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neuronal functional connectivities (Shlens et al., 2006; Yu et al., 
2008). These models are the simplest parametric models that can 
be used to describe correlated neuronal fi ring. To build them one 
only needs the knowledge of the distribution of spike probability 
over pairs of neurons, and, therefore, these models can be fi t using 
reasonable amounts of data. When dealing with statistical models, 
there are two main questions that one needs to answer. The fi rst 
question is the inference question, i.e. how one can fi nd the best 
parameters for the model given the data. The second question is the 
question of model quality, i.e. once the best parameters are found, 
how good the fi tted model is for describing the statistics of the data. 
These questions can be naturally studied in the framework provided 
by statistical physics. Starting from a probability distribution over 
the states of a number of elements, statistical physics deals with 
computing quantities such as correlation functions, entropy, free 
energy, energy minima, etc., through exact or carefully developed 
approximate methods. It allows one to give quantitative answers to 
questions such as: what is the entropy difference between real data 
and the parametric model? Is there a closed-form equation relating 
model parameters to the correlation functions? How well does a 
pairwise model approximate higher order statistics of the data?

This paper has three main purposes: (a) to provide a summary of 
the previous results, derived using statistical physics, on the param-
eter inference and quality of pairwise models, (b) to study how the 
choice of the time bin size affects the inference and model quality 
problems and, (c) to report new and somewhat simpler derivations 
of our previous results.

In building binary pairwise models a crucial step is binning the 
spike trains into small time bins and assigning −1 or 1 to each bin 
depending on whether there is a spike in it or not. The answers to 

INTRODUCTION
In biological networks the collective dynamics of thousands to mil-
lions of interacting elements, generating complicated spatiotem-
poral structures, is fundamental for the function. Until recently, 
our understanding of these structures was severely limited by 
technical diffi culties for simultaneous measurements from a large 
number of elements. Recent technical developments, however, are 
making it more and more common that experimentalists record 
data from larger and larger parts of the system. A living example 
of this story is what is now happening in Neuroscience. Until a 
few years ago, neurophysiology meant recording from a handful of 
neurons at a time when studying early stages of sensory processing 
(e.g. the retina), and only single neurons when studying advanced 
cortical areas (e.g. inferotemporal cortex). This limit is now rap-
idly going away, and people are collecting data from larger and 
larger populations (see e.g. the contributions in Nicolelis, 2007). 
However, such data will not help us understand the system per se. 
It will only give us large collections of numbers, and most prob-
ably we will have the same problem that we had with the system, 
but now with the data set: we can only look at small parts of it 
at a time, without really making use of its collective structures. 
To use such data and make sense of it we need to fi nd systematic 
ways to build mathematically tractable descriptions of the data, 
descriptions with lower dimensionality than the data itself, but 
involving relevant dimensions.

In recent years, binary pairwise models have attracted a lot of 
attention as parametric models for studying the statistics of spike 
trains of neuronal populations (Schneidman et al., 2006; Shlens 
et al., 2006, 2009; Tang et al., 2008; Roudi et al., 2009a,b), the sta-
tistics of natural images (Bethge and Berens, 2008), and inferring 
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the inference and model quality problems may thus be affected 
by the choice of this time bin size. In what follows, we fi rst deal 
with the effect of the size of the time bin on the answer of the 
inference question. We review a number of approximate meth-
ods described in Roudi et al. (2009b) for inferring the parameters 
of the pairwise model and study how their quality depends on 
the choice of the bin size. We also describe a new approximation, 
the independent-triplet (IT) approximation, as an extension to 
the independent-pair (IP) approximation described in Roudi et al. 
(2009b). We show that although IT slightly outperforms IP, it can-
not beat the more powerful approximations that we describe, i.e. 
the Thouless–Anderson–Palmer (TAP) inversion, and the Sessak–
Monasson (SM) approximation. We also derive the TAP inversion 
approximation from the celebrated Belief Propagation algorithm. 
After this, we study the effect of the size of the time bin on the 
answer to the model quality question. This issue has been studied 
analytically in Roudi et al. (2009a), using a perturbative expansion. 
They derived equations for the difference between the entropies 
of the pairwise model and the true distribution of the data, as 
well as between an independent-neuron model and the data, when 
N tνδ → 0 (the so called “perturbative regime” or the “low-rate 
regime”). Here, N is the number of neurons, ν is the average fi r-
ing rate and δt is the size of the time bin. They concluded that the 
quality of the pairwise model increases by decreasing δt or N. In 
this paper, we confi rm these analytical results on data generated 
from a model cortical network.

A crucial step in the derivation of entropy differences in Roudi 
et al. (2009a) was to express the pairwise distribution in the so called 
Sarmanov–Lancaster representation (Lancaster, 1958; Sarmanov, 
1963). Here we show that one can derive the same expressions 
by approximating the partition function of a Gibbs distribution 
(Eq. 2 in Section “The Binary Pairwise Model”). In addition to 
recovering the low-rate expansion of the entropies, we use the 
results to fi nd the difference between the probability of synchro-
nous spikes according to the true distribution, the pairwise model 
and the independent model. We also show that one can derive the 
results of Roudi et al. (2009a) by extending the idea behind the IP 
approximation to triplets of neuron, i.e. the IT approximation. By 
taking the limit ν

i
δt → 0 of the IT approximation to the entropy 

of a given distribution, where ν
i
 is the fi ring rate of the ith neuron, 

we show that the results of Roudi et al. (2009a) can be recovered 
in a considerably simpler way.

In the last part of the paper, we discuss two possible extensions 
of the binary pairwise models and mention a number of impor-
tant questions that they raise. We fi rst describe the extensions to 
non-binary variables useful for studying the statistics of modular 
models of cortical networks. We then describe an extension of the 
pairwise model to a model with asymmetric connections which 
gives promising results for discovering the synaptic connectivity 
from neural spike trains.

THE BINARY PAIRWISE MODEL
In a binary pairwise model, starting from the spikes recorded 
from N neurons, one fi rst divides the spike trains into small time 
bins. One then builds a binary representation of the spike trains 
by assigning a binary spin variable s

i
(t) to each neuron i and each 

time bin t, with s
i
(t) = −1 if neuron i has not emitted any spikes 

in that time bin, and s
i
(t) = −1 if it has emitted one spike or more. 

From this binary representation, the mean values and correlations 
between the neurons are computed as
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where T is the total number of time bins.
The binary pairwise model of the data is then built by consid-

ering the following distribution over a set of N binary variable 
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and choosing the parameters, h
i
 and J

ij
 such that the mean values 

and pairwise correlations under this distribution matches those of 
the data defi ned in Eq. 1, that is
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Following statistical physics terminology, the parameters h
i
 are 

usually called the external fi elds and J
ij
, the pairwise couplings or 

pairwise interactions. One important property of the pairwise dis-
tributions in Eq. 2 is that it has the maximum amount of entropy 
among all the distribution that have the same mean and pairwise 
correlations as the data, and it is thus usually called the maximum 
entropy pairwise model. It is also called the Ising model, in accord-
ance with the Ising model introduced in statistical physics as a 
simple model of magnetic materials.

Although typically written in terms of ±1 spin variables, it is 
sometimes useful to write the pairwise distribution of Eq. 2 in terms 
of Boolean variables r

i
 = (s

i
 + 1)/2. In the rest of the paper, we some-

times use such Boolean representation as some of the calculations 
and equations become considerably simpler in this representation. 
We denote the external fi elds and the couplings in the Boolean 
representations by H

i
 and J

ij
.

The external fi elds and pairwise couplings can be found using 
both exact and approximate methods as discussed in details in 
Roudi et al. (2009b) and reviewed briefl y in the following sections. 
Before reviewing these methods, we fi rst review the experimental 
studies that have used the maximum entropy pairwise model to 
study the statistics of spike trains.

REVIEW OF EXPERIMENTAL RESULTS
The maximum entropy pairwise model as a model for describing 
the statistics of neural fi ring patterns was introduced in Schneidman 
et al. (2006) and Shlens et al. (2006). This work used the Ising model 
to study the response of retinal ganglion cells to natural movies 
(Schneidman et al., 2006), steady spatially uniform illumination 
and white noise (Shlens et al., 2006), as well as the spontaneous 
activity of cultured cortical networks (Schneidman et al., 2006). 
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The main goal of these studies was to fi nd out how close the fi tted 
pairwise model is to the true experimentally computed distribu-
tion over s.

As a measure of distance, these studies compared the entropy 
difference between the true distribution and the pairwise model 
and compared it with the entropy difference between the true dis-
tribution and an independent model. The independent model is 
a distribution that has the same mean as the data but assumes the 
fi ring of each neuron is independent from the rest, i.e.

p s s
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The measure of misfi t can thus be defi ned as

Δ =
−
−

,
S S

S S
pair true

ind true  
(5)

where the overline indicates averaging with respect to many sam-
ples of N neurons. The results of Schneidman et al. (2006) showed 
that for populations of size N = 10 or so, Δ was around 0.1. In 
other words, in terms of entropy difference, the pairwise model 
offered a ten fold improvement over the independent model. In 
the other study, Shlens et al. (2006) found Δ ∼ 0.01 for N = 7. 
These authors also considered a slightly different model in which 
only the pairwise correlation between the adjacent cells was used 
in the fi t, and correspondingly the pairwise interactions between 
non-adjacent cells were set to 0. The results showed that this adja-
cent pairwise model also performed very well, with Δ ∼ 0.02 on 
average. It is important to note that in Schneidman et al. (2006) 
the stimulus induced long range correlations between cells, 
while in the data studied Shlens et al. the correlations extended 
only to nearby cells. Following these studies, Tang et al. (2008) 
reproduced these observations to a large extent in other cortical 
preparations and also concluded that the pairwise model can 
successfully approximate the multi-neuron fi ring patterns. In a 
very recent study (Shlens et al., 2009), Shlens et al. extended their 
previous analysis to population of up to 100 neurons concluding 
that the adjacent pairwise model performs very well even in this 
case, with Δ ∼ 0.01–0.02. The studies of Shlens et al. were done 
without stimulation or with white noise stimulus, situations in 
which neurons do not exhibit strong long range correlations. It is 
still unclear, from the existing experimental data, how the pairwise 
models of large size. (not necessarily adjacent) will perform for 
cases in which neuronal correlations exist between neurons sepa-
rated by large distance, i.e. when stimulated by natural scenes.

The assumption that Δ is a good measure of distance rests upon 
the assumption that we are interested in fi nding out how differ-
ent the true and model distributions are over the whole space of 
possible spike patterns. This can be appreciated when we note 
that the defi nition in Eq. 5 is equivalent to Δ = D

KL
(p

true
 || p

pair
)/

D
KL

(p
true

 || p
ind

), where D
KL

(p || q) is the Kullback–Leibler divergence 

between two distributions p(s) and q(s) defi ned as D
KL

(p || q) = 
Σ

s
 p(s)log[p(s)/q(s)]. Using this observation, we can think of Δ 

as a weighted sum of the difference between the log probability 
of states according to the true distribution and according to the 
model distribution normalized by the distance to the independ-
ent model. Of course, we may not be interested in fi nding how 
different the two distributions are over the space of all possible 
states, but only how differently the model and true distributions 
assign probabilities to a subset of important states. For instance, 
in a particular setting, it may be important only to build a good 
model for the probability of all states in which some large number 
of neurons M fi re simultaneously (i.e. when Σ

i
r

i
 = M), regardless 

of how different the two distribution are on the rest of the states. 
It was found in Tkacik et al. (2006) that the pairwise model offers 
a signifi cant improvement over the independent model in model-
ling the experimental probability of synchronous multi-neuron 
fi ring of up to N = 15 neurons.

APPROXIMATIONS FOR FITTING BINARY PAIRWISE MODELS
The commonly used Boltzmann Learning algorithm for fi tting 
the parameters of the Ising model is a very slow process, par-
ticularly for large N. Although effort has been made to speed 
up the Boltzmann learning algorithm (Broderick et al., 2007), 
such modifi ed Boltzmann algorithms still require many gradi-
ent descent steps and long Monte Carlo runs for each step. This 
fact motivates the development of fast techniques for calculating 
the model parameters which do not rely on gradient descent or 
Monte Carlo sampling. A number of such approximations have 
been studied in Roudi et al. (2009b). In what follows we describe 
these approximations, and in particular the relation between the 
simpler approximations [naive mean-fi eld (nMF) approxima-
tion and the IP approximation] to the more advanced ones (TAP 
approximation and SM approximation).

NAIVE MEAN-FIELD APPROXIMATION AND THE INDEPENDENT-PAIR 
APPROXIMATIONS
The simplest method (Kappen and Rodriguez, 1998; Tanaka, 1998) 
for fi nding the parameters of the Ising models from the data uses 
mean-fi eld theory:

tanh− ∑ ,1m h J mi i
j

ij j= +
 

(6)

where m
i
 = 〈s

i
〉

data
. These equations express the effective fi eld that 

determines the magnetization m
i
 as the external fi eld plus the 

sum of the infl uences of other spins through their average values 
m

j
, weighted by the couplings J

ij
. Differentiating with respect to a 

magnetization m
j
 gives the inverse susceptibility (i.e. inverse cor-

relation) matrix

( )C− = −1
ij ijJ

 
(7)

for i ≠ j, where C
ij
 = 〈s

i
s

j
〉

data
 − m

i
m

j
. Thus, if one knows the mean 

values m
i
 and correlations C

ij
 of the data, one can use Eq. 7 to fi nd 

the J
ij
 and then solve Eq. 6 to fi nd the h

i
. We call this approxima-

tion “naive” mean-fi eld theory (abbreviated nMFT) to distinguish 
it from the TAP approximation described below, which is also a 
mean-fi eld theory.



Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 22 | 4

Roudi et al. Statistical physics of pairwise probability models

In the IP approximation, one solves the two-spin problem for 
neurons i and j, ignoring the rest of the network. This yields the 
following expressions for the parameters in terms of the mean 
values and correlations:

J
m m C m m C

m m
ij

i j ij i j ij

i j

IP =
+( ) +( ) +( ) −( ) −( ) +( )
−( ) +(
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where hi
j is the external fi eld acting on i when it is considered in 

a pair with j. It has been noted in Roudi et al. (2009b) that in the 
limit m

i
 → −1 and m

j
 → −1, Jij

IP matches the leading order of the 
low-rate expansion derived in Roudi et al. (2009a).

Although the couplings found in the IP approximation can be 
directly used as an approximation to the true values of J

ij
, relat-

ing the fi elds h j
i  found from the IP approximation to those of the 

model is slightly tricky. The reason is that the expression we fi nd 
depends on which j we took to pair with neuron i. It is natural to 
think that we can sum h j

i  over j, i.e. over all possible pairings of 
cell i, to fi nd the Ising model parameter h

i
. In doing so, however, 

we should be careful. The expression in Eq. 8b has two types of 
terms, those that only depend on i, i.e. the fi rst term in the fol-
lowing decomposition, and those that involve j, i.e. the second 
and third terms below
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The fi rst terms is the fi eld that would have been acting on i if it 
were not connected to any other neuron, and the rest are contribu-
tions from interactions with j. By simply summing hi

j over j, we will 
be overcounting this term, once for each pairing. In other words, 
the correct IP approximation for h

i
 will be
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Although simple in its derivation and intuition, in the limit 
m

i
 → −1 for all i, Eq. 10 recovers both the leading term and the fi rst 

order corrections of the low-rate expansion, as shown in Section 
“The Independent-pair Approximation for the External Fields in 
the Limit δ → 0” in Appendix.

The simple nMF and IP approximations have been shown to 
perform well in deriving the parameters of the Ising model when 
the population size is small.

In Roudi et al. (2009b), we showed that for data binned at 10 ms, 
the nMF and the IP approximations perform well in deriving the 
parameters of the Ising model when the population size is small. 
In Figure 1 we extend this study and evaluate how the quality of 
these approximations depend on the size of the time bin, δt. In 
this fi gure, we plot the R2 value between the couplings found from 
nMFT and IP approximations and the results of long Boltzmann 

runs as a function of the time bin chosen to bin the data. Denoting 
the couplings found using the approximations and the Boltzmann 
learning by Jij

approx and Jij
Boltzmann , respectively, the R2 is defi ned as

R

J J

J J

ij ij
ij

ij ij

2

2

1= −
−( )
−

∑ approx Boltzmann

Boltzmann Boltzmann(( )∑
2

ij

,

where J N N Jij i j ij
Boltzmann Boltzmann= <[ ( )] .− ∑−1 1  The quality of the 

approximations in Figure 1 is shown for both N = 40 and 100. The 
simulations used to generate the spike trains and the Boltzmann 
learning procedure used in this fi gure are the same as those reported 
in Roudi et al. (2009b). Briefl y, the simulated a cortical network 
was composed of two recurrent, interacting populations of neu-
rons, one excitatory and the other inhibitory. Each neuron had 
10% probability of receiving input from every other neuron in 
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FIGURE 1 | The quality of various approximations for different time bins 

and populations sizes. Here we plot the R2 values between the couplings 
obtained using various approximate methods and those found from 
Boltzmann learning versus δt (A) N = 40 and (B) N = 100. In both panel the 
colour code is as follows. Black, SM; Red, TAP; Blue, SM–TAP hybrid; Green, 
nMFT; Cyan, IP; Magenta low-rate limit of IP; Cyan with dashed line, IT; 
Magenta dashed lines, low rate limit of IT. For both population sizes and all 
time bins, the TAP, SM and hybrid approximations perform very well.
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the  populations. The single neurons had Hodgkin–Huxley spike 
generation mechanisms, and we used conductance based synapses. 
Although we used the same network, the data used here had two 
main differences with those used in Roudi et al. (2009b). The fi rst 
one is that here we use more gradient descent steps and longer 
Monte Carlo runs, namely, 60000 gradient descent steps and 40000 
Monte Carlo steps per gradient descent step. The second one is 
that here we use 10000 s worth of data for estimating the mean 
values and correlations. This is 2.5 times larger than what we used 
before. Both of these improvements were made to ensure reliable 
estimates of the parameters, as well as the mean values and cor-
relations, particularly for fi ne time bins. As can be seen in Figure 1, 
increasing either N or δt results in a decay in the quality of the IP 
approximation, as well as its low-rate limit. For the case of nMFT, a 
reasonable performance is observed only for δt = 2 ms and N = 40. 
For large population sizes and/or time bins nMFT is a bad approxi-
mation. Given the strong dependence of the quality of these simple 
approximations on population size and the size of the time bin, 
we describe below how one can extend these approximations to 
obtain more accurate expressions for fi nding the external fi elds 
and couplings of the pairwise model for large N and δt.

EXTENDING THE INDEPENDENT-PAIR APPROXIMATION
Extending the IP approximation is in principle straightforward. 
Instead of solving the problem of two isolated spins, we can 
solve the problem of three spins, i, j and k as shown in Section 
“Independent-triplet Approximation” in Appendix. This will lead 
to the IT approximation. In Figure 1, we show the quality of the 
IT approximation for fi nding the couplings as compared to the 
Boltzmann solutions. For N = 40, we see that the IT approxima-
tion provides an improvement over IP for different values of δt. In 
Figure 1, we also looked at the quality of the low rate limit of the IT 
approximation. In Section “Independent-triplet Approximation” in 
Appendix we show that, in the same way that the low rate limit of 
the IP approximation gives us the leading order terms of the low-
rate expansion in Roudi et al. (2009a), the low rate limit of the IT 
approximation gives us the fi rst order corrections to it. For N = 40, 
this is evident in the fact that the low-rate limit of IT outperforms 
the low-rate limit of IP for δt ≤ 15 ms. When the population size 
is large, however, IT and its low rate limit outperform IP for only 
very fi ne time bins. Even for δt = 4 ms, IP and IT and their low rate 
limits perform very bad.

One can of course build on the idea of the IP and IT approxima-
tions and consider n = 4, 5,…spins. However, for any large value 
of n, this will be impractical and computationally expensive, for 
the following reason. As described in Section “Independent-triplet 
Approximation” in Appendix for the case of the IT approximation, 
there are two steps in building an independent-n-spin approxi-
mation. The fi rst one is to express the probability of each of the 
2n possible states of a set of n spins in terms of the mean values 
and correlations of these spins. This requires inverting the 2n × 2n 
matrix. The second step, which is only present for n ≥ 3, is to express 
all correlation functions in terms of the mean values and pairwise 
correlations. Both of these steps become exponentially hard as 
n grows. Nonetheless, as shown in Section “Independent-triplet 
Approximation” in Appendix, even going to the triplet level can 
be a very useful exercise, as it offers a new way of computing the 

 difference between the entropy of the true model and that of the 
independent model (Eq. 15a in Section “Entropy Difference”) as 
well as the difference between the entropy of the true model and that 
of the pairwise model (Eq. 15b in Section “Entropy Difference”). 
This derivation is considerably simpler than the original derivation 
of these equations based on the Sarmanov–Lancaster representation 
of the probability distribution described in Roudi et al. (2009a) as 
well as the derivations in Section “The Partition Function, Entropy 
and Moments of a Gibbs Distribution in the Limit Nδ → 0” in 
Appendix, in which one starts by expanding the partition func-
tion of a Gibbs distribution. Furthermore, the IT approximation 
also yields a relation between the couplings and the mean values 
and pairwise correlations that coincides with leading term and 
the corrections found by low-rate expansion, as shown in Section 
“Independent-triplet Approximation” in Appendix.

EXTENDING THE NAIVE MEAN-FIELD: TAP EQUATIONS
The nMF, IP and IT approximations are good for fi tting the model 
parameters when the typical number of spikes generated by the 
whole population in a time bin is small compared to 1, i.e. when 
Nδ � 1 (Roudi et al., 2009a,b), in which

δ ≡ = +∑ ∑1 1 1

2N
t

N

m

i
i

i

iν δ
 

(11)

For large and/or high fi ring rate populations, however, such 
approximations perform poorly for inferring the model parameters. 
It is possible to make simple corrections to the nMF approximation 
such that the resulting approximation performs well even for large 
populations. This is the so called TAP approximation (Thouless 
et al., 1977). The idea dates back to Onsager, who added correc-
tions to the nMF approximation, taking into account the effect of 
the magnetization of a spin i on itself via its infl uence on another 
spin j. Subsequently, it was shown that the resulting expression was 
exact for infi nite-range spin-glass models (Thouless et al., 1977). 
The TAP equations are

tanh−

≠ ≠

= + − −( ).∑ ∑1 2 21m h J m J m mi i
j i

ij j
j i

ij i j

 

(12)

Differentiation with respect to m
j
 then gives (i ≠ j)

C−( ) = − −1 22ij ij i j ijJ m m J
 

(13)

One can solve Eq. 13 for the J
ij
 and, after substituting the result 

in Eq. 12, solve Eq. 12 for the h
i
 (Kappen and Rodriguez, 1998; 

Tanaka, 1998).
There are several ways to derive this expression for the pair-

wise distribution Eq. 2. In Section “Derivation of TAP Equations 
from Belief Propagation” in Appendix, we show that these equa-
tions can also be derived from the celebrated Belief Propagation 
algorithm used in combinatorial optimization theory (Mezard 
and Montanari, 2009). When applied to spike trains from popu-
lations of up to 200 neurons, the inversion of TAP equations was 
shown to give remarkably accurate results (Roudi et al., 2009b) 
for fi tting the pairwise model. In Figure 2, we show scatter plots 
comparing the couplings found by the TAP approximation versus 
the Boltzmann results for N = 100 and δt = 2, 10, 32 ms. The TAP 
approximations does well in all cases, and this is quantifi ed in 
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Figure 1. In Figure 1, we demonstrate the power of inverting the 
TAP equations for inferring the couplings for various time bins 
for both N = 40 and 100.

SESSAK–MONASSON APPROXIMATION
Most recently, Sessak and Monasson (2009) developed a pertur-
bative expansion expressing the fi elds and couplings of the Ising 
distribution as a series expansion in the pairwise correlation func-
tions C

ij
. Some of the terms of the expression they found for the 

couplings could be summed up. It was noted in Roudi et al. (2009b), 
that one can think of the resulting expression as a combination of 
the nMF approximation and the IP approximation. The SM result 
can be written as

J C J
C

m m C
ij ij ij

ij

i j ij

SM IP= −( ) + −
−( ) −( ) − ( )

−1

2 2 2
1 1

,

 

(14)

The reason why the last terms should be subtracted is discussed 
below.

Let us consider two neurons connected to each other. In the IP 
approximation we calculate the fi elds and couplings for this pair 
exactly within the assumption that they do not affect the rest of the 
network and vice versa. If we were to fi nd the coupling between this 
pair of neurons using the nMF approximation Eq. 7, the result would 
just be the last term in Eq. 14. The reason why we should subtract 
it is now clear: the fi rst term in Eq. 14 includes an nMF solution to 
the pair problem. We subtract this part and replace it by the exact 
solution of the pair problem. Figure 1 shows that this result is very 
robust to changing δt, although for N = 100, we can note a small 
decay in R2 with δt. The good performance of the SM approximation 
can be also seen in the scatter plots shown for N = 100 in Figure 2. 
These observations support the SM approximation as a very pow-
erful way of inferring the functional connections. Following the 
observation made in Roudi et al. (2009a), in Figure 1, we also show 
how a simple averaging of the best approximate methods, i.e. TAP 
inversion and SM can provide a very accurate approximation to the 
couplings across different time bin and population sizes.

ASSESSMENT OF MODEL QUALITY
The experimental result that the binary pairwise models provide 
very good models for the statistics of spike trains is very intrigu-
ing. However, the message they carry about the architecture and 
function of the nervous system is not clear. This is largely due 
to the fact that, as reviewed in Section “Review of Experimental 
Results,” the experimental studies were conducted on populations 
of small number of neurons (N ∼ 10) and their implications on the 
real sized system are not trivial. Is it the case that observing a very 
good pairwise model on a subsystem of a large system constrains 
the structure and function of the real sized network? Does it mean 
that there is something unique about the role of pairwise interac-
tions in the real sized system? Answering this question depends to a 
large extent on answering the extrapolation problem: to what degree 
the experimentally reported success of pairwise models holds for 
the real sized system? In what follows, we discuss some theoretical 
results that bear on this question.

ENTROPY DIFFERENCE
The extrapolation problem was fi rst addressed in Roudi et al. 
(2009a) by analysing the dependence of the misfi t measure Δ 
(defi ned in Eq. 5) on N. The authors considered an arbitrary true 
distribution and computed the KL divergence between this distri-
bution and an independent-neuron model as well as between it and 
the pairwise model. This was done using a perturbative expansion 
in Nδ << 1, where δ is defi ned in Eq. 11. The results were the fol-
lowing equations:

D p p S S N N NKL( ) ( ) ( )|| = − = − +ind ind true indg 1 2 3δ δO  (15a)

D p p S S

N N N N

KL( )

( )( ) (( )

|| = −

= − − +
pair pair true

pairg 1 2 3 4δ δO
 

(15b)

where g
ind

 and g
pair

 are constants that do not depend on N or δt 
and are defi ned in Eqs. 36a and 38a. Using these expressions for 
the KL divergences yields

−1 0 1

−1

0

1

−1 0 1

−1

0

1

−1 0 1

−1

0

1

−1 0 1

−1

0

1

−1 0 1

−1

0

1

−1 0 1

−1

0

1

 SMJij

 SMJij

 SMJij
TAP

Jij

TAP
Jij

TAP
Jij

Jij
Boltzmann

Jij
Boltzmann

Jij
Boltzmann Jij

Boltzmann

Jij
Boltzmann Jij

Boltzmann

A

B E

C F

D

FIGURE 2 | Scatter plots showing the results of TAP and SM 

approximations versus the Boltzmann results for various time bin sizes 

δt and N = 100. Panels (A–C) show the TAP results versus the Boltzmann 
results for data binned at 2, 10 and 32 ms, respectively. (D–F) show the same 
but for the SM approximation. Note that the structure of the error in 
estimating the couplings from the TAP equations changes when the size of 
the time bin is increased.
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Δ δ= − .
g

g

pair

ind

( )N 2
 

(16)

Equations 15 and 16 show that for small Nδ, Δ will be very close 
to 0, independent of the structure of the true distribution. In other 
words, in this regime, a very good pairwise-model fi t is a generic 
property and does not tell us anything new about the underlying 
structure of the true probability distribution. It is important to 
note that the perturbative expansion is always valid if δt is small 
enough. That is, simply by choosing a suffi ciently small time bin, 
we can push Δ as close to 0 as we want.

In Roudi et al. (2009a), g
pair

 and g
ind

 are related to the parameters 
of the pairwise model up to corrections of O(Nδ). In Section “The 
Partition Function, Entropy and Moments of a Gibbs Distribution 
in the Limit Nδ → 0” in Appendix, we present a different derivation 
by expanding the partition function of a true Gibbs probability 
distribution around the partition function of a distribution without 
couplings. In the following subsection, we also use the results of 
this derivation to compare the probability of synchronous spikes 
under the model and the true distributions. Furthermore, in Section 
“Independent-triplet Approximation” in Appendix, we extend the 
idea beyond the IP approximation and approximate the entropy 
of a given distribution as a sum over the entropies of triplets of 

isolated neurons. We show that this approach leads to Eq. 15 in a 
 substantially simpler way than those reported in Roudi et al. (2009a) 
and Section “The Partition Function, Entropy and Moments of a 
Gibbs Distribution in the Limit Nδ → 0” in Appendix.

In Figure 3, we show how D
KL

(p || p
ind

), D
KL

(p || p
pair

) and Δ vary 
with N and δt for data generated from a simulated network. We 
have also plotted the predictions of the low-rate expansion Eqs. 15 
and 16. As shown in these fi gures, the low-rate expansion nicely 
predicts the behaviour of the measurements from the simulations 
particularly for small N and δt. For δt = 10 ms, we have δ

10
 = 0.076 

and for δt = 2 ms, we have δ
2
 = 0.019 (note that this gives δ

10
/

δ
2
 = 3.95, a ratio that would have been equal to 5 if the bins were 

independent). Both the results from the low-rate expansion and 
those found directly from the simulations show that using fi ner 
time bins decrease Δ for fi xed N.

PROBABILITY OF SIMULTANEOUS SPIKES
As discussed in Section “Review of Experimental Results,” in addi-
tion to entropic measures such as KL divergence and Δ, which in a 
sense ask how well the model approximates the experimental prob-
abilities of all possible spike patterns, we can restrict our quality 
measure to a subset of possible spike patterns. We can, for instance, 
ask how well the pairwise model approximates the probability of M 
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FIGURE 3 | The quality of the pairwise and independent models for 

different time bins and populations sizes. (A) DKL(ptrue || Pind) versus N, (B) 
DKL(ptrue || ppair) versus N and (C) Δ versus N all for δt = 10 ms. (D–F) show the 
same things for δt = 2 ms. In all panels, the black stars represent quantities as 

computed directly from the simulated data, while the red squares show the 
predictions of the low-rate expansion, i.e. Eqs. 15 and 16. We have used 18000 s 
of simulated data for computing the plotted quantities and have corrected for 
fi nite sampling bias as described in Roudi et al. (2009b).
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simultaneous spikes. Similar to the case of Δ, before getting too 
impressed about the power of pairwise models in approximating 
the true distributions, we should fi nd out what we expect in the case 
of an arbitrary, or random, true probability distribution.

Suppose now that we have a distribution over a set of variables of 
the form of Eqs. 27a and 27b. For this distribution, the probability 
that a set of M neurons, I = {i

1
,i

2
,…,i

M
} out of the whole population 

of N fi re in a time bin while the rest do not is

log log .p ZI
i I

i
i j I

ij
i j k I

ijk= + + + −∑ ∑ ∑
∈ < ∈ < < ∈

H J K �
 

(17)

Averaging over all possible I we get

q M N
N

M
p M

M M
Z

I
I( ) log log .,

⎛
⎝⎜

⎞
⎠⎟

= +
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

+ −
−

∑≡
1

2 3
H J K �

 (18)

where H J K, and  are the mean values of the fi elds and pairwise, 
third-order etc coupling. In Section “The Partition Function, 
Entropy and Moments of a Gibbs Distribution in the Limit 
Nδ → 0” in Appendix, we show that, to leading order in Nδ, the 
external fi elds and pairwise couplings of fi tted models (independ-
ent or pairwise) match those of the true model (see Eqs. 32a and 
32b). Using this, we see that

q M N q M N N M N

N M N M N

true ind( ) ( ) ( )

( ) ( )

, − , ( ) /

+ ( ) / + /( )
∼ J

K O

2

2 3 4

 
(19a)

q M N q M N N M N M Ntrue pair( ) ( ) ( ) ( ) ., − , ( ) / + /( )∼ K O2 3 4

 
(19b)

To have well defi ned behaviour in large N limit, one should 
have J KN N∼ ∼1 12and . Eq. 19 show that, for M/N << 1, both 
the independent and pairwise models are close to the true distri-
bution. For M/N ∼ O(1) (of course still M/N < 1), the difference 
between the model and true probabilities of observing M synchro-
nous spike increases. For all ranges of M, the difference is larger for 
the independent model. These predictions are consistent with the 
experimental results found in the retina (Tkacik et al., 2006).

In the above calculation, we compute the difference between the 
true and model values of q, i.e. the mean of the log probability of M 
synchronous spikes. However, one can also calculate the log mean 
probability of M synchronous spikes, i.e.

w( ) log

log exp

M N
N

M

I i I
i

i j I
ij

i j k I
ijk

, ≡ −
⎛
⎝⎜

⎞
⎠⎟

+ + + +∑ ∑ ∑ ∑
∈ < ∈ < < ∈

H J K ��⎡
⎣⎢

⎤
⎦⎥
− log .Z

 

(20)

Calculating w is in theory very hard, because the second term 
above involves calculating the averages of exponential functions 
of variables. However, if the population is homogenous enough, 
such that the average couplings and fi elds from one sample of M 
neurons to the next does not change much, we can approximate 
the average of the exponential of a variable with the exponential of 
the average it. Doing this, will again lead to Eq. 19. The difference 

between the two measure w and q will most likely appear for small 
M where the averages of the fi elds and couplings depends on the 
sample of M neurons more strongly than when M is large.

EXTENSIONS OF THE BINARY PAIRWISE MODEL
In the previous sections, we described various approximate meth-
ods for fi tting a pairwise model of the type of Eq. 2. We also studied 
how good a model it will be for spike trains, using analytical cal-
culations and computer simulations. As we describe below, there 
are two issues with a model of the type of Eq. 2 that lead to new 
directions for extending the pairwise models studied here.

The fi rst issue is the use of binary variables as a representation of 
the states of the system. For fi ne time bins and neural spike trains, the 
binary representation serves its purpose very well. However, in many 
other systems, a binary representation will be a naive simplifi cation. 
Examples of such systems are modular models of the cortex in which 
the state of each cortical module is described by a variable taking a 
number of states usually much larger than 2. In Section “Extension 
to Non-binary Variables” we briefl y describe a simple non-binary 
model useful for modelling the statistics of such systems.

The second issue is that by using Eq. 2 in cortical networks, one is 
essentially approximating the statistics of a highly non- equilibrium 
system with asymmetric physical interactions, e.g. a balanced cor-
tical network, by an equilibrium distribution with symmetric 
interactions. This manifests itself in a lack of a simple relationship 
between the functional connectives to real physical connections. 
In our simulations we observed that there was no obvious rela-
tion between the synaptic connectivity and the inferred functional 
connections. Second, as we showed here and in our previous work, 
for large populations, the model quality decays. Although one can 
avoid this decay by decreasing δt as N grows, eventually one will get 
into the regime of very fi ne δt, where the assumption of independ-
ent bins used to build the model does not hold any more and one 
should start including the state transitions in the spike patterns 
(Roudi et al., 2009a). In fact, Tang et al. (2008) showed that even in 
the cases that the pairwise distribution of Eq. 2 is a good model for 
predicting the distribution of spike patterns, it will not be a good 
one for predicting the transition probabilities between them. These 
observations encourage one to go beyond an equilibrium distribu-
tion with symmetric weights. In the second extension, described in 
Section “Extension to Dynamics and Asymmetric Interactions,” we 
propose one such model, although a detailed study of the properties 
of such model is beyond the scope of this paper.

EXTENSION TO NON-BINARY VARIABLES
The binary representation is probably a good one for spike trains 
binned into fi ne time bins. However, for larger time bins where 
there is a considerable probability of observing more than one 
spike in a bin, as well as for a number of other systems, the binary 
representation may only serve as a naive simplifi cation and going 
to non-binary representations is warranted. Example of such sys-
tems include the protein chains and modular cortical models. In 
probabilistic models of protein chains, each site is represented by a 
non-binary variable that takes one of its possible q states depending 
on the amino acid that sits on that site. In a number of models for 
the operations of cortical networks, one considers a network of 
interconnected modules, the state of each of which is represented by 
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a non-binary variable (Kropff and Treves, 2005; Russo et al., 2008). 
Each state of one such variable corresponds to, e.g. one of the many 
memory states stored in the corresponding module.

For a set of non-binary variables σ = (σ
1
, σ

2
,…,σ

N
), σ

i
 = 1,…,q, 

one can simply write down a maximum entropy pairwise Gibbs 
distribution as

p
Z

u u u
i

i
i j

iji i j
( ) exp ,σ

α

α
ασ

α β

αβ
ασ βσ= +∑∑ ∑∑

< ,

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 H J
 

(21a)

u
i i iασ ασ σ= −δ δ1 ,

 
(21b)

where α and β go from 1,…,q and index the q possible states of each 
variable. For q = 2, the above distribution reduces to the binary case 
with Boolean variables, and when one forces J ij

αβ = 0 for α ≠ β one 
recovers the q-state Potts model. Similar to the binary case, here 
also one is given the experimentally observed values of 〈 〉u

iασ data 
and 〈 〉u u

i jασ βσ data and wants to infer the fi elds and couplings that 
are consistent with them.

The approximate methods described in this paper can be 
adopted, with some effort, to the case of non-binary variable as well. 
In particular, it is easy to derive the difference between the entropy 
of the true distribution, the pairwise model and the independent 
model in the low-rate limit of the non-binary model. Assuming 
that 〈 〉u

iασ = εdata O( ) for α ≠ 1, the low-rate regime in the case of 
non-binary variables is characterised by N(q − 1)ε << 1. In this 
regime, similar to the binary case, S

pair
 − S

true
 ∝ [N(q − 1)ε]3 and 

S
ind

 − S
true

 ∝ [N(q − 1)ε]2 and Δ = N(q − 1)ε, and consequently the 
pairwise model performs very well in the low-rate regime.

As we described before, the low-rate regime is where most experi-
mental studies on binary pairwise models were performed, and the 
result of the low-rate expansion of the entropies explains the reported 
success of binary pairwise models in those studies. On the other 
hand, the low-rate regime of the non-binary variable may be of little 
use. This is because the systems to which the non-binary representa-
tion should be applied are unlikely to fall into the low-rate regime. 
For instance, in the case of modular memory networks the low-rate 
regime would be the case in which the network spends a signifi cantly 
larger time in its ground state (no memory retrieved) compared to 
the time it spends operating and retrieving memory. A more likely 
scenario is the one where all the states (memory or no-memory) have 
approximately similar probabilities of occurrence over a period of 
time. How useful pairwise models are in describing the statistics of 
such non-binary systems away from the trivial regime of the low-rate 
expansion is not known. Studying the quality of non-pairwise models 
in these cases and developing effi cient ways to fi t such models, in par-
ticular based on extensions of the powerful approximations such TAP 
and SM to non-binary variables will be the focus of future work. In 
particular, it is important to note that writing the SM approximation 
for the non-binary case will be a straightforward task in light of the 
relation we described between the SM, nMFT and IP approximations 
in Section “Sessak–Monasson Approximation.”

EXTENSION TO DYNAMICS AND ASYMMETRIC INTERACTIONS
The Glauber model (Glauber, 1963) is the simplest dynamical 
model that has a stationary distribution equal to the Ising model 
distribution (Eq. 2). It is defi ned by a simple stochastic dynamics 

in which at each timestep δt = τ
0
/N one spin is chosen randomly 

and updated, taking the value +1 (i.e. the neuron spikes) with 
probability

p
h J si ij j

j

+ =
+ − +⎛

⎝
⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

∑
1

1 2exp
.

 

(22)

Although the interactions J
ij
 in the static Ising model are sym-

metric [any antisymmetric piece would cancel in computing the 
distribution (Eq. 2)], a Glauber model with asymmetric J

ij
 is per-

fectly possible (Crisanti and Sompolinsky, 1988; Ginzburg and 
Sompolinsky, 1994).

This kinetic Ising model is closely related to another class of 
recently-studied network models called generalized linear mod-
els (GLMs, Okatan et al., 2005; Truccolo et al., 2005; Pillow et al., 
2008). In a GLM, neurons receive a net input from other neurons 
of the linear form,

j
ij jd J s t∑∫ −

∞

τ τ τ( ) ( )
0  

(23)

and spike with a probability per unit time equal to a function f of 
this input. Maximum-likelihood techniques have been developed 
for solving the inverse problem for GLMs (fi nding the linear kernels 
that give the stimulus input and that from the other neurons in 
the network, given spike train data) (Okatan et al., 2005; Truccolo 
et al., 2005). They have been applied successfully to analysing spa-
tiotemporal correlations in populations of retinal ganglion cells 
(Pillow et al., 2008).

The Glauber model looks superfi cially like a GLM with instan-
taneous interactions and f (x) equal to a logistic sigmoid function 
1/[1 + exp(−2x)]. But there is a difference in the dynamics: spins 
are not spikes. In the Glauber model, a spin/neuron retains its value 
(+1 or −1) until it is chosen again for updating. Since the updating 
is random, this persistence time is exponentially distributed with 
mean τ

0
. Thus a Glauber-model “spike” has a variable width, and 

the autocorrelation function of a free spin exhibits exponential 
decay with a time constant of τ

0
. In the GLM, in contrast, a spike is 

really a spike and the autocorrelation function (for constant input) 
is a delta-function at t = 0.

The time constant characterizing the kernel J
ij
(τ) in a GLM 

has a similar effect to τ
0
 in the Glauber model, but a GLM with 

an exponential kernel is not exactly equivalent to the Glauber 
model. In the GLM, the effect of a presynaptic spike is spread out 
and delayed in time by the kernel, but once it is felt, the postsyn-
aptic fi ring rate changes immediately. In the Glauber model, the 
presynaptic “spike” is felt instantaneously and without delay, but 
the fi ring state of the neuron takes on the order of τ

0
 to change 

in response.
GLMs grew out of a class of single-neuron models called LNP 

models. The name LNP comes from the fact that there is a linear (L) 
fi ltering of the inputs, the result of which is fed to a nonlinear (N) 
function that specifi es an instantaneous Poisson (P) fi ring rate. In 
the earlier studies, the focus was on the sensory periphery, where the 
input was an externally specifi ed “stimulus”. An aim of this model-
ling effort was to improve on classical linear receptive fi eld models. 
Thus, in the usual formulation of a GLM network, one writes the 
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total input as a sum of two terms, one linear in the stimulus as in 
the LNP model and the other linear in the spike trains of the other 
neurons. Of course, one can trivially add a “stimulus” term in a 
Glauber model, so this differences is not an essential one.

Similarly, interactions with temporal kernels J
ij
(τ) can be 

included straightforwardly in a Glauber model. Such a model is 
equivalent to a GLM in the limit τ

0
 → 0. (One has to multiply the 

kernels by 1/τ while taking the limit, because the integrated strength 
of a “Glauber spike” is proportional to τ

0
, while that of an ordinary 

spike in a GLM is 1.)
One can derive a learning algorithm for a Glauber model, 

given its history, in a standard way, by maximizing the likelihood 
of the history. The update rule, which is exact in the same way that 
Boltzmann learning is for the symmetric model, is

δ ε δ δJ s t b J s t s tij i i i
k

ik k i j i= +( ) − +( )⎡
⎣⎢

⎤
⎦⎥

( )∑η tanh ( ) ,

 

(24)

where δs
j
(t) = s

j
(t) − 〈s

j
〉, the average is over the times t

i
 at which 

unit i is updated, and bi = tanh−1〈s
i
〉 = h

i
 + Σ

j
J

ij
〈s

j
〉.

One can also get a simple and potentially useful approximate 
algorithm which requires no iteration by expanding the tanh in 
Eq. 24 to fi rst order in the J

ij
 (i.e. to fi rst order around the independ-

ent-neuron model). Then at convergence (δJ
ij
 = 0) we have

δ ε δ δ δs t s t s J s t s ti i j i i
k

ik k i j i+( ) ( ) = −( ) ( ) ( )∑1
2

,
 

(25)

which is a simple linear matrix equation that can be solved for 
the J

ij
.

DISCUSSION
The brain synthesizes higher-level concepts from multiple inputs 
received, and in many fi elds of research scientists are interested in 
inferring as simple a description as possible, given potentially vast 
amounts of data. Such processes of learning take a set of average 
values, correlations, or any other pattern in the data, and from 
these arrive at another representation, which is useful for speed 
or accuracy of prediction, for compressed storage of the data, as a 
grounds for decision making, or in any other aspect which improves 
the functionality or competitiveness of the brain or the researcher. 
Models and algorithms for learning in these contexts have been 
studied, in great detail, in neuroscience, image processing, and 
many other fi elds, for quite some time; consider, e.g. the introduc-
tion of Boltzmann machines more than a quarter of a century ago 
(Hinton and Sejnowski, 1983), and the now more than 10-year-old 
monograph on learning in graphical models (Jordan, 1998).

As one could have expected, there is a trade-off between the 
complexity of the model to be learned and the effi ciency of the 
learning algorithms. Boltzmann machines are, in principle, able to 
learn very complex models, and provably so, but convergence is 
then quite slow; modern applications of those methods centre on 
various restricted Boltzmann machine models, which can be learned 
faster (Hinton, 2007).

When we consider very large systems and/or problems where 
convergence time of the learning is a serious concern, then we 
are primarily interested fast learning processes. Often such fast 
processes come as approximation grounded on assumption on 

the model parameters, and the central issue is then obviously the 
accuracy of the learning outcomes based on those assumptions. In 
this paper we have revisited some classical and some more recent 
approximations of this kind that take their inspiration from statisti-
cal physics. The two simplest algorithms considered are nMF and 
IP approximation. As we have shown for neural data, both of these 
perform poorly except for small systems (small N), or for systems 
which have little variability (small value of Nδ), where δ here can 
be thought of as a proxy for the deviation from a uniform state. 
On the other hand, one generalization of each method, the TAP 
approximation for the nMF and the recent SM approximation for 
the IP approximation, perform much better. In the case of neural 
data analysed here, the parameter δ depends on the size of the time 
bin, δt. We showed that the TAP and SM approximations perform 
well for a large range of δt. In addition to studying the effect of 
δt on the performance of these approximations, we also studied 
the quality of pairwise models using a variety of methods. Using 
a few alternative analytical calculations, we derived mathematical 
expressions relating the quality of pairwise models to the size of the 
population and the lower order statistics of the spike trains. This 
analysis shows that for fi ner time bins the pairwise distribution 
becomes a better approximation to the true distribution of spike 
trains (Roudi et al., 2009a). We confi rmed this analytical result on 
synthetic data.

Our focus in this paper was on approximate inference methods 
that offer closed form equations relating model parameters to the 
measured statistics of the model. Another class include methods 
that rely on iterative algorithms. This class of approximate meth-
ods include the recent improvement of the Boltzmann learning in 
Broderick et al. (2007) and the “susceptibility propagation” (Mora, 
2007; Mezard and Mora, 2008). These methods are generally slower 
than the closed form approximation, and a systematic compari-
son between their performance against what we have studied here 
is lacking.

To conclude, we have here framed the presentation in terms of 
inferring representations of neural data and assessing the goodness 
of the model. Although our focus was on neural data analysis, it is 
important to note that similar problems appear in many other fi elds 
of modern biology, for instance, e.g. in network reconstruction of 
gene regulatory networks, in genomic assembly in metagenomics 
projects, and in many other problems. Given the present explosion 
in sequencing technologies it is conceivable that the more novel 
applications will soon appear outside neuroscience.

APPENDIX
THE PARTITION FUNCTION, ENTROPY AND MOMENTS OF A GIBBS 
DISTRIBUTION IN THE LIMIT Nδ → 0
Suppose we have a true distribution of the following form

p
Z

h s J s s K s s s
i

i i
i j

ij i j
i j k

ijk i j k( ) exp .s = + + +⎡
⎣⎢

⎤
⎦⎥

∑ ∑ ∑
< < <

1 �
 

(26)

In this Appendix, we fi rst fi nd the relation between the external 
fi elds and pairwise and third order couplings. As we show below, 
this allows us to compute the probability of synchronous spikes. 
We also compute the entropy of this distribution, in the small spike 
probability regime to derive the expression in Eqs. 15. This task 



Frontiers in Computational Neuroscience www.frontiersin.org November 2009 | Volume 3 | Article 22 | 11

Roudi et al. Statistical physics of pairwise probability models

can be accomplished much more easily if we rewrite the distribu-
tion of Eq. 26 in terms of zero-one variables r

i
, instead of the spin 

variables s
i
, i.e.

p
Z

r rr rr r
i

i i
i j

ij i j
i j k

ijk i j k( ) expr = + + +⎛
⎝

⎞
⎠

⎡
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1 β H J K �
 

(27a)

r
s

i
i= +( )1

2
,
 

(27b)

where the auxiliary inverse temperature β is introduced because it 
will allow us to compute the entropy, as will become clear later.

The crucial step in computing the relation between the moments, 
parameters and entropy of a distribution is computing its  partition 
function. To compute the partition function of Eq. 27a, Z, we 
note that

Γp
i j

ij i j
i j k

ijk i j k

n
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(28)

where 〈〉
0
 indicates averaging with respect to the distribution

p r
Z

r
i

i i0
0

1
( ) exp .= ∑⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

H
 

(29)

Note that p
0
 is not the independent model for p in Eqs. 27a 

and 27b but only the part of this distribution that includes the 
fi elds. In fact, as we show in the following (Eq. 32a) the fi elds of 
the independent model to p only match H

i
 to O(Nδ) corrections, 

i.e. H H Oi i N= +ind ( ).δ  When dealing with corrections to the fi elds 
and couplings, this note will be important.

Since 〈 〉 = 〈 〉 ≡r ri
n

i i0 0 δ , a term with l distinct indices in the expan-
sion of the term inside the average in Eq. 28 is of the order of δl. 
Therefore, to O((Nδ)3), we have
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where the sums over n, n
1
, n

2
, n

3
 and n

4
 run from 1 to infi nity. 

Performing these sums yields

Γ = + + + +
< < <
∑ ∑
i j

ij i j
i j k

ij ik ij jk ik jk ij ik jk i j kφ φδ δ φ φ φ φ φ φ φ φ δ δ δ[ ]

++ + + + +
< <
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i j k
ijk ij ik jk i j k Nφ φ φ φ δ δ δ( )( )( ) (( ) )1 1 1 4O δ

 

(31)

where φ
ij
 = exp(βJ

ij
) − 1 and φ

ijk
 = exp(βK

ijk
) − 1. From Eq. 31, we 

can immediately compute the relation between the mean values, 
pairwise and three-point correlation functions and the parameters 
of the distribution. For β = 1, we have

i i
i

i
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i
j i

ij jm r
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(32c)

The relations between mean values and pairwise correlations 
and the external fi elds and pairwise couplings in Eqs. 32a and 32b 
to their leading orders were reported previously in Roudi et al. 
(2009a), using a slightly different approach. However, the correc-
tions and three-neuron correlations were not computed there.

An interesting result of this calculation is a relation between the 
three-neuron correlations for the pairwise distribution, i.e. when 
K

ijk
 = 0, and the lower moments

ijk i j k
ij ik jk

i j k
C rr r

C C C

m m m
Npair

pair
�

� � �

� � �
≡ = + ( )O δ4 .

 

(33)

The fact that, to leading order in Nδ, the external fi elds and 
couplings are determined by mean values and pairwise correla-
tions allows us to compute the leading-order probabilities of 
synchronous spikes reported as we did in Section “Probability of 
Simultaneous Spikes.”

We can now use Eq. 31 to fi nd the entropies of the distribution 
in Eq. 27a

S Z
Z

Z r
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(34)

From Eqs. 32a, 32b and 32c for an independent fi t to the dis-
tribution Eq. 27a 
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(35)
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Using the fact that �m Ni i= +δ δO( )2  from Eq. 32a, and φ
ij
 =

exp( ) ( ) ( )J Oij ij i jC m m N− = / − +1 1� � � δ  from Eq. 32b, we get Eq. 15a 
with g

ind
 defi ned as

gind≡ −
+( ) +( ) −⎡⎣ ⎤⎦∑1
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1 1
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(36a)
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For a pairwise model to the distribution in Eq. 27a, we have 
H H O J J Oi i ij ijN Npair pair and = + = +[( ) ] [( )δ δ2 2 and thus

S S r
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Using Eqs. 32c and 33, this will lead to Eq. 15a with g
pair

 
defi ned as
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THE INDEPENDENT-PAIR APPROXIMATION FOR THE EXTERNAL FIELDS 
IN THE LIMIT δ → 0
Replacing δ

i
 = exp(H

i
)/[1 + exp(H

i
)] in Eq. 32a and solving to fi nd 
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 we get
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where in the second line we have used the fact that φ
ij
 = 

〈 〉
〈 〉〈 〉 − +r r

r r
i j

i j
N1 O( )δ  from Eq. 32b and that 〈r
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〉 = δ
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 + O(Nδ). Changing 

the variables from r
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 = 0,1 to the original spin variables s
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 = ±1, 

we have

h
m

m m
Ji

i

j i

ij i

i j i

ij

i j i
ij= + = +

−
⎡
⎣⎢

⎤
⎦⎥
−

+( ) +≠ ≠ ≠
∑ ∑ ∑H J

2 4

1

2

1

1 4 1
log

C
..

 

(40)

For the independent-pair (IP) approximation, on the other 
hand, we have
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Summing hi
j over j and subtracting the over counted terms 

from single spin contributions gives the same expression as 
Eq. 40. Therefore, the IP approximation to the external fi elds get 
the leading term and the fi rst order corrections of the low-rate 
approximation correctly.

INDEPENDENT-TRIPLET APPROXIMATION
Considering the following Gibbs distribution over three Boolean 
variables r

i
, r

j
 and r

k
,
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we can use the defi nition of the mean values and correlations 
and write

i

j

k

ij

ik

jk

ijk

m

m

m

C

C

C

C

�
�
�
�
�
�
�
1

0 0 0 0 1 1⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

11 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 1

0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 11

0 0 0

0 0 1

0 1 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

, ,
, ,
, ,

p

p

p

ijk

ijk

ijk

( )

( )

( ))

( )

( )

( )

( )

( )

p

p

p

p

p

ijk

ijk

ijk

ijk

ijk

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

, ,
, ,
, ,
, ,
, ,

⎛

⎝⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

.

 

(43)

Inverting the matrix of coeffi cients we can express the prob-
abilities in terms of the mean values, pairwise and third order cor-
relations. Using the result in
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(44b)

and similar equations for the other fi elds and couplings, we can 
also express these parameters in terms of mean values, pairwise and 
third order correlations. Before using Eqs. 48 and 49 as approxima-
tions for the parameters of a pairwise model, we need to perform 
two more steps.

The fi rst step is a familiar one that we noted when dealing with 
the external fi elds in the IP approximation, namely the fact that Hi

jk 
depends on j and k in addition to i and that Kij

k depends on k. We 
can use the same logic that we used in building an IP approximation 
to the external fi elds, and build an approximation to the external 
fi elds that does not depend on j and k, and an approximation to 
the couplings that does not depend on k. For example, for the case 
of the pairwise couplings we get
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(45)

The second step has to do with the fact that Eqs. 44a and 44b 
(as well as their transformed version after performing the fi rst step, 
e.g. Eq. 45) depend on the third order correlations in addition to 
the pairwise correlations and the mean values. Hence to derive an 
expression that relates model parameters to pairwise correlations 
and mean values we should fi rst fi nd the third order correlation in 
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terms of them. Note that this step is not present in the IP approxi-
mation. To express the third order correlations in terms of the lower 
order statistics we take advantage of the following equation

p p p p

p p

ijk ijk ijk ijk

ijk i

( ) ( ) ( ) ( )

( )

0 0 1 0 1 0 1 0 0 1 1 1

0 0 0

, , , , , , , ,
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(46)

Writing the probabilities in terms of the moments, this equa-
tion can be solved to fi nd the third order correlations in terms of 
the mean values and pairwise correlations. The equations have 
two imaginary solutions for �Cijk , which are unphysical, and one 
real solution, which is the correct solution to be considered. The 
resulting expression for �Cijk in terms of the mean values and pairwise 
correlations is complicated. However, in the limit of � � �m m mi j k, , ,→ 0  
it can be shown to have the same form as the one reported in Eq. 33. 
We noted in the text that in this limit, the IP approximations to 
the couplings will give the same result as the leading order term 
of Eq. 32b for the couplings. With the independent-triplet (IT) 
approximation, we can go one step further, and as can be shown by 
doing a small amount of algebra, we can recover O(Nδ) corrections 
to the couplings in that we calculated in Eq. 32b.

As mentioned in Section “Extending the Independent-pair 
Approximation,” one can continue the above process to build 
approximations based on quadruples of spins and so on. However, 
this soon becomes diffi cult in practice for the reason that solving 
equations of the type Eq. 46 to fi nd the higher moments in terms 
of the mean values and pairwise correlations will be as diffi cult as 
the original problem of fi nding the external fi elds and couplings of 
the original N body problem in terms of the mean values and cor-
relations. Nevertheless, this simple triplet expansion offers an alter-
native derivation of Eq. 15, simpler than the derivations in Roudi 
et al. (2009a) and Section “The Partition Function, Entropy and 
Moments of a Gibbs Distribution in the Limit Nδ → 0” in Appendix. 
Here we show this for Eq. 15b, as deriving Eq. 15a will be similar 
but less involved. To derive Eq. 15b using the triplet expansion, we 
approximate the entropy of the whole system of N neurons as a 
sum of the entropies of all triplets denoted by S

ijk
. We then expand 

the resulting expression keeping terms of up to O(δ3) noting that 
� �C Cijk ij∼ δ ∼ δO O( ), ( ).3 2 and  The result takes the form of
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where Q(x) = x log(x). For a pairwise model, the IT approximation 
to the entropy in the limit �m → 0 has the same form, except that �Cijk  

of the true model should be replaced by � � � � � � �C C C C m m mijk ij ik jk i j k
pair = −( )( ) 1 

(see Eq. 33), i.e.

S C
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∑
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(48)

Using Eqs. 32c, 47 and 48 yields Eq. 15b.

DERIVATION OF TAP EQUATIONS FROM BELIEF PROPAGATION
In this appendix we derive the TAP equations (Eq. 12) starting from 
the Belief Propagation update rules. Let us begin with the result to 
be established. The TAP equations are a set of nonlinear equations 
for the magnetizations m

i
, which we will write:

tanh ( ).−

∈

= + − −( )⎡⎣ ⎤⎦ +∑1 2 2 2 31m h J m J m mi i
j i

ij j ij i j
∂

εε ε O
 

(49)

Here h
i
 is the external fi eld acting on spin i, εJ

ij
 are the pairwise 

couplings, and the notation J ∈ ∂
i
 means that the sum is over neu-

rons j connected with neuron i. As we also did in the text in Eq. 12, 
the above equation is generally quoted with ε set to one and without 
the error term of cubic order in ε.

Starting from the pairwise distribution (Eq. 2), we defi ne the 
following distribution, with the auxiliary variable ε that we set to 
1 in the end of our calculation

p
Z

h s J s s
i

i i
i j

ij i j
ε ε( ) exps = +∑ ∑

<

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1

 

(50)

and the exact marginal distribution over spin s
i
 is defi ned by

p s pi i
si

ε ε( ) = ∑
s

s
\

( )

 

(51)

where the sum goes over all spins except s
i
. The exact magnetiza-

tion of spin s
i
 is then

m

s h s J s s

h s J s
i

i i i ij i j

i i ij

=
+

+

∑ ∑ ∑
∑ ∑ ∑
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⎜
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⎟
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exp

exp

i i< j

i i< j

ε

ε ii js⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

.

 

(52)

Belief Propagation is a family of methods for approximately 
computing the marginal distributions of probability distributions 
(Kschischang et al., 2001; Yedidia et al., 2003; Mezard and Montanari, 
2009). Since the model defi ned by Eq. 50 contains only pairwise 
interactions, it is convenient to adopt the pairwise Markovian ran-
dom fi eld formalism of Yedidia, Freeman and Weiss (Yedidia et al., 
2003). Note that the important recent contribution by Mezard and 
Mora uses a more general formalism, which may prove to be more 
convenient in the perspective of extending an “inverse BP” learning 
algorithm beyond pairwise models (Mora, 2007).
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Belief Propagation applied to the model in Eq. 50 in the 
Yedidia–Weiss–Freeman formalism is built on probability distri-
butions, called BP messages, associated with every directed link in 
the graph. If i → j is such a link, starting at i and ending at j, then 
the BP message η

i→j
(s

j
) is a probability distribution on the variable 

s
j
 associated to node where the link ends. For Ising spins one can 

use the parametrization

ηi j j
j i js

s m
→

→( ) ,=
+1

2  
(53)

where m
i→j

 is a real number called the cavity magnetization. BP is 
characterized by two equations, the Belief Propagation update equa-
tions, and the Belief Propagation output equations. The BP update 
equations are used0 iteratively to fi nd a fi xed point, which is an 
extremum of the Bethe free energy. At the fi xed point, the BP update 
equations form a (large) set of compatibility conditions for the η’s 
which, for the model Eq. 50, read

η ηε
j i i

j i s

h s J s s

k j i
k j js e s

j

j j ij i j

→ →Ω
( ) ( )

\

= .
→

+

∈∂
∑ ∏1

 

(54)

The BP output equations determine the marginal probability 
distributions from the η’s and read

p s e si i
i

h s

j i
j i i

i iε
→Ω

( ) ( ),=
∈∂
∏1 η

 (55)

where Ω
j→i

 and Ω
i
 in Eqs. 54 and 55 are normalizations. To lighten 

the notation, we will not distinguish between the exact marginals, as 
in Eq. 51, and the approximate marginals from BP, as in Eq. 55.

We now write the BP update and BP output equations using the 
cavity magnetizations, m

i→j
, from Eq. 53. The notation simplifi es if 

one defi ne an ancillary quantity

q
m

m
mi j

i j

i j
i j→

→

→

−=
+
−

=1

2

1

1
1log tanh →

 

(56)

in terms of which the BP update equation can be written as

m J h qj i ij j
k j i

k j→ = ( ) +⎛
⎝

⎞
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∑tanh tanh
\

ε
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→

 

(57)

and the BP output equation as

m h qi i
j i

j i= +⎛
⎝

⎞
⎠∈

∑tanh .→

 

(58)

The task is now to expand the right hand side of Eq. 58 in ε 
and compare with the TAP equations, Eqs. 49. To do this, we fi rst 
note that

q J h q J mj i ij j
k j i

k j ij j→ ε ε ε ε= +⎛
⎝

⎞
⎠
+ ( ) = + ( )

∈∂
→∑tanh

\

O O3 3

 

(59)

This follows from expanding Eq. 57 in ε, using the result in 
Eq. 56, and fi nally, expanding the logarithm. We then rewrite the 
BP output Eq. 58 as

tanh tanh .−

∈
→

∈∂

= + − +⎛
⎝

⎞
⎠
+ ( )∑ ∑1 3m h J h q qi i

j i
ij j i j
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(60)

Since m
j
 = tanh(h

j
 + Σ

k∈∂j
 q

k→j
) (no expansion in ε) we want to 

separate q
i→j

 and h
i
 + Σ

k∈∂j
 q

k→j
 in the arguments of the tanh’es in 

Eq. 60, and according to Eq. 59, q
i→j

 is of order ε. This means that 
we can write, to order ε,

tanh .h q q m J m mj i j
k j

k j j ij i j− +⎛
⎝

⎞
⎠
= − −( )→

∈
→∑

∂

ε 1 2

 (61)

Introducing this into Eq. 60, we fi nally have

tanh− = + − −( )⎡⎣ ⎤⎦ + ( )∑1 2 2 2 31m h J m J m mi i
j i

ij j ij i j
∈

εε ε O
 

(62)

which was to be proved.
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