
Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 1 | 1

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 28 January 2009
doi: 10.3389/neuro.11.001.2009

NEURON and Python

Michael L. Hines1, Andrew P. Davison2* and Eilif Muller3

1 Computer Science, Yale University, New Haven, CT, USA
2 Unité de Neurosciences Intégratives et Computationelles, CNRS, Gif sur Yvette, France
3 Laboratory for Computational Neuroscience, Ecole Polytechnique Fédérale de Lausanne, Switzerland

The NEURON simulation program now allows Python to be used, alone or in combination with
NEURON’s traditional Hoc interpreter. Adding Python to NEURON has the immediate benefi t
of making available a very extensive suite of analysis tools written for engineering and science.
It also catalyzes NEURON software development by offering users a modern programming
tool that is recognized for its fl exibility and power to create and maintain complex programs. At
the same time, nothing is lost because all existing models written in Hoc, including graphical
user interface tools, continue to work without change and are also available within the Python
context. An example of the benefi ts of Python availability is the use of the xml module in
implementing NEURON’s Import3D and CellBuild tools to read MorphML and NeuroML model
specifi cations.

Keywords: Python, simulation environment, computational neuroscience

for the purely numerical issue of how many compartments are
used to represent each of the cable sections. In the early 90’s, Hoc
syntax was again extended to provide some limited support for
classes and objects, that is, data encapsulation and polymorphism,
but not inheritance.

Though Hoc has served well, continuing development and
maintenance of a general programming language steals signifi cant
time and effort from neurobiology domain-specifi c improvements.
Furthermore, Hoc has turned out to be an orphan language limited
to NEURON users. What is desirable is a modern programming
language such as Python, which provides expressive syntax, pow-
erful debugging capabilities, and support for modularity, facili-
tating the construction and maintenance of complex programs.
Python has proved its utility by giving rise to a large and diverse
community of software developers who are making reusable tools
that are easy to plug-in to the user’s code, the so-called “batteries
included” (Dubois, 2007). In the domain of scientifi c computing,
some examples include Numpy (Oliphant, 2007) and Scipy (Jones
et al., 2001) for core scientifi c functionality, Matplotlib (Hunter,
2007) for 2-D plotting, and IPython (Prez and Granger, 2007) for
a convenient interactive environment.

There are three distinct ways to use NEURON with Python. One
is to run the NEURON program with Python as the interpreter
accepting interactive commands in the terminal window. Another
is to run NEURON with Hoc as the interactive interpreter and
access Python functionality through Hoc objects and function calls.
These fi rst two cases we will refer to as embedded Python. The third
way is to dynamically import NEURON in a running Python or
IPython instance, which we will refer to as using NEURON as an
extension module for Python.

In the sections to follow, we describe the steps required to use
NEURON with Python, from a user’s point of view, and the tech-
niques employed to enable NEURON and Python to work together,
from a developer’s point of view. We begin in Section “Getting

INTRODUCTION
The NEURON simulation environment has become widely used
in the fi eld of computational neuroscience, with more than 700
papers reporting work employing it as of April, 2008. In large part
this is because of its fl exibility and the fact that it is continually
being extended to meet the evolving research needs of its user
community. Experience shows that most of these needs have a
software solution that has already been implemented elsewhere in
the domain of scientifi c computing. The problem is one of interfac-
ing an existing package with NEURON’s interpreter. Some cases
demand intimate knowledge of NEURON’s internals and consider-
able effort; examples include network parallelization with MPI, and
adoption of Sundials for adaptive integration. There are many more
cases in which existing packages could potentially be employed by
NEURON users. Few people, however, have the specialized exper-
tise required to manually interface an existing software package
and the creation of such interfaces is tedious. Instead of laborious
piecemeal adoption of individual packages that requires interven-
tion by a handful of experts, a better approach is to offer Python
as an alternative interpreter so that a huge number of resources
becomes available at the cost of only minimal interface code that
most users can write for themselves.

Since 1984, the NEURON simulation environment has used the
Hoc interpreter (Kernighan and Pike, 1984) for setup and control
of neural simulations. Hoc has a syntax for expressions and con-
trol fl ow vaguely similar to the C language. Hoc is not exactly an
interpreted language since, analogous to Pascal, Java, or Python,
Hoc statements are fi rst dynamically compiled to an internal stack
machine representation using a yacc parser and then the stack
machine statements are executed. A fundamental extension to Hoc
syntax was made in the late 80’s in order to represent the notion of
continuous cables, called sections. Sections are connected to form
a tree shaped structure and their principle purpose is to allow the
user to specify the physical properties of a neuron without regard

Edited by:

Rolf Kötter, Radboud University,
Nijmegen, The Netherlands

Reviewed by:

Felix Schürmann, Ecole Polytechnique
Fédérale de Lausanne, Switzerland
Volker Steuber, University of
Hertfordshire, UK
Arnd Roth, University College London,
UK

*Correspondence:

Andrew Davison, UNIC, Bât. 32/33,
CNRS, 1 Avenue de la Terrasse, 91198
Gif sur Yvette, France.
e-mail: andrew.davison@unic.cnrs-gif.fr

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 1 | 2

Hines et al. NEURON and Python

Started Using NEURON with Python” by describing how to install
and run NEURON with Python. We then demonstrate how model-
ling is carried out using Python by comparing it side-by-side with
Hoc syntax in Section “Writing NEURON Models in Python”. In
Section “Using Python Code from Hoc”, we describe how Python
can be accessed from the Hoc interpreter. In Section “Technical
Aspects”, we discuss some technical aspects of the implementation
of the Python-NEURON interaction. Finally, in Section “Importing
MorphML Files — A Practical Example” we give a detailed, practical
example, from the current NEURON distribution, of combining
Python and Hoc.

The code listings in Figures 1–3 are available for public down-
load from the ModelDB model repository of the Senselab database,
http://senselab.med.yale.edu (accession number 116491).

GETTING STARTED USING NEURON WITH PYTHON
INSTALLATION
NEURON works with Python on Windows, Mac OS X, Linux, and-
many other platforms such as the IBM Blue Gene/L/P and Cray XT3
supercomputers. Detailed installation information can be found
at http://www.neuron. yale.edu by following the “Download
and Install” link.

Binary installers are available for Windows, OS X and RPM-based
Linux systems. The Windows installer contains a large portion of
Cygwin Python 2.5. On OS X and Linux, the latest version of Python
2.3–2.5 previously or subsequently installed is dynamically loaded
when NEURON is launched. The binary installers provide Python
embedded in NEURON, but do not support using NEURON as an
extension module for Python or IPython.

If you would like to use NEURON as an extension module
for Python or IPython, if no installer for your platform exists,
or if you need to customize the installation (e.g. enable parallel/
MPI support, or change the location of binaries), you should
instead get the source code for the standard distribution, also
available from the above “Download and Install” link, and com-
pile it for your machine. Further instructions for this are given
in the Appendix.

BASIC USE
NEURON may be started without the graphical user interface
(GUI) using nrniv or with the GUI using nrngui. To use Python
as the interpreter, rather than Hoc, use the -python option:

$ nrniv -python
NEURON -- VERSION 7.0 (228: fbb244f333a9)
 2008-11-25
Duke, Yale, and the BlueBrain Project --
 Copyright 1984-2008
See http://www.neuron.yale.edu/credits.html

>>> from neuron import h

If there are any NEURON NMODL extension mechanisms (Hines
and Carnevale, 2000) in the working directory, and they have been
compiled with nrnivmodl, they will be loaded automatically.

Alternatively, you may wish to use NEURON as an exten-
sion to the normal Python interpreter, or to IPython (Prez and

Granger, 2007), a more interactive variant. To do so, you must build
NEURON from source and install the NEURON shared library
for Python, as described in the Appendix. In Python (or IPython)
then, NEURON is started (and any NMODL mechanisms loaded)
when you import neuron:

$ ipython
[…]

In [1]: from neuron import h
NEURON -- VERSION 7.0 (228: fbb244f333a9)
 2008-11-25
Duke, Yale, and the BlueBrain Project --
 Copyright 1984-2008
See http://www.neuron.yale.edu/credits.html

and the NEURON GUI is started by importing the neuron.gui
module:

In [2]: from neuron import gui

The h object that we import from the neuron module is the
principal interface to NEURON’s functionality. h is a HocObject
instance, and has two main functions. First, it gives access to the
top-level of the Hoc interpreter, e.g.:

>>> h('create soma')
>>> h.soma
< nrn.Section object at 0x8194080>

Second, it makes any of the classes defi ned in Hoc available to
Python:

>>> stim = h.IClamp(0.5, sec=h.soma)

Note that the soma section created through the Hoc inter-
preter appears in Python as a Section object. We can also create
Sections directly in Python, e.g.

>>> dend = h.Section()

These two section objects are entirely equivalent, the only
difference being that the name “dend” is not accessible within
the Hoc interpreter. In addition to the HocObject class (and
through it, any class defi ned in Hoc) and the Section class, the
Python neuron module also provides the Segment, Mechanism
and RangeVariable classes. More in-depth examples of using
NEURON from Python are given in Section “Writing NEURON
Models in Python”, while using Python code from Hoc is introduced
in Section “Using Python Code from Hoc”.

STARTING PARALLEL NEURON
Assuming NEURON was built with parallel support as discussed
in the Appendix, suitably parallelized Hoc scripts are started using
the MPI job execution command, typically mpiexec (Hines and
Carnevale, 2008) or the equivalent for your MPI implementation.
When Python is used rather than Hoc, the same parallelism features
are supported, with only slight changes in the execution model.
Both embedded Python (nrniv -python) and NEURON as an
extension module to Python are supported. MPI job execution for
embedded Python is the same as standard NEURON/Hoc, except

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 1 | 3

Hines et al. NEURON and Python

from itertools import chain
from neuron import h
Section = h.Section

--------------------- Model specification ---------------------

topology
noxa,ralisab,lacipa,amosetaerc#)(noitceS=amos

apical = Section()
basilar = Section()
axon = Section()

apical.connect(soma , 1, 0) # connect apical(0), soma(1)
basilar.connect(soma , 0, 0) # connect basilar(0), soma(0)
axon.connect(soma , 0, 0) # connect axon(0), soma(0)

geometry
soma {

03=L#03=L.amos
1=gesn#1=gesn.amos
03=maid#03=maid.amos

}
apical {

006=L#006=L.lacipa
32=gesn#32=gesn.lacipa

1=maid#1=maid.lacipa
}
basilar {

002=L#002=L.ralisab
5=gesn#5=gesn.ralisab
2=maid#2=maid.ralisab

}
axon {

0001=L#0001=L.noxa
73=gesn#73=gesn.noxa

1=maid#1=maid.noxa
}

biophysics
for sec in h.allsec(): # forall {

001=aR#001=aR.ces
1=mc#1=mc.ces

}

{amos#)'hh'(tresni.amos
insert hh
}

apical.insert('pas ') # apical {
insert pas

basilar.insert('pas ') # g_pas = 0.0002
e_pas = -65

for seg in chain(apical , basilar): # }
seg.pas.g = 0.0002 # basilar {

saptresni#56-=e.sap.ges
g_pas = 0.0002
e_pas = -65
}

{noxa#)'hh'(tresni.noxa
insert hh
}

FIGURE 1 | Code listing for a simple model neuron: building the neuron. The Python code is on the left and the equivalent Hoc code on the right.

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 1 | 4

Hines et al. NEURON and Python

--------------------- Instrumentation ---------------------

nysferjbo#tupnicitpanys#
syn = h.AlphaSynapse(0.5, sec=soma) # soma syn = new AlphaSynapse (0.5)

5.0=tesno.nys#5.0=tesno.nys
50.0=xamg.nys#50.0=xamg.nys

0=e.nys#0=e.nys

objref g
)(hparGwen=g#)(hparG.h=g

g.size(0, 5, -80, 40) # g.size(0, 5, -80, 40)
g.addvar('v(0.5)', sec=soma) # g.addvar("soma.v(0.5)")

--------------------- Simulation control ---------------------

520.0=td#520.0=td.h
5=potst#5=potst

56-=tini_v#56-=tini_v

{)(ezilaitinicorp#:)(ezilaitinifed
h.finitialize(v_init) # finitialize(v_init)

)(tnerrucf#)(tnerrucf.h
}

{)(etargetnicorp#:)(etargetnifed
)(nigeb.g#)(nigeb.g

while h.t < tstop: # while (t < tstop) {
h.fadvance() # fadvance()

)t(tolp.g#)t.h(tolp.g
}

)(hsulf.g#
}

)(hsulf.g

{)(ogcorp#:)(ogfed
)(ezilaitini#)(ezilaitini

)(etargetni#)(etargetni
}

)(og#)(og

FIGURE 2 | Code listing for a simple model neuron (continued from Figure 1): instrumenting and running the model. The Python code is on the left and the
equivalent Hoc code on the right.

that an extra -python command line option must be passed to
nrniv:

$ mpiexec -np 4 nrniv -python -mpi nrn-7.0/\
src/nrnpython/examples/test1.py

numprocs=4
NEURON -- VERSION 7.0 (228: fbb244f333a9)
 2008-11-25

Duke, Yale, and the BlueBrain Project --
 Copyright 1984-2008
See http://www.neuron.yale.edu/credits.html
NEURON thinks I am 0 of 4
NEURON thinks I am 2 of 4
NEURON thinks I am 3 of 4
NEURON thinks I am 1 of 4

For users who prefer to use NEURON as an extension module
to Python or IPython, execution is as follows:

$ mpiexec -np 4 python nrn-7.0/src/nrnpython/\
examples/test0.py

MPI_Initialized==true, enabling MPI
 functionality.
numprocs=4
NEURON -- VERSION 7.0 (228: fbb244f333a9)
 2008-11-25
Duke, Yale, and the BlueBrain Project --
 Copyright 1984-2008
See http://www.neuron.yale.edu/credits.html

mpi4py thinks I am 2 of 4, NEURON thinks I am
 2 of 4
mpi4py thinks I am 1 of 4, NEURON thinks I am
 1 of 4
mpi4py thinks I am 3 of 4, NEURON thinks I am
 3 of 4
mpi4py thinks I am 0 of 4, NEURON thinks I am
 0 of 4

However, there is one important caveat: The NEURON exten-
sion module does not initialize MPI itself, but rather delegates
this job to Python. To initialize MPI in Python, one must import a

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 1 | 5

Hines et al. NEURON and Python

Python MPI module, such as “MPI for Python” (mpi4py) (Dalcín
et al., 2008), prior to importing neuron:

from mpi4py import MPI
from neuron import h

pc = h.ParallelContext()

s = "mpi4py thinks I am %d of %d,\
 NEURON thinks I am %d of %d\n"

cw = MPI.COMM_WORLD
print s % (cw.rank, cw.size, \
 pc.id(),pc.nhost())

pc.done()

The module mpi4py is available from the Python Package
Index (http://pypi.python.org).

ONLINE HELP
For new users of NEURON with Python, a convenient starting
place for help is Python online help, provided through the global
function help, which takes one argument, the object on which
you would like help:

>>> import neuron
>>> help(neuron)
Help on package neuron:

NAME
 neuron

FILE
 /usr/lib/python2.5/site-packages/neuron/
 __init__.py

DESCRIPTION
 neuron
 ======

 For empirically-based simulations of
 neurons and networks of neurons in
 Python.

 This is the top-level module of the official
 python interface to the NEURON simulation
 environment (http://www.neuron.yale.
 edu/neuron/).

 For a list of available names, try
 dir(neuron).

[…]

For commonly used Hoc classes, such as Vector, APCount,
NetCon, etc., helpful reminders of constructor arguments, attributes
and units with Python syntax examples are available at the Python
prompt:

>>> from neuron import h
>>> help(h.APCount)
NEURON+Python Online Help System
================================

class APCount

pointprocess

apc = APCount(segment)
apc.thresh --- mV
apc.n --
apc.time --- ms
apc.record(vector)

Description:

Counts the number of times the voltage at its
location crosses a threshold voltage in the
positive direction. n contains the count and time
contains the time of last crossing.

[…]

from neuron import h

create pre- and post -synaptic sections
pre = h.Section()
post = h.Section()

for sec in pre, post:
sec.insert('hh')

inject current in the pre-synaptic section
stim = h.IClamp(0.5, sec=pre)
stim.amp = 10.0
stim.delay = 5.0
stim.dur = 5.0

create a synapse in the pre-synaptic section
syn = h.ExpSyn(0.5, sec=post)

connect the pre-synaptic section to the
synapse object
nc = h.NetCon(pre(0.5)._ref_v , syn)
nc.weight[0] = 2.0

vec = {}
for var in 'v_pre ', 'v_post ', 'i_syn ', 't':

vec[var] = h.Vector()

record the membrane potentials and
synaptic currents
vec['v_pre '].record(pre(0.5)._ref_v)
vec['v_post '].record(post(0.5)._ref_v)
vec['i_syn '].record(syn._ref_i)
vec['t'].record(h._ref_t)

run the simulation
h.load_file("stdrun.hoc")
h.init()
h.tstop = 20.0
h.run()

plot the results
import pylab
pylab.subplot(2,1,1)
pylab.plot(vec['t'], vec['v_pre '],

vec['t'], vec['v_post '])
pylab.subplot(2,1,2)
pylab.plot(vec['t'], vec['i_syn '])

FIGURE 3 | Code listing demonstrating the use of ref and plotting.

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 1 | 6

Hines et al. NEURON and Python

In IPython, the ? symbol is a quick shorthand roughly equivalent
to online help:

In [3]: ? h.APCount

Type: HocObject
Base Class: <type 'hoc.HocObject'>
String Form: <hoc.HocObject object at 0
 xb79022f0>
Namespace: Interactive
Length: 0
Docstring:
 class APCount

 pointprocess

[…]

WRITING NEURON MODELS IN PYTHON
To show how a model neuron is implemented using Python, we
repeat the example described in Chapter 6 of the NEURON Book
(Carnevale and Hines, 2006), but using Python rather than Hoc.
The code listing is given in Figures 1 and 2, and has Python code
on the left and the equivalent Hoc code on the right.

There are only a few syntax and conceptual differences between
the Python and Hoc versions, and we expect that Hoc users will have
little diffi culty transitioning to Python, should they wish to do so
(Hoc will continue to be supported, of course). We now comment
on the most signifi cant differences.

First are the import statements, absent from the Hoc listing,
although Hoc does have the xopen() function that has similar
functionality. Since NEURON is now only one of potentially many
modules living within the Python interpreter, it must live in its own
namespace, so that the names of NEURON-specifi c classes and var-
iables do not interfere with those from other modules. Of particular
importance is the object h, which is the top-level Hoc interpreter,
and gives access to Hoc classes, functions and variables.

While sections are created using the create keyword in Hoc, in
Python we instantiate a Section object. Hence the important dis-
tinction in Hoc between sections and objects is removed: Everything
in Python is an object. Similarly, the connect keyword in Hoc is
replaced by a method call of the child section object in Python.

In NEURON, each cable section is made up one or more segments,
and the diameter is a property of each segment. Hoc’s shorthand,
allowing the diam attribute to be set on all segments by setting it on
the section is also available in Python. Inhomogeneous values for
range variables such as diam can also be set on the specifi c Segment
object, returned by calling the Section object as a function.

The forall keyword in Hoc, which iterates over all sections, is
replaced by the allsec() method of the top-level Hoc interpreter
object h. Here again we see, in setting the membrane capacitance
cm, the Hoc and Python shorthands to set the value for all segments
at once, without having to explicitly iterate over all Segments.

In instrumenting the model, we see that Python and Hoc objects
have very similar behaviours. In general, all Hoc classes (Vector,
List, NetCon, etc) are accessible within Python via the h object.
Hoc object references must be declared using the objref keyword,
and objects created using new, but once created, attribute access
and method calls have near-identical syntax in Python and Hoc.

There are three major exceptions to this rule. First, many func-
tions and methods act in the context of the ‘currently-accessed
section’. To support this in Python, these functions take a keyword
argument sec. Second, certain method calls take Hoc expressions
as arguments, so, for example, in adding the membrane potential
of the soma section to the list of variables to plot, in Hoc we use
g.addvar(“soma.v(0.5)”), but in the Python version the vari-
able soma does not exist on the Hoc side, and so we have to pass
the soma Section object as the sec keyword argument so that the
Hoc expression is evaluated in the context of that section. Third, a
number of functions/methods take Hoc variable references (indi-
cated by preceding the variable name with the ‘&’ character) as
arguments, the most important being Vector.record(&var)
and NetCon(&var, target). The equivalent syntax in Python
is to precede the variable name with _ref_, e.g.: Vector.record
(_ref_var). For example, given ‘pre’ and ‘post’ Section objects and
a dictionary of Hoc Vector objects addressed by a mnemonic string,
recording the voltage at the centres of those sections is activated
by the statements:

record the membrane potentials and
synaptic currents
vec['v_pre'].record(pre(0.5)._ref_v)
vec['v_post'].record(post(0.5)._ref_v)
vec['i_syn'].record(syn._ref_i)
vec['t'].record(h._ref_t)

Figure 3 shows the complete listing with the above fragment
in context and also illustrates the ease with which NEURON
code can be mixed with third-party code such as the power-
ful Pylab/Matplotlib plotting package (http://matplotlib.
sourceforge.net/): NEURON Vector objects work just as well
as Python lists or arrays as arguments to the plot() function.

USING USER-DEFINED MECHANISMS
One of NEURON’s most powerful features is the ability to write new
mechanisms using the NMODL language, and then compile these
mechanisms into the executable or into dynamic libraries (DLLs).
The standard behaviour of NEURON is to load any mechanisms
that have been compiled in the working directory. It is also pos-
sible to load DLLs from elsewhere in the fi lesystem using the Hoc
function nrn_load_dll(). This has the disadvantage that the full
path to the shared library fi le must be provided, which can be hard
to determine, since the fi le is within a hidden folder which itself is
within a folder with a platform- specifi c name. To simplify this, the
neuron Python module adds a function load_mechanisms(),
which takes as an argument the path to the directory containing the
NMODL source fi les, and searches for shared library fi les below this
directory. Furthermore, in analogy to the PYTHONPATH environ-
ment variable which contains a list of paths to search for importable
Python modules, if you have defi ned a NRN_NMODL_PATH environ-
ment variable, NEURON will search these paths for shared libraries
and load them at import time.

USING USER-DEFINED CLASSES
One of the principal advantages of writing NEURON programs in
Python rather than Hoc, especially for large, complex programs,
is that Python is a fully object-oriented language, supporting

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 1 | 7

Hines et al. NEURON and Python

 encapsulation, polymorphism and inheritance, whereas Hoc sup-
ports only encapsulation and a limited form of polymorphism.

Just as with built-in Hoc classes, access to attributes and meth-
ods of user-defi ned Hoc classes (using the begintemplate/
endtemplate keywords) uses the same syntax in Python as in
Hoc. For example, if we have the following user-defi ned Hoc class
in the fi le string.hoc:

begintemplate String
 public s
 strdef s
 proc init() {
 s = $s1
 }
endtemplate String

then we can use it as follows:

>>> from neuron import h
>>> h.xopen("string.hoc")
>>> my_string = h.String("Hello")
>>> my_string.s
'Hello'

It is also possible to subclass both built-in and user-defi ned
Hoc classes in Python, although with the restriction that multiple
inheritance from Hoc-derived classes is not possible. Subclassing
requires the use of the hclass class factory:

>>> from neuron import h, hclass
>>> class MyNetStim(hclass(h.NetStim)):
… """NetStim that allows setting
… parameters on creation."""
…
… def __init__(self, start=50, noise=0,
… interval=10, number=10):
… self.start = start
… self.interval = interval
… self.noise = noise
… self.number = number
…
>>> stim = MyNetStim(start=0, noise=1)
>>> stim.noise
1.0
>>> class MyString(hclass(h.String)):
… def repeat(self, n):
… return self.s*n
…
>>> my_string = MyString("Hello")
>>> my_string.repeat(3)
'HelloHelloHello'

NUMERICAL DATA TRANSFER BETWEEN HOC AND PYTHON
The Hoc Vector object provides NEURON with a convenient
and effi cient container for storing and manipulating collec-
tions of numerical values, such as membrane potential traces or
spike-times.

In Python, Hoc Vector objects expose iterator and indexing
methods, such that they can be used in most cases where Numpy

(Oliphant, 2007), Scipy (Jones et al., 2001), and Matplotlib
(Hunter, 2007), the most important scientifi c modules, accept
lists.

To benefi t from the elegant and expressive notation of Numpy
for N-dimensional array manipulation, and from results computed
using the large and growing repertoire of scientifi c packages avail-
able for Python, which largely return Numpy arrays, several opti-
mized methods are available for the conversion of Hoc Vectors
to and from Numpy arrays.

Transferring one-dimensional Numpy arrays and non-nested
lists with fl oat or integer items to Hoc Vectors is straightfor-
ward, as the Hoc Vector constructor accepts an array or list as
an argument:

>>> v1 = h.Vector(a)
>>> v2 = h.Vector(l)

Transferring a Hoc Vector to an array or list is equally straight
forward:

>>> a = array(v1)
>>> print a
[3. 2. 3. 2.]
>>> l = list(v2)
>>> print l
[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]

If you would like to transfer between an existing Numpy array
and a Hoc Vector, there are the Hoc Vector “in-place” member
functions to_python and from_python:

>>> v3 = h.Vector(len(a))
>>> v3.from_python(a)
>>> print list(v3)
[3.0, 2.0, 3.0, 2.0]
>>> b = zeros_like(a)
>>> v3.to_python(b)
>>> print b
[3. 2. 3. 2.]

USING PYTHON CODE FROM HOC
For interacting with Python, Hoc provides the nrnpython() func-
tion and the PythonObject class. nrnpython() takes as its one
argument a string that can be any Python statement, e.g.:

oc> nrnpython("a = 3.14159")
oc> nrnpython("print a")
3.14159

PythonObject has two main uses. Creating an instance using
new returns an object that encapsulates the top-level Python inter-
preter, e.g.

oc> objref py
oc> py = new PythonObject()
oc> py.b = "hello"
oc> nrnpython("print b")
hello

Strings and fl oat/double values move back and forth between
Python and Hoc (although Python integers become double values in

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 1 | 8

Hines et al. NEURON and Python

Hoc and remain doubles if they are passed back to Python). All other
Python objects become instances of the PythonObject class:

oc> objref dict
oc> nrnpython("d = {'a':1, 'b':2, 'c':3}")
oc> dict = py.d
oc> print dict
PythonObject [12]
oc> print dict.__getitem__("c")
3.0

For objects (such as lists and tuples) that take integer indices
or are callable as functions, there is a special method named ‘_’
(underscore):

oc> objref lst
oc> nrnpython("c = [7, 8.0, 'nine']")
oc> lst = py.c
oc> for i = 0, lst.__len__() -1 { print lst._[i] }
7.0
8.0
nine

The only other trap for the unwary is that both single and double
quotes are valid for string defi nitions in Python, but only double
quotes are accepted by Hoc!

A detailed example of using Python from Hoc, and of the value
of being able to access its large standard library, is given in Section
“Importing MorphML Files — A Practical Example” for the case
of importing 3D morphology from a MorphML fi le.

TECHNICAL ASPECTS
Tools for building Python extensions, such as BOOST.Python
(Abrahams and Grosse-Kunstleve, 2003) or SWIG (Beazley, 1996)
might have been useful in more expert hands. However, the ability
of users to declare variables, objects, and classes in Hoc, the fact
that many existing C++ classes and class methods were not gen-
erally meant to be directly visible to the user except through the
intermediation of Hoc syntax, and the fact that the Hoc connection
to the internal NEURON code was already reasonably uniform,
of reasonable size, and understood by us in depth, suggested to us
that a Python interface written using the Python C-API (http://
docs.python.org/c-api/) that reused as much as possible the
existing Hoc connection to internal data and functions would
give us the general control we needed, and allow us to accomplish
the project in reasonable time. It should be emphasized that this
design decision to reuse a few of the C functions that manipulate
the Hoc runtime stack neither hinders nor assists any future work
on development of APIs for major NEURON components, such
as the numerical solvers, which may be useful to other simulators.
However, our interface implementation does provide a compact
example of how an application can communicate with NEURON
within a shared address space and therefore makes the the process
of dynamically linking NEURON into a user application much
simpler.

Since double precision variables, arrays, constant strings,
functions, and objects have very similar syntax and semantics
in Hoc and Python, a single PyTypeObject structure called
HocObjectType associated with a PyHocObject structure for

a Python object instance containing Hoc Symbol and Object
fi elds was suffi cient to allow Python access to all these Hoc
data-types. When a name is given to an attribute method of the
HocObjectType (the refl exive self PyHocObject is also an argu-
ment to the method), the name is looked up in Hoc’s symbol table
for the PyHocObject Hoc Object fi eld, and the symbol along with
the Hoc object calls the same function that the Hoc interpreter
would call to resolve the attribute at runtime. The attribute, which
is typically a number, string, or HocObject, is then wrapped in
a Python object of the proper type and returned. Function calls
from Python into Hoc consist of pushing the function arguments
onto the Hoc runtime stack and, again, calling the same function
the Hoc interpreter would call at runtime. Thus, Python state-
ments involving PyHocObject objects end up generating and
executing the same Hoc stack machine code at runtime that would
be accomplished by the corresponding Hoc statement. It should
be noted that a great deal of interpreter effi ciency can be gained
in loop body statements by factoring out as much as possible the
precursor objects. For example:

from neuron import h
vec = h.Vector (1000000)
a = 0
for i in xrange (1000000):
 a += vec.x[i]

can be optimized by avoiding the repeated search for the
attribute x:

vx = vec.x
for i in xrange (1000000):
 a += vx[i]

The former takes 1.3 s on a 3 GHz machine, while the latter
takes 1.0 s.

A critical requirement was to have as natural a correspondence
as possible in Python for the special Hoc syntax for Sections, posi-
tion along a Section, membrane mechanisms, and Range Variables.
This was achieved through the C++ defi nition of corresponding
types in Python to create instances for: NPySecObj, NPySegObj,
NPyMechObj, and NPyRangeVar. For example, the NPySegObj
segment (compartment) object points to the NPySecObj of which
it is a part, specifi es its location, x, and also contains a fi eld to
help in iterating over the mechanisms that exist at that location.
An NPyRangeVar has, in practice, required only a pointer to the
compartment (NPySegObj) where it exists and a pointer to its Hoc
Symbol. A Section represents a continuous cable and evaluation of
or assignment to a variable associated with a particular location
always involves specifying both which Section and the relative arc
length location (0 ≤ x ≤1) along the Section. Internally, NEURON
employs a Section stack to determine the working Section and
Hoc syntax provided three ways to specify the top of the Section
stack. The Hoc Section.variable(x) syntax has a direct cor-
respondence to the Python Section(x).variable syntax and
the latter perhaps has more clarity. The Hoc Section { Hoc
statements } syntax is unique to NEURON and for the Python
side we were reduced to explicit management of the Section stack
with Section.push() with an explicit h.pop_section() as the
fi nal statement. This gets tedious for single function calls and so in

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 1 | 9

Hines et al. NEURON and Python

Python we allow the keyword argument, sec=Section, to push
and pop the Section during the scope of the Hoc function call.
The Hoc access Section statement does not require a Python
counterpart. However, the Python statement, sec = h.cas(),
returns the top of the Section stack.

There were several cases of syntax mismatch which could only be
overcome by the addition of new idioms. Hoc syntax does not allow
an object to be treated as a function, so in Hoc we use po._(…).
Python does not allow call by reference arguments. Therefore, when
a Hoc function called from Python requires a reference argument,
the variable name must be prefi xed by ‘_ref_’. Of course, such
variables can only be Hoc variables but that is not a diffi culty in
practice since either the need is to pass a Hoc RangeVariable or
the Python program can construct a Hoc variable for use in these
cases. Since all numbers in Hoc are double precision, type errors
are raised when Python expects an integer. For the case of array
arguments, the Hoc-to-Python interface converts the doubles
to integers automatically. Unfortunately, one cannot in general
call the __getitem__(int) method explicitly but must use the
[expr] Hoc syntax. If this becomes a problem in practice, it will
be necessary to supply a set of cast functions that can be explicitly
invoked by the user.

We have encountered only one problem with freeing object
memory that has proved resistant to a solution. In some cases there
is an ambiguity in regard to whether the Hoc or the Python side
owns a reference to an object. When this situation occurs, a refer-
ence to the object is kept in a list for a deferred call to Py_DECREF
when it is guaranteed that it is safe to do so.

Assignment of a constant value to a range variable in a Section
is far more common than assignment of different values within the
segments of a Section and Hoc provides a simple syntax for that
case which avoids writing an explicit loop. The latest extension of
the NEURON Python interface mimics that behavior in Python by
interpreting Section.RangeVariableName in that fashion instead of
raising an “AttributeError”. We are also considering extending the
implicit iteration idea to SectionLists and Cells to allow not only
assignment of constants but also application of inhomogeneous
functions.

A list of the principal differences in syntax between Hoc and
Python is given in Table 1.

IMPORTING MORPHML FILES — A PRACTICAL EXAMPLE
Our fi rst serious use of the NEURON Python interface was to
extend the Import3D GUI tool to read MorphML specifi ca-
tion fi les. Import3D is structured around a graphical view of
a list of Import3d_Section objects defi ned in Hoc. Among
many method and fi eld attributes, the principle data fi eld of the
Import3d_Section object is the raw x, y, z, diam information
along an unbranched cable and a list index indicating the parent
Import3d_Section. The list of Import3d_Section objects
is constructed by various fi le reader objects that understand a
specifi c fi le format such as Eutectic, SWC, or NeuroLucida ver-
sions 1 or 3. Since MorphML is an XML format, it was oppor-
tune to employ the XML reader module in the standard Python
distribution.

The problem of parsing and analyzing the MorphML format is
similar in diffi culty to that for NeuroLucida V3 fi les. We divided

the problem into Hoc and Python code portions. In contrast to
a fi le size of 1180 lines for the NeuroLucida V3 fi le reader, the
read_morphml.hoc fi le size is 78 lines and the Python portion
of the problem is carried out by rdxml.py with a fi le size of 370
lines. Since these fi les are located in the NEURON package default
search path – …/nrn/lib/hoc for the read_morphml.hoc fi le
and …/nrn/lib/python for the rdxml.py fi le – the MorphML
reader extension works wherever the NEURON Python interface
is installed.

The read_morphml.hoc fi le defi nes an Import3d_MorphML
Hoc template (class) which interacts with Import3d_GUI in exactly
the same manner as the other format readers.

When an Import3d_MorphML instance is created, the Python
helper module we wrote to parse the input fi le is imported with
nrnpython(“import rdxml”) and p = new PythonObject()
is defi ned in order to allow access to Python functions.

The proc input() {…} procedure defi nes a sections list
and populates it with Import3dSection objects indirectly via
p.rdxml.rdxml($s1, this) which passes the fi lename selected
earlier by the user along with a reference to the Import3dMorphML
instance to allow callback from the Python code.

The

def rdxml(fname, ho) :
 xml.sax.parse(fname, MyContentHandler(ho))

module function calls the xml parser with the fi lename and a new
instance of

class MyContentHandler(xml.sax.ContentHandler):
 def __init__(self, ho):
 self.i3d = ho
 ...

The reference to the Import3d_MorphML instance is stored by
the initializer for later use at the end of parsing. During fi le reading
there is no interaction between Hoc and Python, so let it suffi ce
that the xml parsing style is, at the beginning and end of every xml
element, to call the MyContentHandler methods

def startElement(self, name, attrs):
 if self.elements.has_key(name):
 if debug: print "startElement:", name
 self.elements[name](self, attrs)
 else :
 if debug:
 print "startElement unknown", name

 def endElement(self, name):
 if self.elements.has_key('end'+name):
 self.elements['end' +name](self)

where the elements literal map associates all possible element
names with a MyContentHandler method. E.g.

elements = {
 'neuroml':nothing,
 'morphml':nothing,
 ...
 'segments':segments,
 'endsegments':endsegments,

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 1 | 10

Hines et al. NEURON and Python

 'segment':segment,
 'proximal':proximal,
 ...

 }

The methods construct Python lists of Point, Cable, etc, as
well as maps associating identifi ers with list indices. At the end of
parsing, the MyContentHandler method

def endDocument(self):
 self.i3d.parsed(self)

is called by the xml parser.
At this point we fi nd ourselves back in the Hoc world with an

argument that references the MyContentHandler. Through that
we can obtain the information saved by the MyContentHandler
in various maps and lists and copy it into new Import3d_Section
instances.

proc parsed() {…
 cables = $o1.cables_
 points = $o1.points_
 cableid2index = $o1.cableid2index_
 for i=0, cables.__len__() - 1 {

 cab = cables._[i]
 sec = new Import3d_Section(cab.first_,\
 cab.pcnt_)
 sections.append(sec)
 if (cab.parent_cable_id_ >= 0) {
 ip = cableid2index_[cab.parent_cable_id_]
 sec.parentsec = sections.object(ip)
 sec.parentx = cab.px_
 }
 ...

Note the ‘._’ idiom for accessing a Python list element since,
in Hoc, cables[i] is syntax implying an object reference array
 created with objref cables[n]. Also, cableid2index is a
Python map which associates the cable identifi er read from the
xml input fi le, with the proper element in the Python cables
list.

DISCUSSION
Python makes available within NEURON a very extensive suite of
analysis tools written for the general science and engineering com-
munities. All existing models written in Hoc, including GUI tools,
continue to work without change. All NEURON objects are acces-
sible to Python via an instance of the HocObject. Within the Hoc

Table 1 | The principal differences in syntax between Hoc and Python.

Python Hoc Notes

obj() obj._()

obj[int] obj._[int]

obj[double] obj.__getitem__(double) or __setitem__

obj['string'] obj.__getitem__("string") or __setitem__

f(_ref_var) f(&var) when storing a persistent pointer

f(h.ref(strvar)) f(strvar) when f changes the string

f(h.ref(obj)) f(obj) when f changes the reference

f(h.ref(var)) f(&var) when f changes var (via $ &1)

sec = Section() create sec

sec.push() stmt h.pop_section() sec { stmt }

f(..., sec = section) section { f(...) }

child.connect(parent, px, cx) connect child(cx), parent(px)

sec.insert('mechname') sec { insert mechname }

sec(x).rangevar sec.rangevar(x)

for sec in h.allsec(): forall { } includes sec.push() and h.pop_section() of

 currently accessed section.

for sec in h.seclist: forsec seclist { }

for seg in sec: for (x, 0) the value of x is seg.x

for seg in sec.allseg(): for (x)

seg.hh.gnabar or seg.gnabar_hh gnabar_hh(x)

pp = PointProcess(x, sec=section) sec { pp = new PointProcess(x) }

for mech in seg: No direct equivalent. Use

 MechanismType

iteration for iterator Python supplies several styles of iteration and Hoc

 supplies an iterator idiom. Conversion from one to the

 other is done via explicit programming but Python cannot

 use a Hoc iterator directly. Nor can Hoc use generators

 except by calling the underlying __next__() method.

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 1 | 11

Hines et al. NEURON and Python

interpreter, all Python objects are accessible via the PythonObject.
Binary installation remains straightforward for the usage case of
launching NEURON with Python embedded: The MS Windows
installer contains a large subset of the 2.5 version of Python, and
the Linux RPM and Mac OS X dmg installations will use the latest
version of Python, if any, that is already present or subsequently
installed. The usage case of launching Python, e.g. using IPython,
and dynamically importing NEURON also works but presently
requires the extra installation steps described in the Appendix.
Numpy is not a prerequisite but, if present, copying of vectors
between Numpy and NEURON is very effi cient. The Python xml
module is used in the present standard distribution to extend
NEURON’s Import3D and CellBuild tools to allow reading of
MorphML (Crook et al., 2007) and NeuroML (Goddard et al.,
2001) model specifi cations. The Hoc portion of the xml readers
makes heavy use of Python maps and lists.

With the release of NEURON version 7.0, the Python interface
has largely stabilized, and is ready for general use. We recommend
that new users of NEURON and those already familiar with Python
should use Python rather than Hoc to develop new models. Those
with considerable expertise in Hoc but without Python knowledge
are likely to be more productive by continuing to develop models
with Hoc, but accessing Python’s powerful data structures, large
standard library and external numerical/plotting packages through
nrnpython() and the PythonObject class. There is no need to
rewrite legacy code in Python, as it will continue to work using the
Hoc interpreter or mixed in with new Python code and accessed
via the h object.

Users are encouraged to submit bug reports and feature requests
at the NEURON forum (http://www.neuron.yale.edu/
phpBB) in the “NEURON+Python” sub-section, so that we can
continue to improve the Python interface in response to users’
experiences.

APPENDIX
Here we give detailed instructions for building and installing
NEURON as a Python extension. Note that, as mentioned earlier,
to use NEURON with Python embedded you can use one of the
binary installers.

The following assumes a standard GNU build environment,
and a bash shell. You will need both NEURON (nrn-VERSION.
tar.gz) and InterViews (iv-VERSION.tar.gz) sources, avail-
able through the “Download and Install” link at http://www.
neuron.yale.edu.

First, build and install Interviews:

$ N= 'pwd '
$ tar xzf iv-17.tar.gz
$ cd iv-17

$./configure --prefix= 'pwd '
$ make
$ make install

Then build and install NEURON:

$ cd..
$ tar xzf nrn-7.0.tar.gz
$ cd nrn-7.0
$./configure --prefix= 'pwd '\
 --with-iv=$N/iv-17 --with-nrnpython
$ make
$ make install

Here, the “\” at the end of the fourth line, indicates it is con-
tinued on the fi fth. If you want to run parallel NEURON (Hines
et al., 2008; Migliore et al., 2006), add --with-paranrn to the
configure options. This requires a version of MPI to be installed,
for example MPICH2 (Gropp, 2002) or openMPI (Gabriel et al.,
2004).

Now add the NEURON bin directory to your PATH:

$ export PATH=$N/nrn-7.0/i686/bin:$PATH

(Here i686 will be different for different CPU architectures).
Now build and install the NEURON shared library for

Python:

$ cd src/nrnpython
python setup.py install

This command installs the neuron package to the Python site-
packages directory, which usually requires root access. If you don’t
have root access, you can install it locally using --prefix to specify
a location under your home directory:

$ python setup.py install\
 --prefix=$HOME/local

This will install the neuron package to $HOME/local/lib/
python/site-packages under your home directory. You will
then have to add this directory to the PYTHONPATH environ-
ment variable:

$ export PYTHONPATH=$PYTHONPATH:\
$HOME/local/lib/python/site-packages

ACKNOWLEDGEMENTS
This work was supported by NIH grant NS11613, by the European
Union under the Bio-inspired Intelligent Information Systems pro-
gram, project reference IST-2004-15879 (FACETS), and by a grant
from the Swiss National Science Foundation.

REFERENCES
A b r a h a m s , D. , a n d G r o s s e -

Kunstleve, R. W. (2003). Building
hybrid systems with Boost.Python.
C/C++ Users J. 21. http://www.ddj.
com/cpp/184401666.

Beazley, D. M. (1996). SWIG: an easy
to use tool for integrating scripting

 languages with C and C++. In
TCLTK’96: Proceedings of the 4th
Conference on USENIX Tcl/Tk
Workshop, 1996, (Monterey, CA,
USENIX Association), pp. 129–139.

Carnevale, N. T., and Hines, M. L. (2006).
The NEURON Book. Cambridge,
Cambridge University Press.

Crook, S., Gleeson, P., Howell, F., Svitak, J.,
and Silver, R. (2007). MorphML: level 1
of the NeuroML standards for neuro-
nal morphology data and model speci-
fi cation. Neuroinformatics 5, 96–104.

Dalcín, L., Paza, R., Stortia, M., and
D’Elíaa, J. (2008). MPI for Python:
performance improvements and

MPI-2 extensions. J. Parallel Distrib.
Comput. 68, 655–662.

Dubois, P. F. (2007). Python: batteries
included. IEEE Comput. Sci. Eng. 9, 7–9.

Gabriel, E., Fagg, G. E., Bosilca, G.,
Ang s k u n , T. , D o n g a r r a , J . J . ,
Squyres, J M., Sahay, V., Kambadur, P.,
Barrett , B. , Lumsdaine, A. ,

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 1 | 12

Hines et al. NEURON and Python

Castain, R. H. , Danie l , D. J. ,
Graham, R. L., and Woodall T. S.
(2004). Open MPI: goals, concept,
and design of a next generation MPI
implementation. In Proceedings, 11th
European PVM/MPI Users’ Group
Meeting, D. Kranzlmüller, P. Kacsuk
and J. Dongara, eds (Budapest,
Springer), pp. 97–104.

Goddard, N., Hucka, M., Howell, F.,
Cornelis, H., Shankar, K., and
Beeman, D. (2001). Towards NeuroML:
model description methods for collabo-
rative modeling in neuroscience. Philos.
Trans. R. Soc. B 356, 1209–1228.

Gropp, W. (2002). MPICH2: a new start for
MPI implementations. In Proceedings
of the 9th European PVM/MPI Users’
Group Meeting on Recent Advances in
Parallel Virtual Machine and Message

Passing Interface, D. Kranzlmüller,
P. Kacsuk, J. Dongara and J. Volkert,
eds (London, Springer-Verlag), p. 7.

Hines, M., and Carnevale, N. (2008).
Translating network models to parallel
hardware in NEURON. J. Neurosci.
Methods 169, 425–455.

Hines, M. L., and Carnevale, N. T. (2000).
Expanding NEURON’s repertoire of
mechanisms with NMODL. Neural
Comput. 12, 995–1007.

Hines, M. L., Markram, H., and
Schuermann, F. (2008). Fully implicit
parallel simulation of single neurons.
J. Comput. Neurosci. 25, 439–448.

Hunter, J. D. (2007). Matplotlib: a 2D
graphics environment. IEEE Comput.
Sci. Eng. 9, 90–95.

Jones, E., Oliphant, T., Peterson, P., et al.
(2001). SciPy: open source scientifi c

tools for Python. URL http://www.
scipy.org/.

Kernighan, B., and Pike, R. (1984). The
Unix Programming Environment.
Englewood Cliffs, NJ, Prentice Hall.

Migliore, M., Cannia, C., Lytton, W. W.,
Markram, H., Hines, and M. L. (2006).
Parallel network simulations with
NEURON. J. Comput. Neurosci. 21,
119–129.

Oliphant, T. E. (2007). Python for scien-
tific computing. IEEE Comput. Sci.
Eng. 9, 10–20.

Prez, F., and Granger, B. E. (2007). IPython: a
system for interactive scientifi c comput-
ing. IEEE Comput. Sci. Eng. 9, 21–29.

Conflict of Interest Statement: The
authors declare that the research pre-
sented in this paper was conducted in the

absence of any commercial or fi nancial
relationships that could be construed as
a potential confl ict of interest.

Received: 24 September 2008; paper pend-
ing published: 21 October 2008; accepted:
05 January 2009; published online: 28
January 2009
Citation: Hines ML, Davison AP and
Muller E (2009) NEURON and Python.
Front. Neuroinform. (2009) 3:1. doi:
10.3389/neuro.11.001.2009
Copyright © 2009 Hines, Davison and
Muller. This is an open-access article subject
to an exclusive license agreement between
the authors and the Frontiers Research
Foundation, which permits unrestricted
use, distribution, and reproduction in any
medium, provided the original authors and
source are credited.

