criticality emerges naturally in adaptive control by a very simple and
intuitive mechanism: in the balanced situation, a system’s parameters
cannot be determined from its observable behavior because the system is
then dominated by noise. In other words, the better the control, the less can
be learned about the system. A controller with strictly limited memory who
continuously estimates the parameters of an unstable system also when
reasonable balance is already achieved thereby can run into catastrophic
instabilities (MacArthur, 1995).

We analyzed this basic effect for a simple stochastic map. A controller
using optimal on-line estimation from only two past observations was
derived from minimizing the mean squared error. The resulting dynamics
exhibit clear power law tails with an exponent δ = 2 that was confirmed
analytically. As can be seen from Equation (7), two mechanisms contribute
to this behavior: first, the dynamical variable yt appears in the numerator,
resulting in large amplitudes if the controller has previously been suc-
cessful in reducing the control error yt to near zero. Second, the noise

Figure 5. Tail exponent δ for different combinations of delay and decaying
memory. Fitted using the Hill estimator, as described in Subsection Data
Analysis. The rank-ordered absolute values of Y have been averaged for 10
simulations with 10 9 time steps each with α0 = 2 and σ = 0.8. For a fixed
delay larger than 6, the exponent increases monotonously.

term is multiplicative. Multiplicative noise is well known to produce on-off
intermittency and power law scaling in random maps (Heagy et al., 1994).
Whereas previous models for motor control explicitly incorporated mul-
tiplicative noise (Cabrera and Milton, 2002), in our model it results from
optimal parameter estimation of a simple linearly unstable system with
additive noise coupled to a controller. Together with the fact, that power
law behavior per se does not depend on the parameters and therefore
is generic, this justifies the adjective “self-organized.” This criticality is
in strong contrast to the usual SOC (Bak et al., 1987), in which a high
dimensional system tends to be close to a bifurcation point. In our case,
few coupled maps are sufficient which self-organize the state toward a
point of maximal noise-sensitivity.

We investigated whether our theory can explain human motor con-
trol dynamics by performing experiments where subjects were asked to
balance an unstable target on a screen with a cursor controlled using a
computer mouse. Experiments were designed to closely match the con-
ditions of the theory. For all subjects, target–mouse distance distributions
strongly deviated from Gaussians and had tail exponents in the range
of 2.5–6 (Table 1). The distance dynamics was correlated for seconds
(Figure 3E and 3F), with Hurst exponents H > 0.5 for short times.

Figure 6. Tail exponent δ for simulations with parameter ranges as in
Figure 5, but with α0 chosen randomly from {2, 3, 4} every 30 time
steps. In the presence of a delay, the exponent initially grows when increasing
the memory length and decreases again for longer memories.
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The basic model does not reproduce the features of human motor
control dynamics (Figure 2). Correlations were very short, H = 0.5 for
all times and the power spectrum did not exhibit two separate scaling-
regions. This result a posteriori justifies the use of power spectra and
scaling behavior of variances as decisive measures for testing models of
control dynamics. To improve the correspondence with the experimental
data, we extended the model to include exponentially fading memory,
limitations on the ranges of estimated parameters, and the presence of
delays. The occurrence of power law behavior was found to be robust with
respect to delays, size of memory, noise level, and cut-offs of amplitudes.
It turned out that the exponents δ > 2 of the distribution’s tails increase
for long memory and decay with delay (Figure 5). Choices of the two-time
constants for memory and delay that match the tail exponents of the trials
from one day could reproduce slower decaying correlations and values of
H > 0.5 with crossover to H = 0.5. (Figure 4). We found it particularly
surprising that our models can match human control dynamics in so much
detail despite the fact that the sensory-motor system is complex, involves
many neuronal networks from motor cortex to spinal cord, and is subject
to many physical constraints, as, for example, limits on muscle force and
the inertia of the arm. We believe, however, that these constraints affect
mostly the shape of spectrum and correlation, but do not strongly alter
the scaling behavior of Y . Taking the parameters of the model seriously
suggests that the memory for on-line adaptation is rather short (less than
a second), while the delay for applying new estimates of the systems
parameters is rather long (several seconds). Suprisingly, we found that
control also works when the parameter α0 is switched in shorter intervals
than the delay time, if the range of variation is limited.

We will soon test these predictions about the on-line adaptivity realized
by the human motor control system in independent experiments. Also, we
will perform experiments which independently measure delay and memory
which will serve as a critical test of our model.

Taken together our results suggest that the human nervous system
employs adaptive motor control using only a very limited memory of past
observations for estimating the parameters of the controlled system. Fast
adaptation is a prerequisite for survival in a non-stationary world. The fact
that the consideration of a longer history yields faster decaying densities
suggests that power laws observed in sensory-motor control result from a
compromise between stability and fast adaptation with respect to changes
in system parameters.

Clearly, our model is a black box explanation which calls for a micro-
scopic realization in terms of neurons, synapses, and the like. While this
is work in progress, we found it striking that the simple theory derived
from optimality principles after inclusion of general constraints was able
to reproduce the qualitative features of the dynamics. Our future work,
both theoretical as well as experimental will put more flesh to the state-
ments of the theory in order to clarify how a cortical network might realize
estimation of system parameters for control, and how the properties of its
elements (synapses, neurons, spinal chord, muscles, inertia of the arm,
etc.) contribute to the constraints.

Our work might have some potential for explaining non-Gaussian
behavior also of other systems with similar features in their dynamics. For

instance, financial markets can be considered systems that optimize the
dynamics of prices such that no trader possessing the available informa-
tion can expect to achieve profit (Cherdron and Pawelzik, 2007). This can
be considered a control situation and we are currently exploring the pos-
sibility that also here self-organized critical control underlies the stylized
statistical features of price fluctuations (Mantegna and Stanley, 2000).
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