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The NEURON simulation program now allows Python to be used, alone or in combination with 
NEURON’s traditional Hoc interpreter. Adding Python to NEURON has the immediate benefi t 
of making available a very extensive suite of analysis tools written for engineering and science. 
It also catalyzes NEURON software development by offering users a modern programming 
tool that is recognized for its fl exibility and power to create and maintain complex programs. At 
the same time, nothing is lost because all existing models written in Hoc, including graphical 
user interface tools, continue to work without change and are also available within the Python 
context. An example of the benefi ts of Python availability is the use of the xml module in 
implementing NEURON’s Import3D and CellBuild tools to read MorphML and NeuroML model 
specifi cations.
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for the purely numerical issue of how many compartments are 
used to represent each of the cable sections. In the early 90’s, Hoc 
syntax was again extended to provide some limited support for 
classes and objects, that is, data encapsulation and polymorphism, 
but not inheritance.

Though Hoc has served well, continuing development and 
maintenance of a general programming language steals signifi cant 
time and effort from neurobiology domain-specifi c improvements. 
Furthermore, Hoc has turned out to be an orphan language limited 
to NEURON users. What is desirable is a modern programming 
language such as Python, which provides expressive syntax, pow-
erful debugging capabilities, and support for modularity, facili-
tating the construction and maintenance of complex programs. 
Python has proved its utility by giving rise to a large and diverse 
community of software developers who are making reusable tools 
that are easy to plug-in to the user’s code, the so-called “batteries 
included” (Dubois, 2007). In the domain of scientifi c computing, 
some examples include Numpy (Oliphant, 2007) and Scipy (Jones 
et al., 2001) for core scientifi c functionality, Matplotlib (Hunter, 
2007) for 2-D plotting, and IPython (Prez and Granger, 2007) for 
a convenient interactive environment.

There are three distinct ways to use NEURON with Python. One 
is to run the NEURON program with Python as the interpreter 
accepting interactive commands in the terminal window. Another 
is to run NEURON with Hoc as the interactive interpreter and 
access Python functionality through Hoc objects and function calls. 
These fi rst two cases we will refer to as embedded Python. The third 
way is to dynamically import NEURON in a running Python or 
IPython instance, which we will refer to as using NEURON as an 
extension module for Python.

In the sections to follow, we describe the steps required to use 
NEURON with Python, from a user’s point of view, and the tech-
niques employed to enable NEURON and Python to work together, 
from a developer’s point of view. We begin in Section “Getting 

INTRODUCTION
The NEURON simulation environment has become widely used 
in the fi eld of computational neuroscience, with more than 700 
papers reporting work employing it as of April, 2008. In large part 
this is because of its fl exibility and the fact that it is continually 
being extended to meet the evolving research needs of its user 
community. Experience shows that most of these needs have a 
software solution that has already been implemented elsewhere in 
the domain of scientifi c computing. The problem is one of interfac-
ing an existing package with NEURON’s interpreter. Some cases 
demand intimate knowledge of NEURON’s internals and consider-
able effort; examples include network parallelization with MPI, and 
adoption of Sundials for adaptive integration. There are many more 
cases in which existing packages could potentially be employed by 
NEURON users. Few people, however, have the specialized exper-
tise required to manually interface an existing software package 
and the creation of such interfaces is tedious. Instead of laborious 
piecemeal adoption of individual packages that requires interven-
tion by a handful of experts, a better approach is to offer Python 
as an alternative interpreter so that a huge number of resources 
becomes available at the cost of only minimal interface code that 
most users can write for themselves.

Since 1984, the NEURON simulation environment has used the 
Hoc interpreter (Kernighan and Pike, 1984) for setup and control 
of neural simulations. Hoc has a syntax for expressions and con-
trol fl ow vaguely similar to the C language. Hoc is not exactly an 
interpreted language since, analogous to Pascal, Java, or Python, 
Hoc statements are fi rst dynamically compiled to an internal stack 
machine representation using a yacc parser and then the stack 
machine statements are executed. A fundamental extension to Hoc 
syntax was made in the late 80’s in order to represent the notion of 
continuous cables, called sections. Sections are connected to form 
a tree shaped structure and their principle purpose is to allow the 
user to specify the physical properties of a neuron without regard 
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Started Using NEURON with Python” by describing how to install 
and run NEURON with Python. We then demonstrate how model-
ling is carried out using Python by comparing it side-by-side with 
Hoc syntax in Section “Writing NEURON Models in Python”. In 
Section “Using Python Code from Hoc”, we describe how Python 
can be accessed from the Hoc interpreter. In Section “Technical 
Aspects”, we discuss some technical aspects of the implementation 
of the Python-NEURON interaction. Finally, in Section “Importing 
MorphML Files — A Practical Example” we give a detailed, practical 
example, from the current NEURON distribution, of combining 
Python and Hoc.

The code listings in Figures 1–3 are available for public down-
load from the ModelDB model repository of the Senselab database, 
http://senselab.med.yale.edu (accession number 116491).

GETTING STARTED USING NEURON WITH PYTHON
INSTALLATION
NEURON works with Python on Windows, Mac OS X, Linux, and-
many other platforms such as the IBM Blue Gene/L/P and Cray XT3 
supercomputers. Detailed installation information can be found 
at http://www.neuron. yale.edu by following the “Download 
and Install” link.

Binary installers are available for Windows, OS X and RPM-based 
Linux systems. The Windows installer contains a large portion of 
Cygwin Python 2.5. On OS X and Linux, the latest version of Python 
2.3–2.5 previously or subsequently installed is dynamically loaded 
when NEURON is launched. The binary installers provide Python 
embedded in NEURON, but do not support using NEURON as an 
extension module for Python or IPython.

If you would like to use NEURON as an extension module 
for Python or IPython, if no installer for your platform exists, 
or if you need to customize the installation (e.g. enable parallel/
MPI support, or change the location of binaries), you should 
instead get the source code for the standard distribution, also 
available from the above “Download and Install” link, and com-
pile it for your machine. Further instructions for this are given 
in the Appendix.

BASIC USE
NEURON may be started without the graphical user interface 
(GUI) using nrniv or with the GUI using nrngui. To use Python 
as the interpreter, rather than Hoc, use the -python option:

$ nrniv -python
NEURON -- VERSION 7.0 (228: fbb244f333a9)
    2008-11-25
Duke, Yale, and the BlueBrain Project -- 
    Copyright 1984-2008
See http://www.neuron.yale.edu/credits.html

>>> from neuron import h

If there are any NEURON NMODL extension mechanisms (Hines 
and Carnevale, 2000) in the working directory, and they have been 
compiled with nrnivmodl, they will be loaded automatically.

Alternatively, you may wish to use NEURON as an exten-
sion to the normal Python interpreter, or to IPython (Prez and 

Granger, 2007), a more interactive variant. To do so, you must build 
NEURON from source and install the NEURON shared library 
for Python, as described in the Appendix. In Python (or IPython) 
then, NEURON is started (and any NMODL mechanisms loaded) 
when you import neuron:

$ ipython
[…]

In [1]: from neuron import h
NEURON -- VERSION 7.0 (228: fbb244f333a9) 
    2008-11-25
Duke, Yale, and the BlueBrain Project -- 
    Copyright 1984-2008
See http://www.neuron.yale.edu/credits.html

and the NEURON GUI is started by importing the neuron.gui 
module:

In [2]: from neuron import gui

The h object that we import from the neuron module is the 
principal interface to NEURON’s functionality. h is a HocObject 
instance, and has two main functions. First, it gives access to the 
top-level of the Hoc interpreter, e.g.:

>>> h('create soma')
>>> h.soma
< nrn.Section object at 0x8194080>

Second, it makes any of the classes defi ned in Hoc available to 
Python:

>>> stim = h.IClamp(0.5, sec=h.soma)

Note that the soma section created through the Hoc inter-
preter appears in Python as a Section object. We can also create 
Sections directly in Python, e.g.

>>> dend = h.Section()

These two section objects are entirely equivalent, the only 
difference being that the name “dend” is not accessible within 
the Hoc interpreter. In addition to the HocObject class (and 
through it, any class defi ned in Hoc) and the Section class, the 
Python neuron module also provides the Segment, Mechanism 
and RangeVariable classes. More in-depth examples of using 
NEURON from Python are given in Section “Writing NEURON 
Models in Python”, while using Python code from Hoc is introduced 
in Section “Using Python Code from Hoc”.

STARTING PARALLEL NEURON
Assuming NEURON was built with parallel support as discussed 
in the Appendix, suitably parallelized Hoc scripts are started using 
the MPI job execution command, typically mpiexec (Hines and 
Carnevale, 2008) or the equivalent for your MPI implementation. 
When Python is used rather than Hoc, the same parallelism features 
are supported, with only slight changes in the execution model. 
Both embedded Python (nrniv -python) and NEURON as an 
extension module to Python are supported. MPI job execution for 
embedded Python is the same as standard NEURON/Hoc, except 



Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 1 | 3

Hines et al. NEURON and Python

from itertools import chain
from neuron import h
Section = h.Section

# --------------------- Model specification ---------------------

# topology
noxa,ralisab,lacipa,amosetaerc#)(noitceS=amos

apical = Section()
basilar = Section()
axon = Section()

apical.connect(soma , 1, 0) # connect apical(0), soma(1)
basilar.connect(soma , 0, 0) # connect basilar(0), soma(0)
axon.connect(soma , 0, 0) # connect axon(0), soma(0)

# geometry
# soma {

03=L#03=L.amos
1=gesn#1=gesn.amos
03=maid#03=maid.amos

# }
# apical {

006=L#006=L.lacipa
32=gesn#32=gesn.lacipa

1=maid#1=maid.lacipa
# }
# basilar {

002=L#002=L.ralisab
5=gesn#5=gesn.ralisab
2=maid#2=maid.ralisab

# }
# axon {

0001=L#0001=L.noxa
73=gesn#73=gesn.noxa

1=maid#1=maid.noxa
# }

# biophysics
for sec in h.allsec(): # forall {

001=aR#001=aR.ces
1=mc#1=mc.ces

# }

{amos#)'hh'(tresni.amos
# insert hh
# }

apical.insert('pas ')  # apical {
# insert pas

basilar.insert('pas ')  # g_pas = 0.0002
# e_pas = -65

for seg in chain(apical , basilar): # }
seg.pas.g = 0.0002 # basilar {

saptresni#56-=e.sap.ges
# g_pas = 0.0002
# e_pas = -65
# }

{noxa#)'hh'(tresni.noxa
# insert hh
# }

FIGURE 1 | Code listing for a simple model neuron: building the neuron. The Python code is on the left and the equivalent Hoc code on the right.
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# --------------------- Instrumentation ---------------------

nysferjbo#tupnicitpanys#
syn = h.AlphaSynapse(0.5, sec=soma) # soma syn = new AlphaSynapse (0.5)

5.0=tesno.nys#5.0=tesno.nys
50.0=xamg.nys#50.0=xamg.nys

0=e.nys#0=e.nys

# objref g
)(hparGwen=g#)(hparG.h=g

g.size(0, 5, -80, 40) # g.size(0, 5, -80, 40)
g.addvar('v(0.5)', sec=soma) # g.addvar("soma.v(0.5)")

# --------------------- Simulation control ---------------------

520.0=td#520.0=td.h
5=potst#5=potst

56-=tini_v#56-=tini_v

{)(ezilaitinicorp#:)(ezilaitinifed
h.finitialize(v_init) # finitialize(v_init)

)(tnerrucf#)(tnerrucf.h
# }

{)(etargetnicorp#:)(etargetnifed
)(nigeb.g#)(nigeb.g

while h.t < tstop: # while (t < tstop) {
h.fadvance() # fadvance()

)t(tolp.g#)t.h(tolp.g
# }

)(hsulf.g#
# }

)(hsulf.g

{)(ogcorp#:)(ogfed
)(ezilaitini#)(ezilaitini

)(etargetni#)(etargetni
# }

)(og#)(og

FIGURE 2 | Code listing for a simple model neuron (continued from Figure 1): instrumenting and running the model. The Python code is on the left and the 
equivalent Hoc code on the right.

that an extra -python command line option must be passed to 
nrniv:

$ mpiexec -np 4 nrniv -python -mpi nrn-7.0/\
src/nrnpython/examples/test1.py

numprocs=4
NEURON -- VERSION 7.0 (228: fbb244f333a9) 
    2008-11-25

Duke, Yale, and the BlueBrain Project -- 
    Copyright 1984-2008
See http://www.neuron.yale.edu/credits.html
NEURON thinks I am 0 of 4
NEURON thinks I am 2 of 4
NEURON thinks I am 3 of 4
NEURON thinks I am 1 of 4

For users who prefer to use NEURON as an extension module 
to Python or IPython, execution is as follows:

$ mpiexec -np 4 python nrn-7.0/src/nrnpython/\
examples/test0.py

MPI_Initialized==true, enabling MPI 
    functionality.
numprocs=4
NEURON -- VERSION 7.0 (228: fbb244f333a9) 
    2008-11-25
Duke, Yale, and the BlueBrain Project -- 
    Copyright 1984-2008
See http://www.neuron.yale.edu/credits.html

mpi4py thinks I am 2 of 4, NEURON thinks I am 
    2 of 4
mpi4py thinks I am 1 of 4, NEURON thinks I am 
    1 of 4
mpi4py thinks I am 3 of 4, NEURON thinks I am
    3 of 4
mpi4py thinks I am 0 of 4, NEURON thinks I am
    0 of 4

However, there is one important caveat: The NEURON exten-
sion module does not initialize MPI itself, but rather delegates 
this job to Python. To initialize MPI in Python, one must import a 
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Python MPI module, such as “MPI for Python” (mpi4py) (Dalcín 
et al., 2008), prior to importing neuron:

from mpi4py import MPI
from neuron import h

pc = h.ParallelContext()

s = "mpi4py thinks I am %d of %d,\
 NEURON thinks I am %d of %d\n"

cw = MPI.COMM_WORLD
print s % (cw.rank, cw.size, \
           pc.id(),pc.nhost())

pc.done()

The module mpi4py is available from the Python Package 
Index (http://pypi.python.org).

ONLINE HELP
For new users of NEURON with Python, a convenient starting 
place for help is Python online help, provided through the global 
function help, which takes one argument, the object on which 
you would like help:

>>> import neuron
>>> help(neuron)
Help on package neuron:

NAME
     neuron

FILE
     /usr/lib/python2.5/site-packages/neuron/
         __init__.py

DESCRIPTION
    neuron
    ======

    For empirically-based simulations of 
        neurons and networks of neurons in 
        Python.

    This is the top-level module of the official 
        python interface to the NEURON simulation 
        environment (http://www.neuron.yale.
        edu/neuron/).

    For a list of available names, try 
        dir(neuron).

[…]

For commonly used Hoc classes, such as Vector, APCount, 
NetCon, etc., helpful reminders of constructor arguments, attributes 
and units with Python syntax examples are available at the Python 
prompt:

>>> from neuron import h
>>> help(h.APCount)
NEURON+Python Online Help System
================================

class APCount

pointprocess

apc = APCount(segment)
apc.thresh --- mV
apc.n --
apc.time --- ms
apc.record(vector)

Description:

Counts the number of times the voltage at its 
location crosses a threshold voltage in the 
positive direction. n contains the count and time 
contains the time of last crossing.

[…]

from neuron import h

# create pre- and post -synaptic sections
pre = h.Section()
post = h.Section()

for sec in pre, post:
sec.insert('hh')

# inject current in the pre-synaptic section
stim = h.IClamp(0.5, sec=pre)
stim.amp = 10.0
stim.delay = 5.0
stim.dur = 5.0

# create a synapse in the pre-synaptic section
syn = h.ExpSyn(0.5, sec=post)

# connect the pre-synaptic section to the
# synapse object
nc = h.NetCon(pre(0.5)._ref_v , syn)
nc.weight[0] = 2.0

vec = {}
for var in 'v_pre ', 'v_post ', 'i_syn ', 't':

vec[var] = h.Vector()

# record the membrane potentials and
# synaptic currents
vec['v_pre '].record(pre(0.5)._ref_v)
vec['v_post '].record(post(0.5)._ref_v)
vec['i_syn '].record(syn._ref_i)
vec['t'].record(h._ref_t)

# run the simulation
h.load_file("stdrun.hoc")
h.init()
h.tstop = 20.0
h.run()

# plot the results
import pylab
pylab.subplot(2,1,1)
pylab.plot(vec['t'], vec['v_pre '],

vec['t'], vec['v_post '])
pylab.subplot(2,1,2)
pylab.plot(vec['t'], vec['i_syn '])

FIGURE 3 | Code listing demonstrating the use of ref and plotting.
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In IPython, the ? symbol is a quick shorthand roughly equivalent 
to online help:

In [3]: ? h.APCount

Type:            HocObject
Base Class:      <type 'hoc.HocObject'>
String Form:     <hoc.HocObject object at 0
    xb79022f0>
Namespace:       Interactive
Length:          0
Docstring:
    class APCount

    pointprocess

[…]

WRITING NEURON MODELS IN PYTHON
To show how a model neuron is implemented using Python, we 
repeat the example described in Chapter 6 of the NEURON Book 
(Carnevale and Hines, 2006), but using Python rather than Hoc. 
The code listing is given in Figures 1 and 2, and has Python code 
on the left and the equivalent Hoc code on the right.

There are only a few syntax and conceptual differences between 
the Python and Hoc versions, and we expect that Hoc users will have 
little diffi culty transitioning to Python, should they wish to do so 
(Hoc will continue to be supported, of course). We now comment 
on the most signifi cant differences.

First are the import statements, absent from the Hoc listing, 
although Hoc does have the xopen() function that has similar 
functionality. Since NEURON is now only one of potentially many 
modules living within the Python interpreter, it must live in its own 
namespace, so that the names of NEURON-specifi c classes and var-
iables do not interfere with those from other modules. Of particular 
importance is the object h, which is the top-level Hoc interpreter, 
and gives access to Hoc classes, functions and variables.

While sections are created using the create keyword in Hoc, in 
Python we instantiate a Section object. Hence the important dis-
tinction in Hoc between sections and objects is removed: Everything 
in Python is an object. Similarly, the connect keyword in Hoc is 
replaced by a method call of the child section object in Python.

In NEURON, each cable section is made up one or more segments, 
and the diameter is a property of each segment. Hoc’s shorthand, 
allowing the diam attribute to be set on all segments by setting it on 
the section is also available in Python. Inhomogeneous values for 
range variables such as diam can also be set on the specifi c Segment 
object, returned by calling the Section object as a function.

The forall keyword in Hoc, which iterates over all sections, is 
replaced by the allsec() method of the top-level Hoc interpreter 
object h. Here again we see, in setting the membrane capacitance 
cm, the Hoc and Python shorthands to set the value for all segments 
at once, without having to explicitly iterate over all Segments.

In instrumenting the model, we see that Python and Hoc objects 
have very similar behaviours. In general, all Hoc classes (Vector, 
List, NetCon, etc) are accessible within Python via the h object. 
Hoc object references must be declared using the objref keyword, 
and objects created using new, but once created, attribute access 
and method calls have near-identical syntax in Python and Hoc. 

There are three major exceptions to this rule. First, many func-
tions and methods act in the context of the ‘currently-accessed 
section’. To support this in Python, these functions take a keyword 
argument sec. Second, certain method calls take Hoc expressions 
as arguments, so, for example, in adding the membrane potential 
of the soma section to the list of variables to plot, in Hoc we use 
g.addvar(“soma.v(0.5)”), but in the Python version the vari-
able soma does not exist on the Hoc side, and so we have to pass 
the soma Section object as the sec keyword argument so that the 
Hoc expression is evaluated in the context of that section. Third, a 
number of functions/methods take Hoc variable references (indi-
cated by preceding the variable name with the ‘&’ character) as 
arguments, the most important being Vector.record(&var) 
and NetCon(&var, target). The equivalent syntax in Python 
is to precede the variable name with _ref_, e.g.: Vector.record
(_ref_var). For example, given ‘pre’ and ‘post’ Section objects and 
a dictionary of Hoc Vector objects addressed by a mnemonic string, 
recording the voltage at the centres of those sections is activated 
by the statements:

# record the membrane potentials and
# synaptic currents
vec['v_pre'].record(pre(0.5)._ref_v)
vec['v_post'].record(post(0.5)._ref_v)
vec['i_syn'].record(syn._ref_i)
vec['t'].record(h._ref_t)

Figure 3 shows the complete listing with the above fragment 
in context and also illustrates the ease with which NEURON 
code can be mixed with third-party code such as the power-
ful Pylab/Matplotlib plotting package (http://matplotlib.
sourceforge.net/): NEURON Vector objects work just as well 
as Python lists or arrays as arguments to the plot() function.

USING USER-DEFINED MECHANISMS
One of NEURON’s most powerful features is the ability to write new 
mechanisms using the NMODL language, and then compile these 
mechanisms into the executable or into dynamic libraries (DLLs). 
The standard behaviour of NEURON is to load any mechanisms 
that have been compiled in the working directory. It is also pos-
sible to load DLLs from elsewhere in the fi lesystem using the Hoc 
function nrn_load_dll(). This has the disadvantage that the full 
path to the shared library fi le must be provided, which can be hard 
to determine, since the fi le is within a hidden folder which itself is 
within a folder with a platform- specifi c name. To simplify this, the 
neuron Python module adds a function load_mechanisms(), 
which takes as an argument the path to the directory containing the 
NMODL source fi les, and searches for shared library fi les below this 
directory. Furthermore, in analogy to the PYTHONPATH environ-
ment variable which contains a list of paths to search for importable 
Python modules, if you have defi ned a NRN_NMODL_PATH environ-
ment variable, NEURON will search these paths for shared libraries 
and load them at import time.

USING USER-DEFINED CLASSES
One of the principal advantages of writing NEURON programs in 
Python rather than Hoc, especially for large, complex programs, 
is that Python is a fully object-oriented language, supporting 
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 encapsulation, polymorphism and inheritance, whereas Hoc sup-
ports only encapsulation and a limited form of polymorphism.

Just as with built-in Hoc classes, access to attributes and meth-
ods of user-defi ned Hoc classes (using the begintemplate/
endtemplate keywords) uses the same syntax in Python as in 
Hoc. For example, if we have the following user-defi ned Hoc class 
in the fi le string.hoc:

begintemplate String
  public s
  strdef s
  proc init() {
     s = $s1
  }
endtemplate String

then we can use it as follows:

>>> from neuron import h
>>> h.xopen("string.hoc")
>>> my_string = h.String("Hello")
>>> my_string.s
'Hello'

It is also possible to subclass both built-in and user-defi ned 
Hoc classes in Python, although with the restriction that multiple 
inheritance from Hoc-derived classes is not possible. Subclassing 
requires the use of the hclass class factory:

>>> from neuron import h, hclass
>>> class MyNetStim(hclass(h.NetStim)):
…      """NetStim that allows setting
…         parameters on creation."""
…
…      def __init__(self, start=50, noise=0,
…                   interval=10, number=10):
…          self.start = start
…          self.interval = interval
…          self.noise = noise
…          self.number = number
…
>>> stim = MyNetStim(start=0, noise=1)
>>> stim.noise
1.0
>>> class MyString(hclass(h.String)):
…     def repeat(self, n):
…       return self.s*n
…
>>> my_string = MyString("Hello")
>>> my_string.repeat(3)
'HelloHelloHello'

NUMERICAL DATA TRANSFER BETWEEN HOC AND PYTHON
The Hoc Vector object provides NEURON with a convenient 
and effi cient container for storing and manipulating collec-
tions of numerical values, such as membrane potential traces or 
spike-times.

In Python, Hoc Vector objects expose iterator and indexing 
methods, such that they can be used in most cases where Numpy 

(Oliphant, 2007), Scipy (Jones et al., 2001), and Matplotlib 
(Hunter, 2007), the most important scientifi c modules, accept 
lists.

To benefi t from the elegant and expressive notation of Numpy 
for N-dimensional array manipulation, and from results computed 
using the large and growing repertoire of scientifi c packages avail-
able for Python, which largely return Numpy arrays, several opti-
mized methods are available for the conversion of Hoc Vectors 
to and from Numpy arrays.

Transferring one-dimensional Numpy arrays and non-nested 
lists with fl oat or integer items to Hoc Vectors is straightfor-
ward, as the Hoc Vector constructor accepts an array or list as 
an argument:

>>> v1 = h.Vector(a)
>>> v2 = h.Vector(l)

Transferring a Hoc Vector to an array or list is equally straight 
forward:

>>> a = array(v1)
>>> print a
[ 3. 2. 3. 2.]
>>> l = list(v2)
>>> print l
[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]

If you would like to transfer between an existing Numpy array 
and a Hoc Vector, there are the Hoc Vector “in-place” member 
functions to_python and from_python:

>>> v3 = h.Vector(len(a))
>>> v3.from_python(a)
>>> print list(v3)
[3.0, 2.0, 3.0, 2.0]
>>> b = zeros_like(a)
>>> v3.to_python(b)
>>> print b
[ 3. 2. 3. 2.]

USING PYTHON CODE FROM HOC
For interacting with Python, Hoc provides the nrnpython() func-
tion and the PythonObject class. nrnpython() takes as its one 
argument a string that can be any Python statement, e.g.:

oc> nrnpython("a = 3.14159")
oc> nrnpython("print a")
3.14159

PythonObject has two main uses. Creating an instance using 
new returns an object that encapsulates the top-level Python inter-
preter, e.g.

oc> objref py
oc> py = new PythonObject()
oc> py.b = "hello"
oc> nrnpython("print b")
hello

Strings and fl oat/double values move back and forth between 
Python and Hoc (although Python integers become double values in 
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Hoc and remain doubles if they are passed back to Python). All other 
Python objects become instances of the PythonObject class:

oc> objref dict
oc> nrnpython("d = {'a':1, 'b':2, 'c':3}")
oc> dict = py.d
oc> print dict
PythonObject [12]
oc> print dict.__getitem__("c")
3.0

For objects (such as lists and tuples) that take integer indices 
or are callable as functions, there is a special method named ‘_’ 
(underscore):

oc> objref lst
oc> nrnpython("c = [7, 8.0, 'nine']")
oc> lst = py.c
oc> for i = 0, lst.__len__() -1 { print lst._[i] }
7.0
8.0
nine

The only other trap for the unwary is that both single and double 
quotes are valid for string defi nitions in Python, but only double 
quotes are accepted by Hoc!

A detailed example of using Python from Hoc, and of the value 
of being able to access its large standard library, is given in Section 
“Importing MorphML Files — A Practical Example” for the case 
of importing 3D morphology from a MorphML fi le.

TECHNICAL ASPECTS
Tools for building Python extensions, such as BOOST.Python 
(Abrahams and Grosse-Kunstleve, 2003) or SWIG (Beazley, 1996) 
might have been useful in more expert hands. However, the ability 
of users to declare variables, objects, and classes in Hoc, the fact 
that many existing C++ classes and class methods were not gen-
erally meant to be directly visible to the user except through the 
intermediation of Hoc syntax, and the fact that the Hoc connection 
to the internal NEURON code was already reasonably uniform, 
of reasonable size, and understood by us in depth, suggested to us 
that a Python interface written using the Python C-API (http://
docs.python.org/c-api/) that reused as much as possible the 
existing Hoc connection to internal data and functions would 
give us the general control we needed, and allow us to accomplish 
the project in reasonable time. It should be emphasized that this 
design decision to reuse a few of the C functions that manipulate 
the Hoc runtime stack neither hinders nor assists any future work 
on development of APIs for major NEURON components, such 
as the numerical solvers, which may be useful to other simulators. 
However, our interface implementation does provide a compact 
example of how an application can communicate with NEURON 
within a shared address space and therefore makes the the process 
of dynamically linking NEURON into a user application much 
simpler.

Since double precision variables, arrays, constant strings, 
functions, and objects have very similar syntax and semantics 
in Hoc and Python, a single PyTypeObject structure called 
HocObjectType associated with a PyHocObject structure for 

a Python object instance containing Hoc Symbol and Object 
fi elds was suffi cient to allow Python access to all these Hoc 
data-types. When a name is given to an attribute method of the 
HocObjectType (the refl exive self PyHocObject is also an argu-
ment to the method), the name is looked up in Hoc’s symbol table 
for the PyHocObject Hoc Object fi eld, and the symbol along with 
the Hoc object calls the same function that the Hoc interpreter 
would call to resolve the attribute at runtime. The attribute, which 
is typically a number, string, or HocObject, is then wrapped in 
a Python object of the proper type and returned. Function calls 
from Python into Hoc consist of pushing the function arguments 
onto the Hoc runtime stack and, again, calling the same function 
the Hoc interpreter would call at runtime. Thus, Python state-
ments involving PyHocObject objects end up generating and 
executing the same Hoc stack machine code at runtime that would 
be accomplished by the corresponding Hoc statement. It should 
be noted that a great deal of interpreter effi ciency can be gained 
in loop body statements by factoring out as much as possible the 
precursor objects. For example:

from neuron import h
vec = h.Vector (1000000)
a = 0
for i in xrange (1000000):
    a += vec.x[i]

can be optimized by avoiding the repeated search for the 
attribute x:

vx = vec.x
for i in xrange (1000000):
    a += vx[i]

The former takes 1.3 s on a 3 GHz machine, while the latter 
takes 1.0 s.

A critical requirement was to have as natural a correspondence 
as possible in Python for the special Hoc syntax for Sections, posi-
tion along a Section, membrane mechanisms, and Range Variables. 
This was achieved through the C++ defi nition of corresponding 
types in Python to create instances for: NPySecObj, NPySegObj, 
NPyMechObj, and NPyRangeVar. For example, the NPySegObj 
segment (compartment) object points to the NPySecObj of which 
it is a part, specifi es its location, x, and also contains a fi eld to 
help in iterating over the mechanisms that exist at that location. 
An NPyRangeVar has, in practice, required only a pointer to the 
compartment (NPySegObj) where it exists and a pointer to its Hoc 
Symbol. A Section represents a continuous cable and evaluation of 
or assignment to a variable associated with a particular location 
always involves specifying both which Section and the relative arc 
length location (0 ≤ x ≤1) along the Section. Internally, NEURON 
employs a Section stack to determine the working Section and 
Hoc syntax provided three ways to specify the top of the Section 
stack. The Hoc Section.variable(x) syntax has a direct cor-
respondence to the Python Section(x).variable syntax and 
the latter perhaps has more clarity. The Hoc Section { Hoc 
statements } syntax is unique to NEURON and for the Python 
side we were reduced to explicit management of the Section stack 
with Section.push() with an explicit h.pop_section() as the 
fi nal statement. This gets tedious for single function calls and so in 
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Python we allow the keyword argument, sec=Section, to push 
and pop the Section during the scope of the Hoc function call. 
The Hoc access Section statement does not require a Python 
counterpart. However, the Python statement, sec = h.cas(), 
returns the top of the Section stack.

There were several cases of syntax mismatch which could only be 
overcome by the addition of new idioms. Hoc syntax does not allow 
an object to be treated as a function, so in Hoc we use po._( …). 
Python does not allow call by reference arguments. Therefore, when 
a Hoc function called from Python requires a reference argument, 
the variable name must be prefi xed by ‘_ref_’. Of course, such 
variables can only be Hoc variables but that is not a diffi culty in 
practice since either the need is to pass a Hoc RangeVariable or 
the Python program can construct a Hoc variable for use in these 
cases. Since all numbers in Hoc are double precision, type errors 
are raised when Python expects an integer. For the case of array 
arguments, the Hoc-to-Python interface converts the doubles 
to integers automatically. Unfortunately, one cannot in general 
call the __getitem__(int) method explicitly but must use the 
[expr] Hoc syntax. If this becomes a problem in practice, it will 
be necessary to supply a set of cast functions that can be explicitly 
invoked by the user.

We have encountered only one problem with freeing object 
memory that has proved resistant to a solution. In some cases there 
is an ambiguity in regard to whether the Hoc or the Python side 
owns a reference to an object. When this situation occurs, a refer-
ence to the object is kept in a list for a deferred call to Py_DECREF 
when it is guaranteed that it is safe to do so.

Assignment of a constant value to a range variable in a Section 
is far more common than assignment of different values within the 
segments of a Section and Hoc provides a simple syntax for that 
case which avoids writing an explicit loop. The latest extension of 
the NEURON Python interface mimics that behavior in Python by 
interpreting Section.RangeVariableName in that fashion instead of 
raising an “AttributeError”. We are also considering extending the 
implicit iteration idea to SectionLists and Cells to allow not only 
assignment of constants but also application of inhomogeneous 
functions.

A list of the principal differences in syntax between Hoc and 
Python is given in Table 1.

IMPORTING MORPHML FILES — A PRACTICAL EXAMPLE
Our fi rst serious use of the NEURON Python interface was to 
extend the Import3D GUI tool to read MorphML specifi ca-
tion fi les. Import3D is structured around a graphical view of 
a list of Import3d_Section objects defi ned in Hoc. Among 
many method and fi eld attributes, the principle data fi eld of the 
Import3d_Section object is the raw x, y, z, diam information 
along an unbranched cable and a list index indicating the parent 
Import3d_Section. The list of Import3d_Section objects 
is constructed by various fi le reader objects that understand a 
specifi c fi le format such as Eutectic, SWC, or NeuroLucida ver-
sions 1 or 3. Since MorphML is an XML format, it was oppor-
tune to employ the XML reader module in the standard Python 
distribution.

The problem of parsing and analyzing the MorphML format is 
similar in diffi culty to that for NeuroLucida V3 fi les. We divided 

the problem into Hoc and Python code portions. In contrast to 
a fi le size of 1180 lines for the NeuroLucida V3 fi le reader, the 
read_morphml.hoc fi le size is 78 lines and the Python portion 
of the problem is carried out by rdxml.py with a fi le size of 370 
lines. Since these fi les are located in the NEURON package default 
search path – …/nrn/lib/hoc for the read_morphml.hoc fi le 
and …/nrn/lib/python for the rdxml.py fi le – the MorphML 
reader extension works wherever the NEURON Python interface 
is installed.

The read_morphml.hoc fi le defi nes an Import3d_MorphML 
Hoc template (class) which interacts with Import3d_GUI in exactly 
the same manner as the other format readers.

When an Import3d_MorphML instance is created, the Python 
helper module we wrote to parse the input fi le is imported with 
nrnpython(“import rdxml”) and p = new PythonObject() 
is defi ned in order to allow access to Python functions.

The proc input() {…} procedure defi nes a sections list 
and populates it with Import3dSection objects indirectly via 
p.rdxml.rdxml($s1, this) which passes the fi lename selected 
earlier by the user along with a reference to the Import3dMorphML 
instance to allow callback from the Python code.

The

def rdxml(fname, ho) :
  xml.sax.parse(fname, MyContentHandler(ho))

module function calls the xml parser with the fi lename and a new 
instance of

class MyContentHandler(xml.sax.ContentHandler):
  def __init__(self, ho):
    self.i3d = ho
    ...

The reference to the Import3d_MorphML instance is stored by 
the initializer for later use at the end of parsing. During fi le reading 
there is no interaction between Hoc and Python, so let it suffi ce 
that the xml parsing style is, at the beginning and end of every xml 
element, to call the MyContentHandler methods

def startElement(self, name, attrs):
  if self.elements.has_key(name):
    if debug: print "startElement:", name
    self.elements[name](self, attrs)
  else :
    if debug:
      print "startElement unknown", name

  def endElement(self, name):
    if self.elements.has_key('end'+name):
      self.elements['end' +name](self)

where the elements literal map associates all possible element 
names with a MyContentHandler method. E.g.

elements = {
  'neuroml':nothing,
  'morphml':nothing,
  ...
  'segments':segments,
  'endsegments':endsegments,



Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 3 | Article 1 | 10

Hines et al. NEURON and Python

  'segment':segment,
  'proximal':proximal,
  ...

  }

The methods construct Python lists of Point, Cable, etc, as 
well as maps associating identifi ers with list indices. At the end of 
parsing, the MyContentHandler method

def endDocument(self):
  self.i3d.parsed(self)

is called by the xml parser.
At this point we fi nd ourselves back in the Hoc world with an 

argument that references the MyContentHandler. Through that 
we can obtain the information saved by the MyContentHandler 
in various maps and lists and copy it into new Import3d_Section 
instances.

proc parsed() {…
  cables = $o1.cables_
  points = $o1.points_
  cableid2index = $o1.cableid2index_
  for i=0, cables.__len__() - 1 {

    cab = cables._[i]
    sec = new Import3d_Section(cab.first_,\
       cab.pcnt_)
    sections.append(sec)
    if (cab.parent_cable_id_ >= 0) {
      ip = cableid2index_[cab.parent_cable_id_]
      sec.parentsec = sections.object(ip)
      sec.parentx = cab.px_
    }
    ...

Note the ‘._’ idiom for accessing a Python list element since, 
in Hoc, cables[i] is syntax implying an object reference array 
 created with objref cables[n]. Also, cableid2index is a 
Python map which associates the cable identifi er read from the 
xml input fi le, with the proper element in the Python cables 
list.

DISCUSSION
Python makes available within NEURON a very extensive suite of 
analysis tools written for the general science and engineering com-
munities. All existing models written in Hoc,  including GUI tools, 
continue to work without change. All NEURON objects are acces-
sible to Python via an instance of the HocObject. Within the Hoc 

Table 1 | The principal differences in syntax between Hoc and Python.

Python Hoc Notes

obj() obj._() 

obj[int] obj._[int] 

obj[double] obj.__getitem__(double) or __setitem__

obj['string'] obj.__getitem__("string") or __setitem__

f(_ref_var) f(&var) when storing a persistent pointer

f(h.ref(strvar)) f(strvar) when f changes the string

f(h.ref(obj)) f(obj) when f changes the reference

f(h.ref(var)) f(&var) when f changes var (via $ &1)

sec = Section() create sec 

sec.push() stmt h.pop_section() sec { stmt } 

f(..., sec = section) section { f(...) } 

child.connect(parent, px, cx) connect child(cx), parent(px) 

sec.insert('mechname') sec { insert mechname } 

sec(x).rangevar sec.rangevar(x) 

for sec in h.allsec(): forall { } includes sec.push() and h.pop_section() of 

  currently accessed section.

for sec in h.seclist: forsec seclist { } 

for seg in sec: for (x, 0) the value of x is seg.x

for seg in sec.allseg(): for (x) 

seg.hh.gnabar or seg.gnabar_hh gnabar_hh(x) 

pp = PointProcess(x, sec=section) sec { pp = new PointProcess(x) }

for mech in seg: No direct equivalent. Use

 MechanismType

iteration for iterator Python supplies several styles of iteration and Hoc 

  supplies an iterator idiom. Conversion from one to the 

  other is done via explicit programming but Python cannot 

  use a Hoc iterator directly. Nor can Hoc use generators 

  except by calling the underlying __next__() method.
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interpreter, all Python objects are accessible via the PythonObject. 
Binary installation remains straightforward for the usage case of 
launching NEURON with Python embedded: The MS Windows 
installer contains a large subset of the 2.5 version of Python, and 
the Linux RPM and Mac OS X dmg installations will use the latest 
version of Python, if any, that is already present or subsequently 
installed. The usage case of launching Python, e.g. using IPython, 
and dynamically importing NEURON also works but presently 
requires the extra installation steps described in the Appendix. 
Numpy is not a prerequisite but, if present, copying of vectors 
between Numpy and NEURON is very effi cient. The Python xml 
module is used in the present standard distribution to extend 
NEURON’s Import3D and CellBuild tools to allow reading of 
MorphML (Crook et al., 2007) and NeuroML (Goddard et al., 
2001) model specifi cations. The Hoc portion of the xml readers 
makes heavy use of Python maps and lists.

With the release of NEURON version 7.0, the Python interface 
has largely stabilized, and is ready for general use. We recommend 
that new users of NEURON and those already familiar with Python 
should use Python rather than Hoc to develop new models. Those 
with considerable expertise in Hoc but without Python knowledge 
are likely to be more productive by continuing to develop models 
with Hoc, but accessing Python’s powerful data structures, large 
standard library and external numerical/plotting packages through 
nrnpython() and the PythonObject class. There is no need to 
rewrite legacy code in Python, as it will continue to work using the 
Hoc interpreter or mixed in with new Python code and accessed 
via the h object.

Users are encouraged to submit bug reports and feature requests 
at the NEURON forum (http://www.neuron.yale.edu/
phpBB) in the “NEURON+Python” sub-section, so that we can 
continue to improve the Python interface in response to users’ 
experiences.

APPENDIX
Here we give detailed instructions for building and installing 
NEURON as a Python extension. Note that, as mentioned earlier, 
to use NEURON with Python embedded you can use one of the 
binary installers.

The following assumes a standard GNU build environment, 
and a bash shell. You will need both NEURON (nrn-VERSION.
tar.gz) and InterViews (iv-VERSION.tar.gz) sources, avail-
able through the “Download and Install” link at http://www.
neuron.yale.edu.

First, build and install Interviews:

$ N=  'pwd  '
$ tar xzf iv-17.tar.gz
$ cd iv-17

$ ./configure --prefix=  'pwd  '
$ make
$ make install

Then build and install NEURON:

$ cd..
$ tar xzf nrn-7.0.tar.gz
$ cd nrn-7.0
$ ./configure --prefix=  'pwd  '\
 --with-iv=$N/iv-17 --with-nrnpython
$ make
$ make install

Here, the  “\” at the end of the fourth line, indicates it is con-
tinued on the fi fth. If you want to run parallel NEURON (Hines 
et al., 2008; Migliore et al., 2006), add --with-paranrn to the 
configure options. This requires a version of MPI to be installed, 
for example MPICH2 (Gropp, 2002) or openMPI (Gabriel et al., 
2004).

Now add the NEURON bin directory to your PATH:

$ export PATH=$N/nrn-7.0/i686/bin:$PATH

(Here i686 will be different for different CPU architectures).
Now build and install the NEURON shared library for 

Python:

$ cd src/nrnpython
# python setup.py install

This command installs the neuron package to the Python site-
packages directory, which usually requires root access. If you don’t 
have root access, you can install it locally using --prefix to specify 
a location under your home directory:

$ python setup.py install\
 --prefix=$HOME/local

This will install the neuron package to $HOME/local/lib/
python/site-packages under your home directory. You will 
then have to add this directory to the PYTHONPATH environ-
ment variable:

$ export PYTHONPATH=$PYTHONPATH:\
$HOME/local/lib/python/site-packages
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