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2007; Zhou et al., 2007; Hagmann et al., 2008). While the organisa-
tion of cortical areas into clusters permits the segregated processing 
of information of different modality, the large number of connec-
tions involves that sensory information is highly accessible to all 
cortical areas, regardless of its modal origin. A detailed analysis of 
the corticocortical communication substrate has revealed the central 
role of the cortical hubs, by facilitating the communication between 
the different sensory modalities (Zamora-López et al., 2009).

Whether the cortical hubs act as passive transmitters of informa-
tion, or they perform a more active function is a relevant question 
that we try to answer in the present paper. We start by summarising 
principles of complex network analysis and information theory in 
Section “Materials and Methods”. Section “Topological Capacity 
of Integration” contains a thorough application of graph theo-
retical measures which reveal that the cortical hubs form an addi-
tional module, expressed as a higher hierarchical level. In Section 
“Functional Capacity of Integration”, we challenge the intuitively 
assigned integrative properties of this central module by means of 
dynamical and information theoretical measures. On the one hand, 
we fi nd that only simultaneous lesion of particular hubs leads to 
a dynamical segregation of the sensory modules (visual, auditory, 
somatosensory-motor and frontolimbic). On the other hand, the 
same hubs form a dynamical cluster after simultaneous excitation of 
primary sensory areas, a clear sign of their integrative capacities.

MATERIALS AND METHODS
GRAPH ANALYSIS
We fi rst introduce basic concepts of graph theory. A network is 
an abstract manner to represent different aspects of a real system, 
providing it with a form (topology) which can be  mathematically 

INTRODUCTION
The mammalian nervous system is responsible for collecting and 
processing of information, and for providing adaptive responses 
which permit the organism to survive in a permanently changing 
environment. Sensory neurones encode environmental information 
into electrical signals which propagate in a “bottom-up” manner 
through different processing stages (Kandel et al., 2000; Bear et al., 
2006). Each level provides responses of increasing complexity and at 
different time scales, e.g. refl ex arcs, emotional responses and more 
elaborate cognitive responses. Information of the same modality (e.g. 
visual, auditory, somatosensory, etc.) traverses the body together, 
typically separated from the processing paths of other modalities. 
This permits that particular regions of the cortex specialise in detect-
ing different features of the sensory stimuli, e.g. orientation, velocity 
and colour of the visual input; or frequency and pitch of the audi-
tory stimuli. However, in order to generate a coherent perception of 
the reality, the brain needs to combine (integrate) this multisensory 
information at some place (Robertson, 2003) and during some time 
(Fahle, 1993; Singer and Gray, 1995; Engel and Singer, 2001). For that, 
the paths of information need to converge.

It has been argued that the functional capacity of the NS to bal-
ance between segregation (specialisation) and integration might be 
facilitated by its structural organisation (Sporns and Tononi, 2001). 
Analysis of the connectivity between regions of the cerebral cortex 
in macaque monkeys and cats has revealed the following character-
istics: (i) clustered organisation of the cortical areas (Scannell and 
Young, 1993; Scannell et al., 1995; Hilgetag et al., 2000; Hilgetag 
and Kaiser, 2004) (see Figure 2), (ii) a large density of connections, 
and (iii) a broad degree distribution containing highly connected 
areas which are referred as hubs (Zemanová et al., 2006; Sporns et al., 
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tractable. A network G  (N, L), composed of N nodes interconnected 
by L links, is described by an adjacency matrix A with entries A

ij
 = 1 

when there is a link pointing from node i to node j, and A
ij
 = 0 

otherwise. The density of G is the fraction between the number 
of links L and the total number of links possible: ρ = −

L
N N( )1 . In 

order to characterise the topological scales of networks, there exist 
many statistical descriptors, all measurable from the information 
encoded in the adjacency matrix. The output degree k i Ao j

N
ij( ) = ∑ =1  

of a node i is the number of efferent connections that it projects to 
other nodes, and its input degree k i Ai j

N
ji( ) = ∑ =1 , is the number of 

the afferent connections it receives. The degree distribution p(k) 
is the probability that a randomly chosen node has degree k. One 
of the key discoveries that triggered a renewed interest in graph 
theory is that the distribution p(k) of many empirical networks 
approximately follows a power-law p(k) ∼ k−γ (Newman, 2003), 
where γ is the degree exponent. In such scale-free(-like) networks 
the majority of nodes possess a small number of neighbours, and 
few nodes (the hubs) are highly connected.

Distance and centrality
The distance d

ij
 between two nodes i and j is the length of the short-

est path between them, i.e. the minimal number of links crossed 
to travel from i to j. If there is a link i → j, then d

ij
 = 1. If there is 

no other choice than going through an intermediate node k such 
that i → k → j, then d

ij
 = 2, and so on. When there exists no path 

from i to j then d
ij
 = ∞. The average pathlength l is the average 

distance between all pairs of nodes. The shortest path between two 
nodes is usually not unique and there are several alternative shortest 
paths. In order to characterise the infl uence of individual nodes 
on the fl ow and the spread of information through a network, the 
betweenness centrality C

B
(i), is defi ned as the fraction of all shortest 

paths passing through i (Anthonisse, 1971; Freeman, 1977):

C i
i

B
st

sts i t i

N

( )
( )

,

=
≠ ≠
∑ σ

σ  
(1)

where σ
st
(i) is the number of shortest paths starting in s, running 

through i and fi nishing in t, and σ
st
 is the number of all shortest 

paths from s to t.

Matching index
The topological similarity of two nodes can be characterised as the 
number of common neighbours they share. In the extreme case, 
two nodes are topologically identical if both have the same set of 
connections. The neighbourhood of node i is defi ned as the set of 
nodes it connects with, Γ(i) = {j : A

ij
 = 1}. In graphs without mul-

tiple links the size of the neighbourhood |Γ(i)| equals the degree 
of i. The matching index of two nodes i and j is thus the overlap 
of their neighbourhoods: MI(i,j) = |Γ(i) ∩ Γ(j)|. Defi ned in this 
manner MI(i,j) depends on the degrees of i and j, and the values for 
different pairs are not comparable. Imagine two nodes with degrees 
k(i) = k(j) = 3 which are connected to the same neighbours. As 
Γ(i) = Γ(j) their matching is MI(i,j) = 3. Imagine other two nodes 
with degrees k(i′) = 3 and k(j′) = 4. Maximally, they could share 
three neighbours and have MI(i′,j′) = 3 as well, despite i and j 
are topologically equivalent but i′ and j′ are not. In order to com-
pare the values for different pairs the measure can be normalised by 

the number of distinct neighbours of the two nodes, i.e. the union 
of the two neighbourhoods |Γ(i) ∪ Γ(j)| as illustrated in Figure 1. 
The normalised matching index can be computed as:

MI i j
i j

i j

A A

k i k j A A

in jmn m

N

in

( , )
| ( ) ( )|

| ( ) ( )| ( ) ( )

,= ∩
∪

=
+ −

=∑Γ Γ
Γ Γ

1

jjmn m

N

, =∑ 1  

(2)

Now, MI(i,j) = 1 only if i and j are connected exactly to the 
same nodes, Γ(i) = Γ(j), and MI(i,j) = 0 if they have no common 
neighbours.

Reference surrogate networks
Graph theoretical measures help understand the topological organ-
isation of networks. Equally relevant is to uncover the features 
which are characteristic to the underlying system and the funda-
mental properties of its development. In this sense, the question 
is not whether a graph measure takes a specifi c numerical value, 
but whether this value distinguishes the empirical network G

emp
 

from others of similar characteristics. For that, the formulation 
of appropriate null-models is required. A typical such null case is 
to generate surrogate networks with the same size N, number of 
links L and degree distribution p(k) as in G

emp
. The link switching 

method (Katz and Powell, 1957; Holland and Leinhardt, 1977; Rao 
et al., 1996; Kannan et al., 1999; Roberts, 2000) consists of the fol-
lowing iterative process: starting from G

emp
, at each iteration two 

links are chosen at random (i
1
 → j

1
) and (i

2
 → j

2
). The links are 

rewired as (i
1
 → j

2
) and (i

2
 → j

1
) provided that the new links do not 

already exist and do not introduce self-loops, i.e. i → i. Repeating 
the process suffi cient times the resulting surrogate network con-
serves the initial degree distribution but any higher order structure 
is destroyed.

DATA
The classical textbook illustration of the cerebral cortex as a sur-
face (grey matter) which can be subdivided into functional or 
cytoarchitectonic regions is only a limited picture. Additionally, 
long-range fi bres link the cortical areas via the white matter forming 

FIGURE 1 | Schematic representation of the normalised matching index, 

computed as in Eq. 2. For proper comparison between pairs, the measure is 
normalised by the number of different neighbours of v and v′.
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a  complex network which is neither regular nor completely random. 
This intricated structure enhances the richness and complexity of 
information processing capabilities of the cerebral cortex. In this 
paper we focus on the analysis of the cortical connectivity of the 
cat because it is, up to date, the most complete and reliable dataset 
of this kind.

Corticocortical connectivity of the cat
The dataset of the corticocortical connections within the cortex of 
cats was created after an extensive collation of literature reporting 
anatomical tract-tracing experiments (Scannell and Young, 1993; 
Scannell et al., 1995). It consists of a parcellation into 53  cortical 
areas and 826 fi bres of axons between them as summarised in 

Figure 2. The connections are weighted according to the axonal 
density of the projections. After application of data mining methods 
(Scannell and Young, 1993; Hilgetag and Kaiser, 2004), the network 
was found to be organised into four distinguishable clusters which 
closely follow functional subdivisions: visual (V), auditory (A), 
somatosensory-motor (SM) and frontolimbic (FL).

Surrogate data
In order to perform signifi cance tests of the graph measures, an 
ensemble of 1000 surrogate networks has been created following 
the link switching method (see Section “Graph Analysis”). All the 
resulting networks have the same size N = 53, the same number of 
links L = 826 and the same degree distribution as the  corticocortical 

FIGURE 2 | Weighted adjacency matrix W of the corticocortical connectivity 

of the cat comprising of L = 826 directed connections between N = 53 cortical 

areas (Scannell and Young, 1993; Scannell et al., 1995). For visualisation 

purposes, the non-existing connections (0) have been replaced by dots. The 
network has clustered organisation, refl ecting four functional subdivisions: visual 
(V), auditory (A), somatosensory-motor (SM) and frontolimbic (FL).
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network of the cat. To assure that any further internal structure is 
destroyed, each surrogate network is the product of 10 × L itera-
tions. In the following, this set will be referred as the rewired ensem-
ble {G

1n
}, and the original corticocortical network of the cat as G

cat
. 

The ensemble average of graph measures applied on the surrogate 
set {G

1n
} will be considered as the expected values.

INFORMATION THEORY AND INTEGRATION
Information theory has been very successful to describe transmis-
sion of information, encoding and channel capacity. At the root 
of this success lies the original idea of Shannon to apply concepts 
of statistical physics to represent the nature of communication. 
Consider a system A with M possible states. That is, a measurement 
made on A yields the values a

1
,a

2
,…,a

M
, with a probability p(a

i
). 

The average amount of information gained from a measurement 
that specifi es one particular value a

i
 is given by the entropy of the 

system (Shannon, 1948; Cover and Thomas, 1991):

H A p a p ai i
i

M

( ) .= − ( ) ( )
=
∑ log

1  
(3)

The entropy can be interpreted as the amount of surprise one 
should feel upon reading the result of a measurement (Faser and 
Swinney, 1986). It vanishes when the system has only one accessible 
state because the value a is always obtained, i.e. there is no surprise. 
H(A) is maximum when all the states are equally likely, i.e. there 
are no preferred states.

The statistical dependence between two systems x
1
 and x

2
 is quan-

tifi ed by their mutual information:

MI x x H x H x H x x1 2 1 2 1 2, , .( ) = ( ) + ( ) − ( )
 

(4)

By defi nition, the joint entropy is H(x
1
,x

2
) ≤ H(x

1
) + H(x

2
). The 

equality is only fulfi lled if x
1
 and x

2
 are statistically independent, 

hence MI(x
1
,x

2
) = 0, and otherwise MI(x

1
,x

2
) > 0.

Integration
In a series of papers Tononi and Sporns proposed a particular meas-
ure of integration (Tononi and Sporns, 1994; Tononi et al., 1996, 
1998). Given a system X composed of N subsystems x

1
, integration 

is defi ned as:

I X H x H X
i

N

i( ) ( )= ( ) −
=
∑

1  
(5)

where H(x
i
) is the entropy of one subsystem and H(X) = H(x

1
,x

2
,…,x

n
) 

is the joint entropy of the system considered as a whole. I(X) = 0 
only if all x

i
 ∈ X are statistically independent of each other, and posi-

tive otherwise. After this defi nition, integration is the extension of 
mutual information for more than two systems. In other words, I(X) 
measures the internal level of statistical dependence among all the 
subsystems x

i
 ∈ X.

Linear dynamical systems
The steady-state of a linear system whose N subsystems 
x = (x

1
,x

2
,…,x

n
) are driven by a Gaussian noise ξ = (ξ

1
,ξ

2
,…,ξ

N
), 

is described by x g A xi j ij
t

j i= ∑ + ξ , where g is the coupling strength 

and At is the transpose of the adjacency matrix. Otherwise the 
dynamics of x

i
 would be characterised by its own outputs, not 

by the inputs it receives. Written in matrix form:

x A x= +g t �. (6)

In practical terms the variable x
i
 might be interpreted as the 

activity level of the cortical area i (Kötter and Sommer, 2000; Young 
et al., 2000), or as the mean fi ring rate of the neurones in the area i 
(Graben et al., 2007). The entropy of such a multivariate Gaussian 
system can be analytically calculated out of its covariance matrix 

such that H X e COV XN( ) ( ) | ( )|= ⎡⎣ ⎤⎦
1
2 2log π , where |·| stands for 

the determinant (Papoulis, 1991; Tononi and Sporns, 1994). The 
entropy of an individual Gaussian process is H x ei i( ) ( ),= 1

2 2log π ν  
where ν

i
 is the variance of x

i
, say, the ith diagonal element of the 

COV(X) matrix. Replacing H(X) and H(x
i
) into Eq. 5 and apply-

ing basic algebra, we reduce the integration of such a multivariate 
Gaussian system as:

I X
COV X

ii

N

( )
( )

.=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=∏1

2
1log
ν

| |
 

(7)

This expression shows that I(X) of the linear system is prop-
erly normalised and is independent of system size N. The covari-
ance matrix can be analytically computed by solving the system 
such that x = ⋅ = ⋅

−
1

1 Atg
ξ ξQ , and averaging over the states pro-

duced by successive values of ξ one fi nds: COV(X) = 〈x · xt〉=
〈(Q · ξ)·(ξt · Qt)〉 =Q · Qt.

Comparing different systems
To compare I(X) of different systems, the matrix At needs to be 
adequately normalised because application of the same coupling 
strength g to different networks might set them into different 
 dynamical states. Hence, they might not be comparable. The lin-
ear System (6) has several poles depending on g. The smallest pole 
corresponds to g1

1= λmax
 where λ

max
 is the largest eigenvalue of the 

transposed adjacency matrix At. The solutions only have physical 
meaning for g < g

1
, otherwise the stationarity condition does not 

hold. In Figure 3 the poles corresponding to the corticocortical 
network of the cat are shown. Notice that at the poles, both entropy 
and integration diverge. To make the comparison of the dynamics 
of different networks possible, we normalise the adjacency matrices 
as ˆ .A At At

max
= =g1 λ  In this manner, all systems have the smallest 

pole at g = 1.
Finally, a proper coupling strength g needs to be chosen. For 

that, we have estimated the covariance matrices of the cat cortical 
network under different coupling strengths (Figure 4). They are 
similar to the correlation patterns arising from more complex 
models (Zemanová et al., 2006; Honey et al., 2007; Zhou et al., 
2006, 2007). This similarity indicates the validity of the simple 
linear System (6) for the exploratory purposes here intended. 
All networks considered in Section “Functional Capacity of 
Integration” are normalised by their fi rst pole and a coupling 
strength of g = 0.5 is applied. Unless otherwise stated, the noise 
level is set to ξ

i
 = 1.0.
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A

B

C

FIGURE 3 | Parametric study of the linear System (6) using the cortical 

network of the cat. (A) Integrability range. When the determinant |1 − gÂ| = 0 
the system has a pole. Negative values lead to non-physical solutions. (B) 
Entropy and (C) Integration diverge around the poles.

A B C

FIGURE 4 | Covariance matrix of the cat cortical network as a linear system. The adjacency matrix has been previously normalised by 1/λmax and the noise level 
set to ξi = 1.0. Coupling strengths are: (A) g = 0.52, (B) g = 0.84 and (C) g = 0.92.

RESULTS
TOPOLOGICAL CAPACITY OF INTEGRATION
In order to characterise the connectional organisation of the nervous 
system and to understand its functional implications, the complex 
network approach has been applied in the recent years, particu-
larly at the level of the cerebral cortex. This analysis has revealed 
several  organisation properties, e.g. the clustering of cortical areas 
according to their sensory modality (visual, auditory, somatosen-
sory-motor and frontolimbic). Recently, it has been reported that 
communication paths between cortical areas in different sensory 
modules are not random, but mediated by the hubs of the network 
(Zamora-López et al., 2009). In this section we present a more 
detailed graph analysis aiming to characterise the potential func-
tion of the cortical hubs.

Inter-modal communication
The betweenness centrality C

B
(ν) quantifi es the relevance of a node 

v within the communication paths in a network. As represented 
in Figure 5A, we observe that within each of the sensory systems, 
few cortical areas possess a large betweenness. With C

B
(ν) > 500 we 

fi nd: visual areas 20a, 7 and AES; auditory area EPp;  somatosensory-
motor areas 6m and 5Al; and frontolimbic areas Ia, Ig, CGp, 35 
and 36. On the contrary, only the visual primary cortex (area 17) 
and the hippocampus have C

B
(ν) = 0. In general, we observe that 

cortical regions known to perform highly specialised sensory func-
tion have few connections and very low centrality, e.g. primary and 
secondary visual or auditory areas, and early somatosensory-motor 
areas. These areas typically contain ordered mappings of the sen-
sory stimuli such as retinotopic or tonotopic maps, see Appendix 
of Scannell et al. (1995).

The centrality of a node usually correlates with its degree, 
hence, it is trivial to find out that precisely the hubs have larger 
centrality. Drawing any further conclusion requires performing 
a proper significance test. For comparison, the average C

B
(ν) 

of the nodes in all the 1000 rewired networks of the surrogate 
ensemble {G

1n
} has been computed. The ascending line in Figure 

5B shows the expected dependence of the betweenness centrality 
on the degree of the nodes. As a node receives k

i
(ν) inputs and 

projects k
o
(ν) outputs, the number of shortest paths passing 

through v is linearly proportional to k
i
(ν)k

o
(ν) in the surrogate 

networks. The most prominent observation is that, while C
B
 of 

the low degree areas follow the expected centrality, the centrality 

Subsets of elements
The entropy of a subset of systems S ⊆ X can be obtained by 
fi rst computing COV(X) as indicated above, and then extracting 
the covariance submatrix COV(S) out of COV(X) by consider-
ing only the elements x

i
 ∈ S. The entropy of the subset is then 

H S e COV SNS( ) ( ) | ( )|= ⎡⎣ ⎤⎦
1
2 2log π , and its integration I(S) is:

I S H x H S
COV Sj

jj

N

x S

S

j

( ) ( )
( )

.= ( ) − =
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

=

∈

∏∑ 1

2
1log
ν

| |
 

(8)
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φ( ) ,k
L

N N
k

k k

′ ′

′ ′

=
−( )1

 

(9)

where Nk ′ is the number of nodes with k(v) ≥ k′ and Lk ′ is the 
number of links between them. Notice that φ(k) is an increasing 
function of k. As φ( ) ( )0 1= −

L
N N  is the density of the network, after 

the nodes with low degrees are removed the remaining reduced 
network contains more links per node. Thus, a plain measure of 
φ(k) is not very informative because hubs have a higher intrinsic 
chance of being connected to each other. Again, a conclusive inter-
pretation requires the comparison to random networks with the 
same degree distribution. The question is then whether φ(k) of 
the real network grows faster or slower with k than the expected 
k-density φ

1n
(k) out of the surrogate networks {G

1n
}. If φ(k) grows 

faster than φ
1n

(k), it means that the hubs are more connected than 
expected and form a dense module (a rich-club). On the contrary, 
if φ(k) grows slower than φ

1n
(k), the hubs are more independent 

of each other than expected.
In Figure 6A the k-density φ

cat
(k) of G

cat
 is presented together 

with the ensemble average φ
1n

(k). For low degrees, φ
cat

(k) follows 
very close the expectation, but for degrees k(v) > 15, φ

cat
(k) starts to 

grow faster showing that the hubs of the network form a rich-club. 
The largest difference occurs for k = 23, comprising of 11 cortical 
hubs from all the four sensory systems (Figure 6B). Compared to 
the internal density of the four modules of the network, we fi nd 
that the hubs form an even denser module (Table 1).

Topological similarity of cortical hubs
A central assumption in systems neuroscience is that the func-
tion of brain regions are specifi ed by their afferents and efferents 
(Passingham et al., 2002). Under this assumption, it is to be expected 
that cortical areas of similar function, i.e. specialised in the process-
ing of same modal information, should display a similar pattern of 

FIGURE 6 | Rich-club organisation. (A) k-density of the corticocortical 
network of the cat φcat, compared to the expectation out of the surrogate 
ensemble {G1n}. The largest difference occurs at k = 23 (vertically dashed line) 
giving rise to (B) a rich-club composed of 11 areas.

A

B

FIGURE 5 | Centrality of cortical areas. (A) Betweenness of cortical areas 
shows that at each sensory system few areas are very central. (B) Comparison 
between CB of cortical areas and the expected centrality due to their degree 
(brown line). As a consequence of the modular and hierarchical organisation of 
the network, low degree areas closely follow the expected centrality but hubs 
are signifi cantly more central than expected. Communication paths between 
sensory systems are centralised through the hubs.

of the hubs is largely significant. This is an  evident consequence 
of the modular organisation of the network and the particular 
role of the cortical hubs for the inter-modal communication. 
Communication paths running between low-degree areas of dif-
ferent modules are usually mediated through the hubs (Zamora-
López et al., 2009).

This signifi cance test permits us to uncover the most likely candi-
dates to be a hub of the network, not only in terms of their number 
of links, but considering their contribution for the corticocortical 
communications. The hubs found here are potential candidates 
to perform high level integration because they have access to the 
information of different modalities. However, with the current 
results we can only affi rm with certainty that the hubs are useful 
for the transmission of information from one modality to another. 
Concluding whether they perform any further function or not, it 
requires a more careful analysis.

Collective organisation of cortical hubs
A relevant question is now whether the cortical hubs are func-
tionally independent of each other, i.e. each hub has a specialised 
function, or they perform some collaborative function. A graph 
measure to characterise the relation between the hubs of a net-
work is the rich-club phenomenon. The k-density φ(k), is defi ned 
as the internal density of links between the nodes with degree 
larger than k′:
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projections. In the case of the cortical hubs, it has been shown in 
the previous section that they form a tightly connected module. 
Whether this module could be regarded as a functional module, at 
least from a topological point of view, is the goal of the following 
analysis. The matching index MI(v,v′) is a graph measure to estimate 
the topological similarity of two nodes, by counting the number of 
common neighbours of v and v′ (Section “Graph Analysis”). In order 
to compare the values obtained for different pairs, the measure is 
normalised such that MI(v,v′) = 1 only if all the neighbours of node 
v are also all the neighbours of v′. See the example in Figure 1.

We have computed the matching index for all pairs of cortical 
areas and the result is shown in matrix form, Figure 7A. Visual 
inspection reveals the modular organisation of the network. This 
is refl ected by the fact that MI(v,v′) is typically larger if both v 
and v′ belong to the same anatomical module, than if they belong 
to different modules. To highlight this difference, in Figure 7B 
the  distribution of the matching values is shown: when the areas 
belong to the same module (internal matching), or to different 
modules (external matching). The external matching has a broad 
skewed distribution but peaking near MI = 0.15. The internal 
 matching displays a more constrained distribution with maximum 
at approximately MI = 0.55. In Table 1 the average matching of the 
network is compared to the average internal matching for each of 
the anatomical modules V, A, SM and FL. The internal averages are 

FIGURE 7 | Topological similarity of cortical areas. (A) Pairwise matching 
index MI(v,v ′) for all areas summarised in matrix form. Self-matching MI(v,v) is 
ignored for visualisation. (B) Distribution of the MI values in (A) if the areas v 
and v′ are in the same anatomical module V, A, SM or FL (dashed line), and if 

they belong to different modules (solid line). (C) Recomputed distribution of MI 
if the areas belong to different modules, but cortical hubs are discarded (solid 
line). And distribution of MI(v,v ′) only if v and v′ are hubs in the Rich-Club 
(dotted line).

Table 1 | Comparison between the anatomical modules and the Rich-Club. Both the internal density of links and the average matching of the areas in each of 

the functional modules V, A, SM and FL are larger than the whole network averages. The same happens for the areas in the Rich-Club, with values comparable to, 

or larger than those for the anatomical modules.

always larger than the global average despite the broad deviations, 
confi rms the expected functional cohesiveness of the modules; not 
only in terms of their internal density of connections, but also in 
terms of their common connectivity.

As pointed out, the distribution of external matching is skewed 
and contains some larger values up to MI ≈ 0.6. We fi nd that most of 
these larger values are contributed precisely by the links between the 
cortical hubs which lie in different modules. We have recomputed 
the distribution of external matching, but ignoring the matching 
between the cortical hubs (solid line in Figure 7C). The distribution 
decays now faster than in Figure 7B. Finally, the distribution of the 
internal matching for the 11 hubs forming the rich-club is displayed 
(dotted line of Figure 7C). It appears clearly separated from that of 
the distribution of external matching and peaking near MI = 0.55. 
Its average is 0.52 ± 0.10, comparable to, or larger than, the internal 
matching of the anatomical modules, Table 1. These observations 
support the idea that the cortical hubs form a functional module 
on their own, as the anatomical modules do.

Hierarchical organisation and integration capacity
The two structural properties of the cortical hubs here presented, (i) 
hubs are densely connected with each other and (ii) they are func-
tionally interrelated in terms of their inputs and outputs, extend the 
current understanding of cortical networks by uncovering that the 
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multisensory hubs form yet another module which lies at a higher 
level in the hierarchical organisation. In the complex networks liter-
ature one fi nds two types of hierarchical topologies. The model after 
Arenas et al. (2006) considers hierarchies as the agglomeration of 
modules, say, small modules join to form larger modules, Figure 8A. 
Another type of hierarchy after Ravasz and Barabási (2003) can be 
regarded as a tree-like fractal structure which produces modular 
networks with scale-free degree distribution. At each level, there 
is a central community connecting to all the modules at the same 
level, and to all modules in the hierarchies below. Such centralised 
patterns are repeated through different scales, Figure 8B.

The organisation that we uncover here is none of these two, but 
it might be regarded as a combination of them. Notice that in the 
model by Arenas et al. (2006), the small communities are randomly 

linked to each other such that their union forms a larger commu-
nity. In the present case, the inter-community links are not random, 
but centralised. Therefore, the highest hierarchical level is formed 
by a partial overlap of the underlying modules. See Figure 8C for 
a schematic representation.

The functional implications of the topological fi ndings 
described in this section, necessarily arise from intuitive inter-
pretation of the intrinsic relationship between structure and func-
tion in neural systems. To provide a more solid ground to these 
intuitive interpretations, in the following section we challenge 
them by means of dynamical and information theoretical meas-
ures. We focus in a very simple dynamical model which has the 
benefi t of being analytically solvable, although its validity for our 
purposes is confi rmed by comparison to the dynamical output 
of more complex models, see Section “Information Theory and 
Integration”.

FUNCTIONAL CAPACITY OF INTEGRATION
The structural organisation described in the previous section 
supports the idea that the cortical hubs might be responsible for 
combining the multisensory information hence facilitate the emer-
gence of a global (integrated) perception. In this sense, we aim for 
a defi nition of integration which characterises the capacity of one 
or more nodes to receive information of different character and com-
bine it to produce new useful information. Certainly, this defi nition 
involves crucial theoretical problems, e.g. what the character of 
information is, or what are the rules under which information is 
combined. Nevertheless, within a networked system, the nodes with 
a capacity to integrate information should obey certain measurable 
conditions. We propose the following:

1) Accessibility to information: A node can perform an integra-
tive function only if it has general access to the information 
contained within the system.

2) Sharing of information: Two or more nodes can perform 
integrative function in a collaborative manner only if they are 
suffi ciently connected with each other.

3) Segregation after selective damage: If a node has an integra-
tive function, its removal should lead to a decrease of the inte-
grative capabilities of the whole system.

From the structural point of view, the hubs listed in Figure 
6B obey these three conditions. They are the most central areas 
and they are densely connected to each other. Besides, robust-
ness studies (Kaiser et al., 2007) have shown that intentional 
lesion of the highly connected cortical areas largely affect the 
communication within the network. In the following, we intro-
duce a framework to characterise the integrative function of the 
hubs by means of dynamical systems and information theory. 
Additionally, we perform a probabilistic analysis of the compo-
sition of the dynamical core, rather than a deterministic one. 
The reason is that even if the corticocortical networks of the 
cat is the most complete and reliable dataset of its kind up to 
date, it is not free of experimental errors. For example, some of 
the real connections might still be absent in the data. We aim 
to discriminate those hubs which, grouped together, possess 
a larger potential to integrate multisensory information from 
those groups which might have lesser capacities. For that, we 

FIGURE 8 | Hierarchical organisation of complex networks. (A) Hierarchies 
as agglomeration of modules (Arenas et al., 2006). (B) Centralised and fractal 
hierarchical model (Ravasz and Barabási, 2003). (C) Illustrative representation 
of the modular and hierarchical structure found in the corticocortical 
connectivity of the cat. The highest hierarchical level is formed by a densely 
interconnected overlap of the modules.
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arbitrarily choose all the areas with output degree k
o
(ν) ≥ 20 as 

potential members of the integrator module giving rise to a set 
of N

S
 = 19 areas:

S
hubs

 = {20a, 7, AES, EPp, 6l, 6m, 5Am, 5Al, 5Bm, 5Bl, SSSAi, 
SSAo, PFCL, Ia, Ig, CGa, CGp, 35, 36}.

The statistical analysis consists in measuring the integrative 
capacities of all the 524,097 combinations of sizes N

S
 = 1 to N

S
 = 19 

out of the 19 hubs in S
hubs

.

Integration capacity after sensory stimulation
Consider the linear System (6) with Â being the transposed and 
normalised adjacency matrix of the cat G

eat
. All areas are driven 

by a small Gaussian noise level ξ
i
 = 1.0 and coupled by g = 0.5. 

This case might be regarded as the activity of the network in the 
 resting-state because all x

i
 are driven by noise of small intensity 

and there is no sensory input. Now, we intend to illustrate the 
joint capacity of a group of areas to integrate information of 
 different character. Even if it is unclear how to defi ne the  character 
of information, in the case of cortical networks it is known that 
sensory information enters the cortex through specifi c regions 
termed as primary sensory areas: primary visual cortex (area 
17), primary auditory cortex (area AI) and primary somato-
sensory cortex (areas 1, 2 and 3b). According to Scannell et al. 

(1995) the cortical areas 1, 2 and 3b are subregions of the primary 
somatosensory area, named by some authors as SI. Hence, we 
simultaneously excite all the primary sensory areas {17, AI, 1, 2, 
and 3b} by assigning them a larger noise level ξ

j
 = 10.0) and we 

measure the integration I(S) of all the subsets S of hubs out of 
S

hubs
. Because of the excited condition, we denote the integration 

of the subsets as Ie(S).
The results depicted in Figure 9A show that Ie(S) can largely dif-

fer. For example, among all the subsets of size N
s
 = 10, the integra-

tion of some of them is very small, Ie(S) ∼ 0.1, while the integration 
of others becomes much larger, Ie(S) ∼ 0.5. These differences permit 
us to identify those cortical hubs which, grouped together, become 
more statistically dependent among them as a consequence of the 
multisensory stimulation. Considering only those subsets whose 
Ie(S) lies within the largest 10% (red crosses in Figure 9A) a co-
participation matrix C is constructed such that C

ij
 is the number 

of times (given in frequency) that two cortical hubs participate 
together in one of the maximal sets, Figure 9B. It is observed that 
areas {7, AES; EPp; 6m; Ia, Ig, CGp, 35, 36} participate together in 
over 75% of all the maximal sets. Visual area 20a and the soma-
tosensory-motor area 6l participate only in 50% of the occasions 
with those areas in the core. The remaining areas, {5Am, 5Al, 5Bm, 
5Bl, SSSAi, SSSAo and PFCL}, can be discarded as members of the 
dynamical core.

FIGURE 9 | Functional segregation and integration. (A) Local 
integration I(S) of cortical hubs after stimulation of the primary sensory areas. 
(B) Co-participation matrix of cortical hubs within the subsets leading to large 
Ie(S) (red dots). (C) Modular integration IP4

 of the sensory modules V, A, SM and 

FL after simultaneous lesion of cortical hubs. NS is the number of hubs removed. 
(D) Co-participation matrix of the hubs within the subsets S which lead to a 
larger decrease in the dynamical dependence IP4

( )( )S  of the sensory modules 
(marked by red dots).
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Dynamical segregation after multiple lesions
Within a networked system the removal of critical nodes should 
lead to a decrease in its integrative capacities. In the following, we 
study the impact of targeted lesions of the corticocortical network 
of the cat, G

cat
. For all the possible subsets S composed of hubs in 

S
hubs

, we perform a lesion to the network by simultaneously remov-
ing the nodes x

i
 ∈ S and characterise the consequent functional 

segregation of the network G
S
 = G

cat
 − S as the change in statistical 

dependence between the four modules (V, A, SM and FL). Lesion 
of areas critical for the integration capacities of the system should 
lead to a dynamical segregation of the modules, i.e. a decrease in 
their statistical dependence.

Recall that integration I(X) as defi ned in Eq. 7 is an extension 
of the mutual information for more than two systems. It repre-
sents the limit case in which the statistical dependence among 
all the elements x

i
 in the system X is quantifi ed. To cover differ-

ent scales of organisation we propose to characterise the statisti-
cal dependence between groups of elements. Imagine a partition 
P = {S

1
,S

2
,…,S

n
} into n groups (modules) of the elements x

i
 such 

that X = S
1
 ∪ S

2
 ∪…∪ S

n
. Then, we defi ne the modular integration 

of the partition P as:

I X H S H Xj
j

n

P( ) ( ).= ( ) −
=

∑
1  

(10)

Note that when n = N, then IP(X) = I(X).
Considering the partition P

4
 = {V, A, SM, FL} and the cortico-

cortical network of the cat, then IP G
4
( ) = 0.292cat . The modular inte-

gration of each lesioned network G
S
 is computed for the partition 

P
4
. Notice that (a) the nodes are also removed from the partition 

and (b) every G
S
 is adequately normalised by its largest eigenvalue 

such that the measured observables are comparable across reali-
sations (see Section “Information Theory and Integration”). The 
results in Figure 9C permit us again to discriminate between sub-
sets of hubs whose simultaneous removal lead to a large segrega-
tion of the network, while removal of other subsets has barely no 
effect. For example, among all the possible lesions of size N

S
 = 10, 

some trigger a large segregation of the modules, IP SG
4

0 05( ) ∼ .  
while other lesions do even increase their dynamical dependence: 
I IP S PG G

4 4
0 35( ) ∼ > ( ). cat .

Selecting only those subsets whose lesion leads to a larger 
segregation of the modules, i.e. IP G

4
( )S  lies among 10% of 

the minimal modular integration for each size N
S
 (red dots 

in Figure 9A), a co-participation matrix C is constructed, 
Figure 9D. The entries C

ij
 are the number of times (given in 

frequency) that two areas participate together in one of the 
minimal subsets. A core of cortical areas is found which par-
ticipate together in over 70% of these cases: {7, AES; EPp; Ia, 
Ig, CGp, 35, 36}. Somatosensory-motor areas 6m, 5Al and 5Bl 
join them in over 50% of the cases.

In summary, both the multiple lesion and the multisensory 
excitation analysis performed in this section lead to the identi-
fi cation of the same cortical hubs as responsible for the integra-
tion of multisensory information in the corticocortical network 
of the cat. Moreover, this set largely coincides with the top hier-
archical level found by the graph analysis in Section “Topological 

Capacity of Integration”, corroborating the integrative function 
assigned to the hubs by intuitive interpretation of their topologi-
cal characteristics.

SUMMARY AND DISCUSSION
In this paper we have analysed the modular and hierarchical organi-
sation of the corticocortical network of the cat and its relationship 
to the intrinsic necessities of the brain to simultaneously segregate 
and integrate multisensory information. From the topological point 
of view, we have extended the current understanding of cortical 
organisation with the fi nding that the cortical hubs form a central 
module on top of the cortical hierarchy; which is expressed as the 
partial overlap of the four anatomical modules (visual, auditory, 
somatosensory-motor and frontolimbic). By means of dynamical 
and information theoretical measures, we have corroborated its 
capacity to integrate multisensory information, i.e. after simultane-
ous excitation of visual, auditory and somatosensory primary areas, 
a particular set of hubs becomes statistically dependent forming a 
dynamical cluster. Additionally, the simultaneous lesion of these 
hubs leads to a largest decrease in the integrative capacities of the 
network. Both structural and functional results indicate that visual 
areas 7 and AES, auditory area EPp and frontolimbic areas Ia, Ig, 
CGp, 35 and 36 are the most likely candidates to form the top 
hierarchical module. The participation of somatosensory-motor 
areas is less clear, although area 6m is the strongest candidate of 
them. Visual area 20a and somatosensory-motor areas 5Al and 5Bl 
are also potential candidates.

The modular and hierarchical organisation here detected agrees 
with the behaviour observed in dynamical simulations of cortical 
networks. The resting state dynamics are typically governed by the 
formation of dynamical clusters which closely relate to the anatomi-
cal modules, but the infl uence of the hierarchical organisation is 
also expressed. In Zemanová et al. (2006) and Zhou et al. (2006, 
2007) it was shown that the correlation between the dynamical 
clusters is mediated by the cortical hubs. In Honey et al. (2007) the 
centrality of the hubs was found to oscillate in time. Simulation 
of excitable dynamics on hierarchical networks (Müller-Linow 
et al., 2008) has shown that the dynamical behaviour of the corti-
cal  network of the cat may be dominated either by the modular 
structure or by the hubs, depending on the time scales.

SEGREGATION, INTEGRATION AND LOCALISATION
The separation of modal information paths is a relevant charac-
teristic of organisation in the nervous system that permits simul-
taneous (parallel) processing of sensory input and detection of 
its features. Cortical regions containing neurones specialised in 
similar function, e.g. in processing information of the same sen-
sory modality, lie  geographically close to each other (Figure 10A). 
However, a coherent perception and the emergence of mental 
states such as awareness and consciousness require that infor-
mation is integrated at different levels: the binding of sensory 
features into entities, the combination of entities with memo-
ries (personal experiences) into events, etc. While experimental 
techniques have led to a deep understanding about the basis of 
sensory perception, the nature of integration and the localisation 
of brain regions involved in it, is still under the subject of debate. 
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As stated by Fuster (2003), simple extrapolation of the principles 
of sensory organisation do not lead to the identifi cation of the 
substrate for cognition.

Several models have proposed that high-level functions are rep-
resented by distributed, interactive and overlapping networks of 
neurones, which transcend any of the traditional subdivisions of 
the cortex by structural (cytoarchitecture) or functional criteria 
(Damasio, 1989; Fuster, 2003, 2006; Tononi, 2004). During the 
recent years increasing experimental evidence has confi rmed this 
hypothesis and the networked perspective has gained the favour 
against the assumption of a single brain region fully responsible 
for integration (Stam and Reijneveld, 2007; Bullmore and Sporns, 
2009; Knight, 2009). The anatomical networked connectivity may 
serve as the basis in which localised and distributed functional 
networks rapidly emerge and dissolve governed by coordination 
dynamics according to the sensory stimulation and the ongoing 
activity (Bressler and Kelso, 2001).

As a further evidence, our results resolve the anatomical organi-
sation substrate that supports the capacity of the cerebral cortex 
to simultaneously segregate and integrate information. In the 
light of this organisation, it could be envisioned that  multisensory 
 integration emerges from the collaborative function of the  cortical 
hubs. While early sensory cortical regions perform specialised 
processing of the sensory input, the hubs of the network may 
work together to combine the multisensory information. A relevant 
organisation difference is that the cortical hubs form a module 
which is densely connected by axonal paths through the white mat-
ter, but is geographically delocalised (Figure 10B).

LIMITATIONS AND OUTLOOK
The current paper focuses in the corticocortical connectivity 
of cats because it is, up to date, the most complete and reliable 
dataset of its kind. Hence, it is the most suitable for a detailed 
and statistically consistent analysis. The main limitation is that 
it comprises of interconnection between cortical areas in only 
one cerebral hemisphere. Because of the known inter-hemisfere 
differences in many mammals, particularly in humans, it will 
be very valuable in the future to acquire the connectivity within 
and between both hemispheres in animal and human models. 
Based on current literature in which the cortical networks of the 
macaque and cat models display similar features, we expect that 
the general organisation principles here exposed to be valid in a 
wide range of mammals.

An interesting challenge is now to explain the emergence of 
this modular and hierarchical organisation in terms of evolution 
and development, in particular how the delocalised cluster of 
hubs could have evolved if, apparently, areas of similar function 
tend to be grouped close to each other. Very likely, the balancing 
between short wiring requirements (leading to minimisation of 
energy costs) and short processing paths allowing for robustness 
and fast responses (Kaiser and Hilgetag, 2006) plays a major role. 
It would also be of relevance to fi nd out whether similar hierarchi-
cal patterns are repeated across smaller scales within the cortex, 
i.e. the interconnections between cortical columns and micro-
columns. This would imply an underlying fractal-like complex 
architecture which can emerge from simple rules of assembly 
during development.

FIGURE 10 | Spatial location of the areas according to their modality: visual (yellow), auditory (red), somatosensory-motor (green) and frontolimbic (blue). 

While areas of similar modality tend to lie close to each other (A), the hubs form a topological cluster which is spatially delocalised (B).
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Finally, we should remind that current non-invasive techniques 
such as EEG, MEG and fMRI reveal only the presence of brain 
activity. They permit to identify which brain regions are associated 
with certain experimental condition. However, at the current stage 
it is very diffi cult, if not impossible, to understand what is exactly 
an activated region doing. Is it fi ltering a signal? Is it integrating 
information? Is an activation detected only because that particular 
region contains memories which are being retrieved and passed to 
other regions for processing? In our opinion, it would be highly 
interesting to further develop concepts of information theory as 
the modular and local capacity of integration here presented which 

applied to the time series of regional activity might help understand 
the particular function of individual brain regions within a given 
experimental task.
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