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In vivo and in vitro experimental studies have found that blocking electrical interactions connecting GABAergic interneurons reduces
oscillatory activity in the γ range in cortex. However, recent theoretical works have shown that the ability of electrical synapses to
promote or impede synchrony, when alone, depends on their location on the dendritic tree of the neurons, the intrinsic properties of the
neurons and the connectivity of the network. The goal of the present paper is to show that this versatility in the synchronizing ability of
electrical synapses is greatly reduced when the neurons also interact via inhibition. To this end, we study a model network comprising
two-compartment conductance-based neurons interacting with both types of synapses. We investigate the effect of electrical synapses
on the dynamical state of the network as a function of the strength of the inhibition. We find that for weak inhibition, electrical
synapses reinforce inhibition-generated synchrony only if they promote synchrony when they are alone. In contrast, when inhibition is
sufficiently strong, electrical synapses improve synchrony even if when acting alone they would stabilize asynchronous firing. We clarify
the mechanism underlying this cooperative interplay between electrical and inhibitory synapses. We show that it is relevant in two
physiologically observed regimes: spike-to-spike synchrony, where neurons fire at almost every cycle of the population oscillations, and
stochastic synchrony, where neurons fire irregularly and at a rate which is substantially lower than the frequency of the global population
rhythm.
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INTRODUCTION
Electrical synapses are frequently found to connect GABAergic interneu-
rons in the central nervous system. This is for instance the case in the
neocortex (Fukuda and Kosaka, 2000; Galarreta and Hestrin 1999; Gibson
et al., 1999), in the striatum (Kita et al., 1990), the hippocampus (Venance
et al., 2000), the cerebellum (Mann-Metzer and Yarom, 1999), and the
reticular thalamic nucleus (Landisman et al., 2002). In the neocortex, low
threshold spiking (LTS) GABAergic interneurons interact mostly via electri-
cal synapses whereas both electrical and GABAergic synapses are found
between fast spiking (FS) interneurons (Beierlein et al., 2003). Multipolar
bursting interneurons in layer 2/3 in frontal and somatosensory cortex are
also connected by both kinds of synapses (Blatow et al., 2003).
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It has been proposed that electrical synapses are involved in the
generation of synchronous rhythm in the hippocampus and in the
neocortex (Bartos et al., 2007; Fricker and Miles, 2001; LeBeau et al.,
2003; Whittington and Traub, 2003). In hippocampal and neocortical
slices, γ oscillations are abolished by gap junction blockers (LeBeau
et al., 2002; Traub et al., 2001). These oscillations are also reduced
in transgenic Cx-36- knockout mice both in vitro and in vivo (Buhl
et al., 2003; Deans et al., 2001; Hormuzdi et al., 2001). Interestingly,
γ-oscillations are also abolished by the GABAA antagonist bicuculline
(LeBeau et al., 2002; Whittington et al., 1995).

Recent theoretical studies have shown that the ability of electrical
synapses to promote synchrony depends on the firing frequency of the
neurons (Chow and Kopell, 2000; Lewis and Rinzel, 2003; Pfeuty et al.,
2003), on the intrinsic properties of the neurons (Mancilla et al., 2007;
Pfeuty et al., 2003; Saraga et al., 2006), and on the location of these
synapses on the dendritic trees (Pfeuty et al., 2005; Saraga et al., 2006).
In particular, one question is whether synapses on the dendritic tree of
interneurons at distances as far as 100–200 �m from the soma (Fukuda
and Kosaka, 2000; Fukuda et al., 2006; Kosaka and Hama, 1985; Sloper,
1972; Szabadics et al., 2001) contribute to the emergence of rhythmic
activity in networks of inhibitory interneurons.

The goal of the present paper is to show that when combined
with sufficiently strong inhibitory synapses, electrical synapses always
promote synchrony even in the case they would impede it in the absence
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of inhibition. To this end, we study the dynamics of a large network
of two-compartment conductance-based neurons interacting with both
electrical and inhibitory interactions. We investigate how electrical
synapses affect the dynamical state of this network as a function of the
conductance of the inhibitory synapses. For weak inhibition, electrical
synapses improve synchrony only when they promote synchrony when
they are alone. In contrast, when inhibition is sufficiently strong, we find
that they always reinforce the rhythm and its robustness to noise. We
show that this cooperative interplay between electrical synapses and
inhibition is relevant in two distinct physiological observed regimes of
synchrony: (1) during spike-to-spike synchrony where neurons fire at
almost every cycle of the population oscillations and (2) during stochastic
synchrony where the firing rate of the neurons is significantly lower that
the frequency of the global oscillation (Brunel and Hakim, 1999; Brunel and
Hansel, 2006; Tiesinga and Jose, 2000). In the latter case, the presence
of electrical synapses significantly improves the robustness of synchrony
at low firing rates and high synaptic conductances where inhibition alone
often fails to synchronize. Finally, we discuss the mechanism of this
cooperative interplay and its relevance in the emergence of γ rhythm.

MATERIAL AND METHODS
Single neuron dynamics
Our conductance-based neuronal model is a two-compartments (soma,
dendrite) generalization of the neuronal model devised by Wang and
Buzsáki (1996). The somatic compartment incorporates a leak current
IL, a transient sodium current INa and a delayed rectifier potassium cur-
rent IKdr . The dendritic compartment is passive. It receives an external
input Iext. The membrane potential of the soma, V s, and the dendrite, V d,
obey the current balance equations:

C
dV s

dt
= −IL − INa − IKdr − gc(V s − V d) + Inoise (1)

C
dV d

dt
= −IL,d − gc(V d − V s) + Iext (2)

The leak and the voltage gated currents are given by: IL =
−gL(V s − VL), IL,d = −gL(V d − VL), INa = gNam

3
∞h(V s − VNa ) and

IK = gKn4(V s − VK) where the gating variables h and n satisfy:

dx

dt
= αx(V s)(1 − x) − βx(V s)x (3)

with x = h, n, αh(V ) = 0.21 e−(V+58)/20, βh(V ) = 3/(1 + e−(V+28)/10),
αn(V ) = 0.03(V +34)/(1 − e−(V+34)/10), and βn(V )=0.375 e−(V+44)/80.
The activation function m∞, is given by: m∞(V ) = αm(V )/(αm(V ) +
βm(V )), with αm(V ) = 0.1(V + 35)/(1 − e−(V+35)/10) and βm(V ) =
4e−(V+60)/18. The other parameters of the model are gNa = 35 mS/cm2,
VNa = 55 mV, gK = 9 mS/cm2, VK = −75 mV, gL = 0.1 mS/cm2,
gc = 0.3 mS/cm2, VL = −65 mV, and C = 1 �F/cm2.

When the external current, Iext, is sufficiently large the neuron dis-
charges action potentials periodically. The relationship between Iext and
the frequency, f, of the discharge is plotted in Figure 1A. The current Inoise

represents the effect of the intrinsic and the synaptic noise in the neuron.
It is modeled as a Gaussian white noise current with a zero mean and a
standard deviation, σ.

The network
The network consists of N neurons interacting via electrical and inhibitory
synapses. The connectivity is random. Unless specified otherwise, each
neuron is connected on average to Kgap = 10 and Kinh = 50 other neu-
rons via electrical synapses and via inhibitory synapses, respectively, in
line with experimental data (Amitai et al., 2002; Sik et al., 1995).

We assume that the inhibitory synapses are located on the dendritic
compartment. Therefore, we incorporate their effect by adding a synaptic

Figure 1. Properties of the model. (A) The relationship between the discharge
frequency and the injected current, Iext, (F-I curve) for our model neuron.
(B) Post-synaptic potentials evoked by a train of action potentials (left top
panel) or by one presynaptic action potential (right top panel) following a
long or short transient pulse of current. Post-synaptic potentials are shown
(bottom panels) for the three types of interaction in a two-neurons system
represented on the left diagram: the neurons interact via an electrical synapse
connecting their soma (ggap = 0.005 mS/cm2, solid thick lines); the neurons
interact via an electrical synapse connecting their dendritic compartments
(ggap = 0.02 mS/cm2, solid thin lines); The neurons are coupled by inhibitory
synapses located on their dendrite (ginh = 0.05 mS/cm2, dashed lines). (C)
Coupling coefficient (CC) measured at the soma between two neurons coupled
with electrical synapses on the dendritic compartments.

current to the right-hand side of Equation (2):

Iinh(t) = −ginhs(t)(V d(t) − Vinh) (4)

where ginh is a constant conductance, Vinh = −75 mV is the reversal
potential of the inhibitory synapses, and the function s(t) satisfies the
dynamics:

ds

dt
= 50(1 + tanh(V s/4))(1 − s) − s/τinh (5)

with τinh = 3 ms.
In this work, we study the effect on synchrony of the electrical synapses

located between the somatic or between the dendritic compartments of
two neurons. In the first case, the effect of neuron j on neuron i is modeled
by a synaptic current

Igap = ggap(V s
i − V s

j ) (6)

added to the right-hand side of Equation (1) for neuron j. Similarly, if the
electrical synapse couples the dendrites of the neurons, a current

Igap = ggap(V d
i − V d

j ) (7)
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is added to the right-hand side of Equation (2) for neuron j. The inhibitory
postsynaptic potentials and the spikelets associated with each type of
interaction are illustrated in Figure 1B. Note that the time course of the
spikelets mediated by electrical synapses coupling the dendritic compart-
ment are broadened by the dendritic filtering.

The strength of an electrical synapse can be quantified through the
coupling coefficient (CC) defined as the ratio between the voltage changes
in the postsynaptic neuron and in the presynaptic neuron as the latter is
injected with a constant current. Experimental studies in cortex report
typical values of CCs on the order of or smaller than 0.15 (Amitai et al.,
2002; Gibson et al., 1999; Venance et al., 2000). The CCs used in our
model have similar values, as shown in Figure 1C.

Note that ggap (resp. ginh) characterizes the effect of one single elec-
trical (resp. inhibitory) synapse. The values of these conductances have
to be multiplied by the average connectivities, Kgap or Kinh, to estimate
the strength of the synaptic currents the neurons receive in the network.

Numerical simulations of the model network
We simulated our model network using the second order Runge–Kutta
integration scheme with fixed time step: δt = 0.01 ms. Average quan-
tities such as the firing rate, the CV of the interspike interval, and the
measure of synchrony, χ (see below) were computed over a time period
of 1 second after discarding a transient of 500 ms.

Measure of synchrony. We quantify the degree of synchrony in the
network following (Golomb and Rinzel, 1994; Hansel and Sompolinsky,
1992, 1996). We denote by V̄ (t) the population average membrane poten-
tial:

V̄ (t) = 1
N

N∑
i=1

Vi(t) (8)

and by σV̄ and σVi
the standard deviation of the temporal fluctuations of

V̄ and of the individual voltage of neuron i, respectively:

σ2
V̄

=
〈[

V̄ (t)
]2

〉
t

− [〈
V̄ (t)

〉
t

]2
(9)

σ2
Vi

= 〈
[Vi(t)]

2
〉

t
− [〈Vi(t)〉t ]

2 (10)

where 〈. . .〉t denotes time-averaging. In a network of size N , we define

χ(N ) =
√

σ2
V̄

1
N

∑N

i=1 σ2
Vi

(11)

which varies between 0 and 1. The central-limit theorem implies that, in
the limit N → ∞, χ(N ) behaves as:

χ(N ) = χ∞ + δχ√
N

+ O

(
1
N

)
(12)

In particular, χ(N ) = 1, if the activity of the network is fully synchronized
(i.e., Vi(t) = V (t) for all i), and χ(N ) = O(1/

√
N ) if the network activity

is asynchronous. Therefore, χ∞ is equal to 0 in the asynchronous state
while a non-zero value of χ∞ corresponds to synchrony (Ginzburg and
Sompolinsky, 1994; Hansel and Sompolinsky, 1992) and the larger χ∞
the more synchronized the activity is. Note that χ∞ is sensitive to the
correlations in the spike timing of the neurons as well as in the time course
of their membrane potential in the subthreshold range. To estimate χ∞ for
given values of the synaptic coupling and of the noise, we compute χ(N )
in simulations for networks of different sizes (in general N = 1600 and
N = 3200) and we extrapolate the results according to Equation (12).

Robustness of synchrony. To probe the robustness of the synchrony of
the activity in the network, we study how it resists to noise in the external
input. For a given strength of the coupling, the network is in the asyn-
chronous state (χ∞ = 0) if the noise is sufficiently strong. When the noise
level decreases, the asynchronous state may lose stability and synchrony
can appear (χ∞ > 0). The transition from asynchrony to synchrony can

Figure 2. Robustness of collective synchronous oscillations in the net-
work without electrical synapses. (A) The measure of synchrony, χ∞, vs. the
noise. Left panel: ginh = 0.005 mS/cm2; σc=0.24 �A × ms1/2/cm2 Right
panel: ginh = 0.1 mS/cm2; σc = 0.98 �A × ms1/2/cm2; in a small region
in the vicinity of σc bistability occurs, that is, the asynchronous state is
stable and coexists with a synchronous state (not shown). (B) The criti-
cal noise, σc, vs. ginh. Note that the logarithmic scale for ginh becomes a
linear one in the inset figure. (C) Patterns of synchrony of the inhibitory net-
work. Left panel: weak inhibition and weak noise (ginh = 0.005 mS/cm2;
σ = 0.1 �A × ms1/2/cm2) Right panel: strong inhibition and strong noise;
ginh = 0.1 mS/cm2 and σ = 0.8 �A × ms1/2/cm2. Top panels: The raster
plots representing the spike trains of 200 neurons. Middle panels: the neuronal
membrane potential averaged over all the cells. Bottom panels: The voltage
trace of one neuron. (D) The frequency of the population rhythm (squares) and
the population average coefficient of variation (CV) of the interspike interval
distribution vs. ginh (triangles). The value of noise is adjusted to be slightly
larger than σc(g inh). In all the panels, the input current has been adjusted
such that the average firing rate of the neurons is kept to 40 Hz (for σ ≈ σc)
while changing ginh.

take place in various ways. The most common ways are supercritical or
subcritical Hopf bifurcations (Strogatz, 1994). If the bifurcation is super-
critical, χ∞ varies continuously (see Figure 2A, left panel for an example)
and, at the leading order, it is expected to behave in the vicinity of the
bifurcation as:

χ∞ = A(σc − σ)α for σ < σc (13)

= 0 for σ > σc (14)

An example is shown in Figure 2A, left panel. As a matter of fact, fitting
the results shown in this figure according to Equations (13) and (14) yield
a critical exponent α = 0.4 ± 0.15. A similar value for this critical expo-
nent was found at the synchronization–desynchronization transition in the
model studied by Brunel and Hansel (2006). These values are compatible
with the mean-field prediction, α = 1/2 (Kuramoto, 1984). Hence, we
assume α = 1/2 in all the fits performed in this work to estimate σc. In
contrast, if the bifurcation is subcritical, χ∞ varies discontinuously from 0
to a non-zero value at some critical value σc (see Figure 2A, right panel).
Moreover, the asynchronous state and the synchronous state exist and are
both stable in some region near σc. In both cases, σc characterizes the
robustness of the synchronous state. The smaller σc is, the less robust is
the synchrony.
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RESULTS
The robustness of synchrony solely with inhibitory interactions
The synchronization properties of the network in the case the neurons
interact solely via inhibition are depicted in Figure 2. In the left panel of
Figure 2A, the synchrony measure, χ∞, is plotted as a function of the noise
level, σ, for an inhibitory conductance ginh = 0.005 mS/cm2. For this
strength of the inhibitory coupling, χ∞ decreases continuously and is very
close to 0 for σ > 0.25 �A × ms1/2/cm2. By fitting these data according
to Equation (14), one finds that σc ≈ 0.25 �A × ms1/2/cm2. In contrast,
for larger coupling (ginh = 0.1 mS/cm2), χ∞ varies discontinuously from
a non-zero value (χ∞ > 0.3) to nearly zero. The synchronous activity is
now more robust since σc ≈ 0.96 �A × ms1/2/cm2. These two exam-
ples illustrate the fact that the robustness of the synchrony is significantly
affected by the strength of the inhibition.

The dependence of the robustness to synchrony on ginh is studied more
systematically in Figure 2B. When the inhibitory conductance is small, σc

varies proportionally with the square root of the inhibitory conductance;
see inset. This behavior is consistent with the weak coupling theory of
synchronization in large networks of coupled oscillators, which predicts
that in the limit of weak coupling the stability of the asynchronous state
depends on the ratio g/σ2 (Pfeuty et al., 2003, see also below). As ginh

increases, σc increases and reaches a maximum at ginh ≈ 0.1 mS/cm2,
for which σc ≈ 1 �A × ms1/2/cm2. Beyond that point, σc decreases
and vanishes for ginh ≈ 0.21 mS/cm2 (corresponding to IPSPs of 1.5
mV), indicating that for such strong coupling the network is unable from
developing synchronous activity even in the absence of external noise.
This non-monotonic behavior, which at first sight is non-intuitive, stems
from the sparse connectivity of the inhibition. When the coupling becomes
strong, the spatial fluctuations in the connectivity induces strong spatial
and temporal fluctuations in the synaptic current, which prevents the
network to develop a stable oscillatory activity (Golomb and Hansel, 2000).

The pattern of synchrony that emerges when the noise level σ �
σc(ginh) depends on ginh. This is shown in Figure 2C where we com-
pare the raster plot, the population average membrane potential of
the neurons, and the trace of one neuron for two values of ginh

(same values as in Figure 2A). For ginh = 0.005 mS/cm2 and σ =
0.1 �A × ms1/2/cm2, the neurons tend to fire one action potential per
cycle of the population rhythm. In contrast, for ginh = 0.1 mS/cm2 and
σ = 0.8 �A × ms1/2/cm2, a given neuron does not fire at each cycle but
with a probability which varies in time and follows the population rhythm.

These two regimes of synchrony also appear clearly in Figure 2D
where the frequency of the population rhythm and the coefficient of vari-
ation of the interspike histogram distribution computed for each neuron
and averaged over the network are plotted as a function of ginh. For
ginh < 0.005 mS/cm2, the frequency of the population activity oscilla-
tions emerging at σ slightly larger than σc and the average firing rate of
neurons are both about 40 Hz. Moreover, the spike trains of the neurons are
weakly irregular since CV < 0.2. In contrast, for ginh > 0.005 mS/cm2

the frequency of the population rhythm is larger than the population aver-
age firing rate. Although the latter does not vary (when ginh varies, we
adjust Iext to keep the firing rate about 40 Hz for σ ≈ σc), the frequency
of the oscillation increases with ginh. The discharge of the neurons is also
more irregular. In the first regime when inhibitory conductances are low,
the network displays spike-to-spike synchrony, whereas in the second
regime in the presence of strong enough inhibitory conductances and
noise, it displays stochastic synchrony (Brunel and Hakim, 1999; Brunel
and Hansel, 2006; Tiesinga and Jose, 2000).

Combining electrical and inhibitory synapses
The simplest and the most intuitive way electrical and inhibitory synapses
are likely to combine their effect on the robustness of synchrony is as
follows. If both interactions promote synchrony, synchronous activity will
be more stable when both interaction types are present than if one of
them is blocked. In contrast, if electrical synapses impede synchrony,

oscillations will be less stable when both interactions are present than
when inhibition acts alone. This type of behavior can be proven in the
limit of weak coupling and weak noise under the assumption that the
asynchronous state loses stability with a supercritical Hopf bifurcation.
Let us denote by λ the largest eigenvalue of the the network dynamics
linearized around the asynchronous state. At the leading order in the
couplings and the noise, λ can be expanded (Kuramoto, 1984):

λ = ainhginh + agapggap − bσ2 + higher order terms (15)

The constant coefficients ainh and agap depend on the single neuron
properties and on the connectivities, Kinh and Kgap, respectively. The
coefficient b, which depends on the intrinsic properties of the neurons,
is always positive. The asynchronous state is stable when λ < 0. It is
unstable if λ > 0 and the robustness, σc, is determined by the condition
λ(σc) = 0.

Let us assume first that electrical and inhibitory synapses both promote
synchrony. This means that, in the absence of noise, the asynchronous
state is unstable if only one of these interactions is present. Therefore,
ainh and agap are positive. Hence, for electrical (resp. inhibitory) synapses
alone, σgap

c = √
agap/b (resp. σ inh

c = √
ainh/b). When both synapses

are present, the robustness σgap+inh
c satisfies the relation:

(σgap+inh
c )2 = (σgap

c )2 + (σ inh
c )2 (16)

We have checked that this equation holds in the numerical simulations of
our model when the electrical synapses are sufficiently weak. In particular,
Equation (16) implies that:

σgap+inh
c > σ inh

c (17)

In contrast, when the electrical synapses do not synchronize, agap < 0
and σgap

c = 0. In this case, Equation (15) implies that:

σgap+inh
c < σ inh

c (18)

Therefore, in that case, the robustness is always smaller in the presence
of electrical synapses than when they are absent.

Figure 3. Electrical synapses and inhibitory synapses “sum” their syn-
chronizing effect. Left panels: raster plot representing the activity of 200
neurons from the network in the absence of noise. Right panels: raster plot in
the presence of noise; σ = 0.5 �A × ms1/2/cm2. (A) ggap = 0.001 mS/cm2;
ginh = 0. (B) ginh = 0.001 mS/cm2; ggap = 0. (C) ggap = 0.001 mS/cm2;
ginh = 0.001 mS/cm2. The average number of both types of synapses are
Kinh = Kgap = 50.
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Figure 4. Dendritic electrical synapses improve synchrony only when
combined with strong inhibition. Raster plot representing the activity of
200 neurons in the network in which the neurons interact via inhibition and
electrical synapses located on their dendrites. (A) ginh = 0, σ = 0. The initial
conditions are such that the neurons spike asynchronously. At a given time, a
transient pulse of current resets the state of all the neurons and synchronizes
their activity. Left panel: when ggap = 0 synchrony persists once the resetting
pulse is over. Right panel: when ggap = 0.02 mS/cm2, synchrony dies out in
less than 100 ms. (B) ginh = 0.002 mS/cm2, σ = 0.15 �A × ms1/2/cm2.
Left panel: ggap = 0; the network activity is synchronized. Right panel:
ggap = 0.02 mS/cm2; synchrony is suppressed. (C) ginh = 0.01 mS/cm2,
σ = 0.4 �A × ms1/2/cm2. Left panel: ggap = 0; the activity is asynchronous.
Right panel: ggap = 0.02 mS/cm2 ; the activity is now synchronized.

Equation (16) is not correct beyond the weak coupling limit. How-
ever, we expect that Equations (17) and (18) should still hold when
the interactions are not too large. An example is shown in Figure 3
when the electrical synapses located on the soma have a conductance
ggap = 0.001 mS/cm2 and an average connectivity, Kgap = 50, while
the maximal inhibitory conductance is ginh = 0.001 mS/cm2 with aver-
age connectivity Kinh = 50. The left panels of Figures 3A and 3B show
that in the absence of noise both type of synapses promote synchrony
(χgap

∞ ≈ 0.25, χinh
∞ ≈ 0.40) while the left panel in Figure 3C shows that

when the interactions are combined the degree of synchrony increases
(χgap+inh

∞ ≈ 0.55). The right panels in Figure 3 correspond to the case
where a substantial noise is present in the external input. Here, neither
electrical nor inhibitory synapses are sufficient to achieve synchronous
activity. However, synchrony occurs when they are combined.

Figure 4 corresponds to a case where the electrical synapses are
located on the dendrite and have a conductance ggap = 0.02 mS/cm2.
Such electrical synapses desynchronize the activity of the network. This is
shown in the right panel in Figure 4A which was obtained in simulations
where the neurons interact only via these dendritic electrical synapses
and in the absence of noise. For t < tpulse, the activity in the network
is asynchronous. At time tpulse, a strong transient pulse of external cur-
rent is applied to all the neurons in the network. This pulse resets the
states of the neurons which fire synchronously immediately after it, but
once the pulse is over synchrony is rapidly lost. This is in contrast with
what happens for completely decoupled neurons where synchronous fir-
ing does not decay after the transient (Figure 4A, left panel). Hence,
electrical synapses destroy synchrony in an “active way.” This stems

Figure 5. Inhibition dependent potentiation of the effect of electri-
cal synapses on synchrony. (A) σc vs. ggap for fixed ginh; squares:
ginh = 0.01 mS/cm2; circles: ginh = 0.002 mS/cm2. (B) σc vs. ginh for fixed
ggap = 0.02 mS/cm2 (squares) and ggap = 0 (circles); other parameters as in
Figure 2B; the external input is adjusted such that the average firing rate of
neurons is 40 Hz (when σ ≈ σc).

from the fact that the post-synaptic potentials (PSP) they induce is fil-
tered by the dendrite. When they reach the soma of the postsynaptic
cell the PSPs are broadened and delayed (Figure 1B). As a result, these
dendritic electrical synapses promote asynchronous firing, that is, they
stabilize the asynchronous state (Pfeuty et al., 2005; Saraga et al., 2006).
Adding these synapses to weak inhibition reduces the robustness of syn-
chrony as predicted by Equation (18). This is shown in Figure 4B for
ginh = 0.002 mS/cm2. In the absence of electrical synapses, the net-
work settles in a state of partial synchrony (left panel, χ∞ ≈ 0.2). When
electrical synapses (ggap = 0.02 mS/cm2) are also present, synchrony is
destroyed.

However, when inhibition is strong, a non-intuitive result is found. The
same electrical synapses can actually promote synchrony and improve its
robustness to noise. This is shown in Figure 4C for ginh = 0.01 mS/cm2.
When the neurons interact solely with inhibition, activity is asynchronous
because of the large amount of noise (Figure 4C, left panel). However, the
synchrony measure increases to χ∞ ≈ 0.35, when electrical synapses
are also present between the neurons (Figure 4C, right panel).

These results show that the effect of electrical synapses on synchrony
can be modulated by inhibition. This modulatory effect also appears
clearly in Figure 5A where σc is plotted as a function of ggap for two
values of ginh. For the lower value (ginh = 0.002 mS/cm2), σc(ggap)
is a decreasing function of ggap. In other words, in this case electrical
synapses impede synchrony as they do without inhibition. In contrast,
for ginh = 0.01 mS/cm2, σc(ggap) increases with ggap indicating that
strong enough inhibition impacts the effect of the electrical synapses
which now promote synchrony. To quantify further how this potentiation
of the synchronizing effect of electrical synapses depends on the inhibitory
conductance, we plot in Figure 5B the robustness σc as a function of ginh

for ggap = 0 and ggap = 0.02 mS/cm2. The electrical synapses reduce
the robustness of synchrony for ginh < 0.003 mS/cm2, but they increase
it for ginh larger than that value. In particular, although in the absence
of electrical synapses synchrony is impossible for ginh > 0.2 mS/cm2,
adding electrical synapses enlarges the synchrony domain up to ginh =
0.4 mS/cm2.
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Figure 6. The mechanism underlying the potentiation by inhibition of the
effect of electrical synapses on synchrony. The electrical coupling has
been modified so that it induces a current only if the membrane potential at
the presynaptic site is below a given threshold (V d

θ ) for dendritic coupling.
The synchrony is measured as a function of V d

θ for small and a large value of
the inhibitory conductance. Circles: ginh = 0.002 mS/cm2, squares: ginh =
0.01 mS/cm2. For each of these two values, the noise is adjusted so that
the network settles close to the transition to synchrony when ggap = 0 (see
Figure 2A). Also, for each values of ginh and V d

θ the external current is adjusted
to make neurons fire at 40 Hz. In the presence of weak inhibition, χ∞ varies
non-monotonously with V d

θ and vanishes for V d
θ = −40 mV. In contrast, in

the presence of strong inhibition, χ∞ grows monotonously and subsequently
saturates.

The mechanism underlying the inhibitory dependent potentiation
of the synchronizing properties of electrical synapses
To analyze further the mechanism behind this cooperative interplay
between electrical and inhibitory synapses, let us consider two neurons A
and B coupled reciprocally by an electrical synapse. The effect of neuron
A on the timing of the firing of neuron B can be qualitatively split into two
contributions. One contribution is due to the synaptic current when the
membrane potential of neuron A is subthreshold. The other contribution
comes from the action potentials fired by A which induces spikelets in B.
As shown by Pfeuty et al. (2003), although the first contribution helps the
two neurons to fire in synchrony, the interaction mediated by the spikelets
favors or opposes synchrony depending on the location of the synapse
(proximal or distal to the soma) and on the intrinsic properties of the neu-
rons. The overall interaction promotes or impedes synchrony of the two
neurons depending on the balance between these two contributions. The
threshold and the suprathreshold contributions can be estimated in our
model. To this end, we modified the electrical coupling between the two
neurons in such a way that there is a current only if the voltage of A is
below a value Vθ at the site of the synapse.

Figure 6 depicts for two values of ginh how, in the presence of dendritic
electrical synapses, χ∞ changes as V d

θ varies from −65 to −40 mV. In
order to compare the effect of electrical synapses for similar levels of
synchrony, the noise was set to the value σc associated with these two
values of inhibitory conductances. In the presence of weak inhibition,
χ∞ is very small when V d

θ ≈ −65 mV. This is because the dendritic
membrane potential of a neuron is always larger than its resting potential
and, therefore, there is no synaptic current due to the electrical coupling.
As V d

θ increases, χ∞ increases because the slow subthreshold component
of the interaction becomes more effective. However, when V d

θ ≈ −50 mV,
χ∞ reaches a maximum and begins to decrease to zero. This is because
the fast suprathreshold component of the interaction is now transmitted
via the electrical synapses and it impedes synchrony. In contrast, when
inhibition is strong, χ∞ does not decrease beyond V d

θ = −50 mV. This
means that the desynchronizing effect of the suprathreshold component
of the electrical interaction is suppressed.

This analysis clarifies the mechanism by which inhibition modu-
lates how electrical synapses affect synchrony. Strong enough inhibition

Figure 7. When inhibition is strong, dendritic electrical synapses extend
the stability domain of synchrony to low neuronal firing rates. The con-
ductance of inhibitory synapses is fixed at ginh = 0.1 mS/cm2. (A) σc vs.
the average firing rate of the neurons. Circles: ggap = 0. squares: ggap =
0.02 mS/cm2; the firing rate is varied by changing Iext. (B) Raster plot, pop-
ulation average membrane potential and trace of the membrane potential of
one neuron in the network in the absence of dendritic electrical synapses
(ggap = 0). (C) Same as in B but when the electrical synapses are present. In
B and C, Iext = 2 �A/cm2 and σ = 0.5 �A × ms1/2/cm2.

suppresses the possible desynchronizing effect of the spikelets. As a
consequence, in the presence of sufficiently strong inhibition, electrical
synapses will always increase the robustness of synchronous firing.

Enhancement of stochastic synchrony at low firing rates by
dendritic electrical synapses
Stochastic synchronous oscillations occur in networks of randomly con-
nected inhibitory neurons in the strong coupling regime. However, their
fragility increases when external input and, concomitantly, the average
firing rate of the neurons are low. Here, we show that electrical synapses
enlarge the range of firing rate where stochastic synchrony is stable even
if, when alone, they promote asynchronous firing.

The results depicted in Figure 7 were obtained with ginh =
0.1 mS/cm2 which corresponds to an IPSP amplitude of ≈ 0.9 mV.
Figure 7A shows how σc varies as a function of the average firing rate of
the neurons (controlled by changing the external current). In the absence
of electrical synapses (circles in Figure 7A), synchrony is much less robust
at low firing rates than at large firing rates. As a matter of fact, synchrony
occurs only if the average firing rate is above 25 Hz. Adding electrical
synapses with ggap = 0.02 mS/cm2 extends the range of firing rates for
which synchrony is possible (squares in Figure 7A). This effect of the
electrical synapses is also shown in Figures 7B and 7C where the aver-
age firing rate of the neurons is about 11 Hz. The raster plot indicates
that, with inhibition alone, the activity is asynchronous (left panel). In the
presence of electrical synapses (ggap = 0.02 mS/cm2), the network, in
contrast, displays synchronous oscillations (χ∞ ≈ 0.54) at a frequency
≈ 40 Hz whereas the neurons fire irregularly (CV ≈ 0.7) at an average
firing rate that is four times smaller.

The phase diagram of the network is plotted in Figure 8 as a function of
ginh and the average population firing rate when the neurons interact solely
via inhibition (Panel A) or via inhibition and dendritic electrical synapses
(Panel B). The average population firing rates were varied by changing Iext

with a fixed noise level (σ = 0.5 �A × ms1/2/cm2). In the white region,
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Figure 8. The state of the network as a function of the average firing
rate of the neurons and the inhibitory conductance. Population activity
oscillations are found in the colored region only. In the white region, the
asynchronous state is stable. In the two panels, σ = 0.5 �A × ms1/2/cm2.
(A) Phase diagram when ggap = 0. The network displays synchronous activity
with a frequency of population oscillations in the γ range only when the
average firing rate of the neurons is larger than 35 Hz. (B) Phase diagram
in the presence of dendritic electrical synapses. The domain of oscillations
extends up to the low activity region.

the asynchronous state is stable. In the colored region, it is unstable and
the network settles in a state of synchronous oscillations at a frequency
indicated by the color code. Without electrical synapses, the averaging
firing is larger than 30 Hz and the frequencies of the network oscillations
larger than 60 Hz. When the dendritic electrical synapses are present, the
domain of stability of the collective oscillations extended toward much
lower firing and network oscillations frequencies. Note that when the
two types of synapses are present, collective oscillations at frequencies
around 30–40 Hz occur in a broad range of inhibitory conductances
(0.008–0.5 mS/cm2) even if the individual firing rates are as low as
8 Hz.

DISCUSSION
Inhibitory synapses potentiate the synchronization properties of
gap junctions
Recent theoretical works have shown that, depending on the intrinsic prop-
erties of neurons, the firing frequency of neurons, the location of synapses
or the sparseness of the network, electrical synapses can destroy the
synchrony of neuronal activity rather than promoting it (Chow and Kopell,
2000; Lewis and Rinzel, 2003; Pfeuty et al., 2003, 2005; Saraga et al.,
2006). The present work shows that electrical synapses become less
versatile when the neurons also interact via inhibition, as they always pro-
mote synchrony. This is because of a modulatory effect of inhibition which
“renormalizes” the synchronization properties of electrical synapses. This
effect was depicted here in the case of distal electrical synapses which
when alone are desynchronizing. We found that this is significant for spike-
to-spike synchrony as well as for stochastic synchrony. Similar modulatory
effects occur when the electrical synapses are desynchronizing because
of the intrinsic properties of the neurons or because their connectivity
is too sparse. In all these cases, sufficiently strong inhibition can switch
the electrical synapses from being desynchronizing to synchronizing. It
should be noted that inhibition also potentiates the synchronizing effect
of electrical synapses which, when alone, are already synchronizing. In

this case, the function σc(ggap) increases more rapidly with ggap when the
inhibition is strong than when it is weak.

Comparison with previous works
Our paper focuses on the dynamics of large networks of neurons in the
case where inhibition promotes synchrony of the neurons. This contrasts
with previous theoretical studies which investigated the dynamics of pairs
of neurons coupled by both electrical and inhibitory synapses in the case
the inhibitory interaction promotes anti-phase locking (Bem and Rinzel,
2004; Nomura et al., 2003; Pfeuty et al., 2005). Those works showed
that electrical synapses promoting synchrony were able to improve the
stability of the in-phase locking state and, concomitantly, to induce bista-
bility between in-phase and anti-phase locking. However, the effect these
authors studied was not cooperative since the degree of synchronization
(e.g., measured as the amplitude of the cross-correlogram peak) with
combined synapses was always between those occuring when one or the
other type of synapses were alone. Similar results have been obtained in
experiments via dual recordings in layer IV cortical interneurons (Gibson
et al., 2005), layer I interneurons (Merriam et al., 2005), and snail neurons
(Bem et al., 2005).

Kopell and Ermentrout (2004) studied the interplay between electrical
and inhibitory synapses. They assumed that the inhibition is sufficiently
strong to reset the state of the neurons and to synchronize their action
potentials over one cycle. However, in the presence of noise and het-
erogeneities, strong inhibition also induces suppression of the activity of
part of the neurons impeding synchrony. Kopell and Ermentrout showed
that electrical synapses can hold the subthreshold voltages of the neu-
ron close together between action potentials. This reduces the effect of
the heterogeneities and makes the synchrony induced by inhibition more
robust. This effect is different from the effect we have found which is
an inhibitory-induced modulation of the synchronization properties of the
electrical synapses.

Several modeling studies have emphasized the importance of com-
bining electrical and inhibitory synapses to achieve strong and robust
synchronization in simulations of large neuronal networks (Bartos et al.,
2002; Traub et al., 2001). However, the precise mechanisms by which
electrical synapses contribute to the synchrony in the simulations per-
formed was not analyzed in these papers.

Physiological relevance of the cooperative interplay between
electrical and inhibitory synapses
Experimental studies in neocortical and hippocampal preparations have
revealed that both electrical and inhibitory synapses are often required to
generate synchrony of firing. This has been shown in large ensemble of
neurons in vitro (Blatow et al., 2003; Hormuzdi et al., 2001; LeBeau et al.,
2002; Traub et al., 2001) as well as in pairs of neurons (Szabadics et al.,
2001; Tamas et al., 2000). Our results showing that electrical synapses
combined with inhibition improve the robustness of synchrony in a way
which, to a large extent, does not depend on their location, is in line with
these experimental results.

It has been proposed that fast synchronous rhythmic episodes in the γ

range (30–100 Hz) observed in cortex and hippocampus, in vivo or in vitro,
are generated within local networks of GABAergic inhibitory interneurons
(Bartos et al., 2007; Wang and Buzsáki, 1996; Whittington et al., 1995).
Although in γ-oscillations found in slice preparations, interneurons are
likely to fire about one action potential per cycle of the rhythm (Cunningham
et al., 2003), recent experiments indicate that in γ-oscillations observed
in vivo during specific behavioral states, GABAergic interneurons fire in a
more sparse and irregular way, with a probability of firing per cycle which is
between 0.1 and 0.6 (Csicsvari et al., 1999; Tukker et al., 2007). These two
modes of synchrony are reminiscent of the two regimes described above,
namely spike-to-spike synchrony and stochastic synchrony (Subsection
The robustness of synchrony solely with inhibitory interactions). Our results
suggest that electrical synapses are especially necessary in this latter
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mode of synchronization which would not be stable otherwise because of
the low level of activity of the neurons.
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