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The Python programming language is steadily increasing in popularity as the language of 
choice for scientifi c computing. The ability of this scripting environment to access a huge code 
base in various languages, combined with its syntactical simplicity, make it the ideal tool for 
implementing and sharing ideas among scientists from numerous fi elds and with heterogeneous 
methodological backgrounds. The recent rise of reciprocal interest between the machine learning 
(ML) and neuroscience communities is an example of the desire for an inter-disciplinary transfer 
of computational methods that can benefi t from a Python-based framework. For many years, a 
large fraction of both research communities have addressed, almost independently, very high-
dimensional problems with almost completely non-overlapping methods. However, a number 
of recently published studies that applied ML methods to neuroscience research questions 
attracted a lot of attention from researchers from both fi elds, as well as the general public, and 
showed that this approach can provide novel and fruitful insights into the functioning of the brain. 
In this article we show how PyMVPA, a specialized Python framework for machine learning 
based data analysis, can help to facilitate this inter-disciplinary technology transfer by providing a 
single interface to a wide array of machine learning libraries and neural data-processing methods. 
We demonstrate the general applicability and power of PyMVPA via analyses of a number of 
neural data modalities, including fMRI, EEG, MEG, and extracellular recordings.

Keywords: functional magnetic resonance imaging, electroencephalography, magnetoencephalography, extracellular 

recordings, machine learning, Python

applicability to humans, and the corresponding neural correlates 
that result from the measurement process.

Neuroscientists often focus on only one or a smaller subset of 
these neural modalities partly due to the kinds of questions investi-
gated and partly due to the cost of learning to analyze data from 
these different modalities. The diverse measurement approaches 
to brain function can heavily infl uence the selection of a research 
question and, in turn, the development of specifi c software pack-
ages to answer them. Consequently, the peculiarities of each data 
acquisition modality and the lack of strong interaction between 
the neuroscience communities employing them have produced 
distinct software packages specialized for the conventional analy-
ses within a particular modality. Some analysis techniques have 

INTRODUCTION
Understanding how the brain is able to give rise to complex 
 behavior has stimulated a plethora of brain measures such as non-
invasive EEG1, MEG2, MRI3, PET4, optical imaging, and invasive 
extracellular and intracellular recordings, often in conjunction 
with new methods, models, and techniques. Each data acquisi-
tion method has offered a unique set of properties in terms of 
spatio-temporal resolution, signal to noise, data acquisition cost, 
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to have in-depth knowledge about both data modality peculiarities 
and software implementation details.

At the same time, Python has become the open-source scripting 
language of choice in the research community to prototype and 
carry out scientifi c data analyses or to develop complete software 
solutions quickly. It has attracted attention due to its openness, 
fl exibility, and the availability of a constantly evolving set of tools 
for the analysis of many types of data. Python’s automatic mem-
ory management, in conjunction with its powerful libraries for 
effi cient computation (NumPy8 and SciPy9) abstracts users from 
low-level “software engineering” tasks and allows them to fully 
concentrate their attention on the development of computational 
methods.

As an interpreted, high-level scripting language with a simple 
and consistent syntax, a plethora of available modules, easy ways 
to interface to low-level libraries written in other languages10 and 
high-level computing environments11, Python is the language of 
choice for solving many scientifi c computing problems. Table 1 
lists a number of Python modules which might be of interest in the 
neuroscientifi c context, and is meant to complement the material 
presented in the other articles in this special issue.

Despite the fact that it is possible to perform complex data analy-
ses solely within Python, it once again often requires in-depth knowl-
edge of numerous Python modules, as well as the development of a 
large amount of code to lay the foundation for one’s work. Therefore, 
it would be of great value to have a framework that helps to abstract 
from both data modality specifi cs and the implementation details of 
a particular analysis method. Ideally, such a framework should help 
to expose any form of data in an optimal format applicable to a broad 
range of machine learning methods, and on the other hand provide 
a versatile, yet simple, interface to plug in additional algorithms 
operating on the data. In the neuroscience context it would also be 
useful to bridge between well-established neuroimaging tools and 
ML software packages by providing cross library integration and 
transparent data handling for typical containers of neuroimaging 
data (e.g., NIfTI in fMRI research).

As an attempt to provide such a framework we have implemented 
PyMVPA12 (MultiVariate Pattern Analysis in Python) – a free and 
open-source Python framework to facilitate uniform analysis of 
the neural information obtained from different neural modalities. 
PyMVPA heavily utilizes Python’s ability to access libraries written 
in a large variety of programming languages and computing envi-
ronments to interface with the wealth of existing machine learning 
packages developed outside the neuroscience community. Although 
the framework is eminently suited for neuroscientifi c datasets, it is 
by no means limited to this fi eld. However, the neuroscience tuning 
is a unique aspect of PyMVPA in comparison to other Python-based 
ML or computing toolboxes, such as MDP13 or scipy-cluster14 which 
are developed as domain-neutral packages.

become, due to normative concerns, de facto standards despite 
their limitations and inappropriate assumptions for the given 
data type. For instance, the general linear model (GLM) is the 
prevalent approach used in fMRI data analysis, despite being a 
restrictive mass-univariate method (Kriegeskorte and Bandettini, 
2007; O’Toole et al., 2007).

While specialized software packages are useful when dealing 
with the specifi c properties of a single data modality, they limit the 
fl exibility to transfer newly developed analysis techniques to other 
fi elds of neuroscience. This issue is compounded by the closed-
source, or restrictive licensing of many software packages, which 
further limits software fl exibility and extensibility.

However, outside the neuroscience community, machine learn-
ing (ML) research has spawned a set of analysis techniques that are 
typically generic, fl exible (e.g., classifi cation, regression,  clustering), 
powerful (e.g., multivariate, linear and non-linear) and often appli-
cable to various data modalities with minor modality-specifi c pre-
processing (see Pereira et al., in press, for a tutorial on application 
of ML methods to the analysis of fMRI data). Moreover, large parts 
of this community favor the open-source software development 
model (Sonnenburg et al., 2007, see also MLOSS5 project website), 
which leads to an increase in scientifi c progress due to the supe-
rior accessibility of information and reproducibility of scientifi c 
results. These advantages have recently attracted considerable inter-
est throughout the neuroscience community (see Haynes and Rees, 
2006; Norman et al., 2006, for reviews).

Nevertheless, various factors have delayed the adoption of these 
newer methods for the analysis of neural information. First and 
foremost, existing conventional techniques are well-tested and often 
perfectly suitable for the standard analysis of data from the modal-
ity for which they were designed. Most importantly, however, a 
set of sophisticated software packages has evolved over time that 
allow researchers to apply these conventional and modality- specifi c 
methods without requiring in-depth knowledge about low-level 
programming languages or underlying numerical methods. In fact, 
most of these packages come with convenient graphical and com-
mand line interfaces that abstract the peculiarities of the methods 
and allow researchers to focus on designing experiments and to 
address actual research questions without having to develop spe-
cialized analyses for each study.

However, only a few software packages exist that are specifi -
cally tailored towards straightforward and interactive exploration 
of neuroscientifi c data using a broad range of ML techniques, such 
as the Matlab®6 MVPA toolbox for fMRI data7 (Detre et al., 2006). 
At present only independent component analysis (ICA), an unsu-
pervised method, seems to be supported by numerous software 
packages (see Beckmann and Smith, 2005, for fMRI, and Makeig 
et al., 2004, for EEG data analysis). Therefore, the application of 
machine learning analyses, referred to in the literature as decoding 
(Haynes et al., 2007; Kamitani and Tong, 2005), information-based 
analysis (Kriegeskorte et al., 2006) or multi-voxel pattern analysis 
(Norman et al., 2006), usually involves the development of a sig-
nifi cant amount of custom code. Hence, users are typically required 

5http://www.mloss.org.
6Closed source commercial product of MathWorks®.
7It is possible to use the low-level functions of this toolbox for other modalities.

8http://numpy.scipy.org.
9http://www.scipy.org.
10e.g., ctypes, SWIG, SIP, Cython.
11e.g., mlabwrap and RPy.
12http://www.pymvpa.org.
13http://mdp-toolkit.sourceforge.net.
14http://code.google.com/p/scipy-cluster/.

http://numpy.scipy.org
http://www.scipy.org
http://www.mloss.org
http://www.pymvpa.org
http://mdp-toolkit.sourceforge.net
http://code.google.com/p/scipy-cluster/
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The following section provides a short summary of the princi-
pal design concepts, and the basic building blocks of the PyMVPA 
framework. The main focus of this article is, however, a demon-
stration of PyMVPA’s fl exibility by applying various ML tech-
niques to typical EEG, MEG, fMRI and extracellular recordings 
datasets.

PyMVPA
One of the main goals of PyMVPA is to reduce the gap between the 
neuroscience and ML communities. To reach this goal, we designed 
PyMVPA to provide a convenient, easy to use, community devel-
oped (free and open source15), and extensible framework to facili-
tate the use of ML techniques on neural information. PyMVPA 
combines Python data processing, visualization, and basic I/O 
facilities together with I/O code and examples tailored for neu-
roscience. For an easy start into PyMVPA a fMRI example dataset 
(a single subject from the study by Haxby et al., 2001) is available 
for download from the PyMVPA website.

As Table 1 highlighted, PyMVPA is not the only ML framework 
available for scripting and interactive data exploration in Python. 
In contrast to some of the primarily GUI-based ML toolboxes 
(e.g., Orange, Elephant), PyMVPA is designed to provide not just 
a toolbox, but a framework for concise, yet intuitive, scripting of 
possibly complex analysis pipelines. To achieve this goal, PyMVPA 
provides a number of building blocks that can be combined in a 
very fl exible way. Figure 1 shows a schematic representation of 
the framework design, its building blocks and how they can be 
combined into complete analysis pipelines.

This article does not aim to provide a detailed description of the 
PyMVPA framework, and therefore only a rough overview about 
the most important technical aspects is presented here. However, 
a comprehensive introduction is available in Hanke et al. (2009) 
and the PyMVPA manual (Hanke et al., 2008).

In PyMVPA, each building block (e.g., all classifi ers) follows a 
simple, standardized, interface. This allows one to use various 
types of classifi ers interchangeably, without additional changes 
in the source code, and makes it easy to test the performance of 
newly developed algorithms on one of the many didactical neuro-
science-related examples and datasets that are included in PyMVPA. 

Table 1 | Various free and open-source projects, either written in Python or providing Python bindings, which are germane to acquiring or 

processing neural information datasets using machine learning (ML) methods. The last column indicates whether PyMVPA internally uses a particular 

project or provides public interfaces to it.

Name Description URL PyMVPA

MACHINE LEARNING

Elephant Multi-purpose library for ML http://elefant.developer.nicta.com.au 

Shogun Comprehensive ML toolbox http://www.shogun-toolbox.org 

Orange General-purpose data mining http://www.ailab.si/orange 

PyML ML in Python http://pyml.sourceforge.net 

MDP Modular data processing http://mdp-toolkit.sourceforge.net 

hcluster Agglomerative clustering http://code.google.com/p/scipy-cluster 

– Other Python modules http://www.mloss.org/software/language/python 

NEUROSCIENCE RELATED

NiPy Neuroimaging data analysis http://neuroimaging.scipy.org 

PyMGH Access FreeSurfers.mghfi les http://code.google.com/p/pyfsio 

PyNIfTI Access NIfTI/Analyzefi les http://niftilib.sourceforge.net/pynifti 

OpenMEEG EEG/MEG inverse problems http://www-sop.inria.fr/odyssee/software/OpenMEEG 

STIMULI AND EXPERIMENT DESIGN

PyEPL Create complete experiments http://pyepl.sourceforge.net 

VisionEgg Visual stimuli generation http://www.visionegg.org 

PsychoPy Create psychophysical stimuli http://www.psychopy.org 

PIL Python Imaging Library http://www.pythonware.com/products/pil 

INTERFACES TO OTHER COMPUTING ENVIRONMENTS

RPy Interface to R http://rpy.sourceforge.net 

mlabwrap Interface to Matlab http://mlabwrap.sourceforge.net 

GENERIC

Matplotlib 2D Plotting http://matplotlib.sourceforge.net 

Mayavi2 Interactive 3D visualization http://code.enthought.com/projects/mayavi 

PyExcelerator Access MS Excel fi les http://sourceforge.net/projects/pyexcelerator 

pywavelets Discrete wavelet transforms http://www.pybytes.com/pywavelets 

15PyMVPA is distributed under an MIT license, which complies with both Free 
 Software and Open Source defi nitions.

http://elefant.developer.nicta.com.au
http://www.shogun-toolbox.org
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http://neuroimaging.scipy.org
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In addition, any implementation of an analysis method/algorithm 
benefi ts from the basic house-keeping functionality done by the base 
classes, reducing the necessary amount of code needed to contrib-
ute a new fully-functional algorithm. PyMVPA takes care of hid-
ing implementation-specifi c details, such as a classifi er algorithm 
provided by an external C++ library. At the same time it tries to 
expose all available information (e.g., classifi er training perform-
ance) through a consistent interface (for reference, this interface 
is called states in PyMVPA).

PyMVPA makes use of a number of external software pack-
ages, including other Python modules and low-level libraries 
(e.g.,  LIBSVM16) and computing environments (e.g., R17). Using 

externally developed software instead of reimplementing algo-
rithms has the advantage of a larger developer and user base and 
makes it more likely to fi nd and fi x bugs in a software package to 
ensure a high level of quality. However, using external software 
also carries the risk of breaking functionality when any of the 
external dependencies break. To address this problem PyMVPA 
utilizes an automatic testing framework performing various types 
of tests ranging from unittests (currently covering 84% of all lines 
of code) to sample code snippet tests in the manual and the source 
code documentation itself to more evolved “real-life” examples. 
This facility allows one to test the framework within a variety of 
specifi c settings, such as the unique combination of program and 
library versions found on a particular user machine.

At the same time, the testing framework also signifi cantly eases 
the inclusion of code by a novel contributor by catching errors that 

FIGURE 1 | PyMVPA workfl ow and design. PyMVPA is a modular 
framework. It consists of several components (gray boxes) such as ML 
algorithms or dataset storage facilities. Each component contains one or more 
modules (white boxes) providing a certain functionality, e.g., classifi ers, but 
also feature-wise measures (e.g., I-RELIEF; Sun, 2007), and feature selection 
methods (recursive feature elimination, RFE; Guyon and Elisseeff, 2003; 
Guyon et al., 2002). Typically, all implementations within a module are 
accessible through a uniform interface and can therefore be used 
interchangeably, i.e., any algorithm using a classifi er can be used with any 
available classifi er implementation, such as support vector machine (SVM; 
Vapnik, 1995), or sparse multinomial logistic regression (SMLR; Krishnapuram 
et al., 2005). Some ML modules provide generic meta algorithms that can be 
combined with the basic implementations of ML algorithms. For example, a 
Multi-Class meta classifi er provides support for multi-class problems, even if 
an underlying classifi er is only capable to deal with binary problems. 
Additionally, most of the components in PyMVPA make use of some 

functionality provided by external software packages (black boxes). In the case 
of SVM, classifi ers are interfaced to the implementations in Shogun or 
LIBSVM. PyMVPA only provides a convenience wrapper to expose them 
through a uniform interface. By providing simple, yet fl exible interfaces, 
PyMVPA is specifi cally designed to connect to and use externally developed 
software. Any analysis built from those basic elements can be cross-validated 
by running them on multiple dataset splits that can be generated with a variety 
of data resampling procedures (e.g., bootstrapping, Efron and Tibshirani, 
1993). Detailed information about analysis results can be queried from any 
building block and can be visualized with various plotting functions that are part 
of PyMVPA, or can be mapped back into the original data space and format to 
be further processed by specialized tools (i.e., to create an overlay volume 
analogous to a statistical parametric mapping). The solid arrows represent a 
typical connection pattern between the modules. Dashed arrows refer to 
additional compatible interfaces which, although potentially useful, are not 
necessarily used in a standard processing chain.

16http://www.csie.ntu.edu.tw/∼cjlin/libsvm/.
17http://www.r-project.org.

http://www.r-project.org
http://www.csie.ntu.edu.tw/~cjlin/libsvm/


Frontiers in Neuroinformatics www.frontiersin.org February 2009 | Volume 3 | Article 3 | 5

Hanke et al. The PyMVPA framework

would potentially break the project’s functionality. Being open-
source does not always mean easy to contribute due to various 
factors such as a complicated application programming interface 
(API) coupled with undocumented source code and unpredict-
able outcomes from any code modifi cations (bug fi xes, optimiza-
tions, improvements). PyMVPA welcomes contributions, and thus, 
addresses all the previously mentioned points:

Accessibility of source code and documentation: All the source 
code (including website and examples) together with the full devel-
opment history is publicly available via a distributed version control 
system18 which makes it very easy to track the development of the 
project, as well as to develop independently and to submit back 
into the project.

Inplace code documentation: Large parts of the source code are 
well documented using reStructuredText19, a lightweight markup 
language that is highly readable in source format as well as being 
suitable for automatic conversion into HTML or PDF reference 
documentation. In fact, Ohloh.net20 source code analysis judges 
PyMVPA as having “extremely well-commented source code.”

Developer guidelines: A brief summary defi nes a set of coding 
conventions to facilitate uniform code and documentation look and 
feel. Automatic checking of compliance to a subset of the coding 
standards is provided through a custom PyLint21 confi guration, 
allowing early stage minor bug catching.

Moreover, PyMVPA does not raise barriers by being limited to 
specifi c platforms. It could fully or partially be used on any platform 
supported by Python (depending on the availability of external 
dependencies). However, to improve the accessibility, we provide 
binary installers for Windows, and MacOS X, as well as binary 
packages for Debian GNU/Linux (included in the offi cial reposi-
tory), Ubuntu, and a large number of RPM-based GNU/Linux 
distributions, such as OpenSUSE, RedHat, CentOS, Mandriva, 
and Fedora. Additionally, the available documentation provides 
detailed instructions on how to build the packages from source 
on many platforms.

A fi nal important feature of PyMVPA is that it allows, by design, 
researchers to compress complex analyses into a small amount of 
code. This makes it possible to complement publications with the 
source code actually used to perform the analysis as Supplementary 
Material. Making this critical piece of information publicly available 
allows for in-depth reviews of the applied methods on a level well 
beyond what is possible with verbal descriptions. To demonstrate 
this feature, this paper is accompanied by the full source code to 
perform all analyses shown in the following sections.

ILLUSTRATIVE EXAMPLES: PyMVPA ON 
DIFFERENT MODALITIES
In this section we provide example analyses of four datasets, each 
from a different modality (EEG, MEG, fMRI, and extracellular 
recordings). All examples follow the same basic analysis pipeline: 
initial modality-specifi c preprocessing, application of ML meth-
ods, and visualization of the results. For the modality-independent 

machine learning stage, all four examples employ the same analysis 
with exactly the same source code. Specifi cally, we fi rst perform 
cross-validation with one or more classifi ers on each dataset then 
compute feature-wise sensitivity measures. These measures can 
then be examined to reveal their implications in terms of the under-
lying research question.

These examples do not aim to provide an overview of the full 
functionality available within PyMVPA, but rather to show that ML 
methods can be easily applied to various types of data to provide 
meaningful and even thought-provoking results.

EEG
The dataset used for the EEG example consists of a single par-
ticipant from a previously published study on object recognition 
(Fründ et al., 2008). In the experiment, participants indicated, for a 
sequence of images, whether they considered each particular image 
a meaningful object or just object-like with a meaningless confi gu-
ration. This task was performed for two sets of stimuli with different 
statistical properties and under two different speed constraints. 
EEG was recorded from 31 electrodes at a sampling rate of 500 Hz 
using standard recording techniques. Details of the recording pro-
cedure can be found in Fründ et al. (2008). A detailed description 
of the stimuli can be found in Busch et al. (2006, colored images) 
and in Herrmann et al. (2004, line-art pictures).

Fründ et al. (2008) performed a wavelet-based time-frequency 
analyses of channels from a posterior region of interest (ROI) 
(i.e., no multivariate methods were employed). Here, we apply 
multivariate methods to differentiate between two conditions: trials 
with colored stimuli (broad spectrum of spatial frequencies and a 
high level of detail) and trials with black and white line-art stimuli 
(Figure 2A), collapsing the data across all other conditions. This 
discrimination is orthogonal to the participants task of indicating 
object vs. non-object stimuli.

The data for this analysis were 700 ms EEG segments start-
ing 200 ms prior to the stimulus onset of each trial, to which we 
applied the following preprocessing procedure. We only included 
trials that passed the semi-automatic artifact rejection procedure 
performed in the original study, yielding 852 trials (422 color and 
430 line-art). Each trial timeseries was downsampled to 200 Hz, 
leaving 140 sample points per trial and electrode. We then defi ned 
each trial, including the EEG signal of all sample points from all 
channels, as a sample to be classifi ed (4340 features total). Finally, 
all features for each sample were normalized to zero mean and unit 
variance (z-scored).

As the main analysis we applied a standard sixfold cross-
 validation22 procedure with linear support vector machine (linC-
SVM; Vapnik, 1995), sparse multinomial logistic regression (SMLR; 
Krishnapuram et al., 2005) and Gaussian process regression with 
linear kernel (linGPR; Rasmussen and Williams, 2006) classifi ers. 
Additionally, we computed the multivariate I-RELIEF (Sun, 2007) 
feature sensitivity measures, and, for comparison, a univariate anal-
ysis of variance (ANOVA) F-score on the same cross- validation 
dataset splits.

All three classifi ers performed with high accuracy on the inde-
pendent test datasets, achieving 86.2% (linCSVM), 91.8% (SMLR), 

18http://en.wikipedia.org/wiki/Version_control_system.
19http://en.wikipedia.org/wiki/ReStructuredText.
20http://www.ohloh.net/projects/pymvpa/factoids.
21http://www.logilab.org/projects/pylint. 22http://en.wikipedia.org/wiki/Cross-validation#K-fold_cross-validation.

http://en.wikipedia.org/wiki/Version_control_system
http://en.wikipedia.org/wiki/ReStructuredText
http://www.ohloh.net/projects/pymvpa/factoids
http://www.logilab.org/projects/pylint
http://en.wikipedia.org/wiki/Cross-validation#K-fold_cross-validation
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and 89.6% (linGPR) correct single trial predictions, respectively. 
However, more interesting than the plain accuracy are the features 
each classifi er relied upon to perform its predictions. PyMVPA 
makes it very easy to extract feature sensitivity information from 
all its classifi ers using a uniform interface. Figure 2B shows the 
computed sensitivities from all classifi ers and measures. There is a 
striking similarity between the shape of the classifi er sensitivities 
plotted over time and the corresponding event-related potential 
(ERP) difference wave between the two experimental conditions 
(Figure 2A; example shown for electrode Pz, Fründ et al., 2008). 
The head topography plot of the sensitivities reveals a high variabil-
ity with respect to the specifi city among the multivariate measures. 
SVM, GPR and SMLR weights congruently identify three posterior 
electrodes as being most informative (SMLR weights provide the 
highest contrast of all measures). The I-RELIEF topography is much 

less specifi c and more similar to the ANOVA topography in its 
global spatial structure than to the other multivariate measures. It 
should be noted, however, that these topographies aggregate infor-
mation over all timepoints and, therefore, do not provide informa-
tion about specifi c temporal EEG components.

One particularly interesting result is the difference between 
the multivariate sensitivities and the univariate ANOVA F-scores 
from 300 to 400 ms following stimulus onset. Only the multivari-
ate methods (especially SMLR, linCSVM and linGPR) detected a 
relevant contribution to the classifi cation task of the signal in this 
time window. This late signal may be related to the intracranial 
EEG gamma-band responses that Lachaux et al. (2005) observed 
at around the same time range when participants viewed complex 
stimuli. Given that the present data also seem to show a similar 
evoked gamma-band response (Fründ et al., 2008), it is possible 

FIGURE 2 | Sensitivities for the classifi cation of color and line-art 

conditions. Panel (A) shows ERPs of each condition for electrode Pz. The light 
shaded area shows the standard deviation, the darker shade the 95% 
confi dence interval around the mean ERP of each condition. The black curve is 
the difference wave of both ERPs. The stimulus example images are from Fründ 
et al. (2008). Panel (B) shows feature sensitivity measures for the different 
methods. Sensitivities were normalized by scaling the vector norm of each 
sensitivity vector (covering all timepoints from all electrodes) to unit length. This 
allows for comparison of the relative weight each classifi er puts on each feature. 

The head topography plots in the lower panel show the channel-wise sum over 
time of the absolute scaled sensitivities. The upper panel shows the same 
scaled sensitivities plotted over time for the Pz electrode (indicated as the dark 
dot on the head topographies). This electrode was chosen as Fründ et al. (2008) 
made it the subject of most visualizations. The shape of the sensitivity curves 
nicely resemble the ERP difference wave. Interestingly, for a time window 
around 350 ms after stimulus onset (indicated by the gray bar), all multivariate 
sensitivity measures assign a considerable amount of weight on the respective 
timepoints, whereas the univariate ANOVA is completely fl at at zero.
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that the multivariate methods are sensitive to the gamma-band 
activity in the data. Still, further work would be required to prove 
this correlation.

MEG
The example MEG dataset was collected with the aim to test whether 
it is possible to predict the recognition of briefl y presented natural 
scenes from single trial MEG-recordings of brain activity (Rieger 
et al., 2008) and to use ML methods to investigate the properties 
of the brain activity that is predictive of later recognition. On each 
trial participants saw a briefl y presented photograph (37 ms) of 
a natural scene that was immediately followed by a pattern mask 
(1000–1400 ms). The short masked presentation effectively limits the 
processing interval of the scene in the brain (Rieger et al., 2005) and, 
therefore, participants will later recognize only some of the scenes. 
After the mask was turned off, participants indicated via button 
presses whether they would subsequently recognize the photograph, 
or if they would fail. Immediately after this judgement, four natural 
scene photographs were presented and participants had to indicate 
which of the four scenes had been previously  presented (i.e., a four-
alternative forced-choice delayed match to sample task).

The MEG was recorded with a 151 channel CTF Omega MEG 
system from the whole head (sampling rate 625 Hz and a 120 Hz 
analogue low pass fi lter) while participants performed this task. 
The 600 ms interval of the MEG time series data that was used for 
the analysis started at the onset of the briefl y presented scene and 
ended before the mask was turned off. As in the original study, we 
analyzed only those trials in which participants both judged they 
would be correct and also correctly recognized the scene (RECOG) 
and the trials in which participants both predicted they would fail 
and gave an incorrect response (NRECOG). For details about the 
rationale of this selection, the stimulus presentation information, 
and the recording procedure see Rieger et al. (2008). In this example 
analysis we have used data from a single participant (labeled P1 in 
the original publication).

The MEG timeseries were fi rst downsampled to 80 Hz and then 
all trial segments were channel-wise normalized by subtracting their 
mean baseline signal (determined from a 200 ms window prior to 
scene onset). Only timepoints within the fi rst 600 ms after stimulus 
onset were considered for further analysis. The resulting dataset con-
sisted of 151 channels with 48 timepoints each (7248 features), and 
a total of 294 samples (233 RECOG trials and 61 NRECOG trials).

The original study contained analyses based upon SVM classi-
fi ers, which revealed, by means of the spatio-temporal distribution 
of the sensitivities, that the theta band alone provides the most dis-
criminative signal. The authors also addressed the topic of how to 
interpret heavily unbalanced datasets23. Given this comprehensive 
analysis, we aimed here to replicate their basic analysis strategy with 
PyMVPA and were able to achieve almost identical results.

As with the EEG data, we applied a standard cross-validation 
procedure, this time eightfold, using linear SVM and SMLR classi-
fi ers. Additionally, we again computed univariate ANOVA F-scores 

on the same cross-validation dataset splits. The SVM classifi er was 
confi gured to use different per-class C-values24, scaled with respect 
to the number of samples in each class to address the unbalanced 
number of samples. Similar to Rieger et al. (2008), we also ran 
a second cross-validation on balanced datasets (by performing 
multiple selections of a random subset of samples from the larger 
RECOG category).

Both, classifi ers performed almost identically on the full, unbal-
anced dataset, achieving 84.69% (SMLR) and 82.31% (linCSVM) 
correct single trial predictions (83.0% in the original study). 
Figure 3 shows sample timeseries of the classifi er sensitivities and 
the ANOVA F-score of two posterior channels. Due to the sig-
nifi cant difference in the number of samples of each category, it is 
important to additionally report mean true positive rate (TPR)25, 
that amounted to 72% (SMLR), and 76% (linCSVM) respectively. 
The second SVM classifi er trained on the balanced dataset achieved 
a comparable accuracy of 76.07% correct predictions (mean across 
100 subsampled datasets), which is a slightly larger drop in accuracy 
when compared to the 80.8% achieved in the original study (see 
Table 3 in Rieger et al., 2008).

Importantly, these results show that PyMVPA produces repro-
ducible results that depend on the ML methods employed, but not 
on a particular implementation. However, the integrated frame-
work of PyMVPA allowed us to achieve these results with much 
less effort than what was necessary in the original study.

fMRI
A single participant (participant 1) from a study published by 
Haxby et al. (2001), which has been repeatedly reanalyzed since the 
original publication (Hanson and Halchenko, 2008; Hanson et al., 
2004; O’Toole et al., 2007), served as the example fMRI dataset. The 
dataset itself consists of 12 runs. In each run, the participant pas-
sively viewed greyscale images of eight object categories, grouped 
in 24 s blocks separated by rest periods. Each image was shown 
for 500 ms and was followed by a 1500 ms inter-stimulus interval. 
Full-brain fMRI data were recorded with a volume repetition time 
of 2500 ms, thus, a stimulus block was covered by roughly nine 
volumes. For a complete description of the experimental design 
and fMRI acquisition parameters see Haxby et al. (2001).

First, the raw fMRI data were motion corrected using FLIRT26 
from FSL27 (Jenkinson et al., 2002). All subsequent data processing 
was done with PyMVPA. After motion correction, linear detrending 
was performed for each run individually. No additional spatial or 
temporal fi ltering was applied.

For the sake of simplicity, we reduced the dataset to a four-class 
problem (faces, houses, cats, and shoes). All volumes recorded during 
any of these blocks were extracted and voxel-wise z-scored. This 
normalization was performed individually for each run to prevent 
any kind of information transfer across runs.

23Unbalanced datasets have a dominant category which has considerably more 
 samples than any other category. That potentially leads to the problem when a clas-
sifi er prefers to assign the label of that category to all samples to minimize total 
prediction error.

24Parameter C in soft-margin SVM controls a trade-off between width of the SVM 
margin and number of support vectors (see Veropoulos et al., 1999, for an  evaluation 
of this approach).
25Mean TPR is equivalent to accuracy in balanced sets, and is 50% at chance per-
formance even with unbalanced set sizes (see Rieger et al., 2008, for a discussion 
of this point).
26FMRIB’s Linear Image Registration Tool.
27http://www.fmrib.ox.ac.uk/fsl.

http://www.fmrib.ox.ac.uk/fsl
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After preprocessing, we applied the same sensitivity analysis 
performed for all other data modalities to this dataset. Here, only 
a SMLR classifi er was used (sixfold cross-validation, with 2 of the 
12 experimental runs grouped into one chunk, and trained on 
single fMRI volumes that covered the full brain). For  comparison, 
a univariate ANOVA was again computed for the same cross-
 validation dataset splits.

The SMLR classifi er performed very well on the independent 
test datasets, correctly predicting the category for 94.7% of all single 
volume samples in the test datasets. To examine what informa-
tion was used by the classifi er to reach this performance level, we 
computed ROI-based sensitivity scores for 48 non-overlapping 
structures defi ned by the probabilistic Harvard-Oxford cortical 
atlas (Flitney et al., 2007), as shipped with FSL (Smith et al., 2004). 
To create the ROIs, we thresholded the probability maps of all 
structures at 25% and assigned ambiguous voxels to the structure 
with the higher probability. The resulting map was projected into 
the space of the functional dataset using an affi ne transformation 
and nearest neighbor interpolation.

In order to determine the contribution of each ROI, the sensitiv-
ity vector was fi rst normalized (across all ROIs), so that all absolute 
sensitivities summed up to 1 (L1-normed). Afterwards ROI-wise 
scores were computed by taking the sum of all sensitivities in a 
particular ROI. The upper part of Figure 4 shows these scores for 
the 20 highest-scoring and the three lowest-scoring ROIs.

The lower part of the fi gure shows dendrograms from a hierar-
chical cluster analysis28 on relevant voxels from a block-averaged 
variant of the dataset (but otherwise identical to the classifi er train-
ing data). For SMLR, only voxels with a non-zero sensitivity were 
considered in each particular ROI. For ANOVA, only the voxels with 

the highest F-scores (limited to the same number as for the SMLR 
case) were considered. For visualization purposes the dendrograms 
show the distances and clusters computed from the average samples 
of each condition in each dataset chunk (i.e., two experimental 
blocks), yielding six samples per condition.

The four chosen ROIs clearly show four different cluster pat-
terns. The 92 selected voxels in temporal occipital fusiform cortex 
(TOFC) show a clear clustering of the experimental categories, with 
relatively large sample distances between categories. The pattern 
of the 36 voxels in angular gyrus reveals an animate/inanimate 
clustering, although with much smaller distances. The largest group 
of 148 voxels in the frontal pole ROI seems to have no obvious 
structure in their samples. Despite that, both sensitivity measures 
assign substantial importance to this region. This might be due to 
the large inter-sample distances visualized in the corresponding 
dendrogram in Figure 4. Each leaf node (in this case an average 
volume of two stimulation blocks) is approximately as distinct from 
any other leaf node, in terms of the employed distance measure, as 
the semantic clusters identifi ed in the TOFC ROI. Finally, the ROI 
covering the anterior division of the superior temporal gyrus shows 
no clustering at all, and, consequently, is among the lowest-scoring 
ROIs of both measures. On the whole, the cluster patterns from 
voxels selected by SMLR weights and F-scores are very similar in 
terms of inter-cluster distances.

Given that these results only include the data of a single par-
ticipant, no far-reaching implications can be drawn from them. 
However, the distinct cluster patterns might provide indications for 
different levels of information encoding that could be addressed 
in future studies. Although voxels selected in both angular gyrus 
and the frontal pole ROIs do not provide a discriminative signal 
for all four stimulus categories, they nevertheless provide some dis-
ambiguating information and, thus, are picked up by the classifi er. 

FIGURE 3 | Event-related magnetic fi elds (EMF) and classifi er sensitivities. 

The upper part shows EMFs for two exemplary MEG channels. On the left 
sensor MRO22 (right occipital), and on the right sensor MZO01 (central 

occipital). The lower part shows classifi er sensitivities and ANOVA F-scores 
plotted over time for both sensors. Both classifi ers showed equivalent 
generalization performance of approximately 82% correct single trial predictions.

28PyMVPA provides hierarchical clustering facilities through hcluster (Eads, 2008).
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In angular gyrus, this seems to be an animate/inanimate pattern 
that additionally also differentiates between the two categories of 
animate stimuli. Finally, in the frontal pole ROI the pattern remains 
unclear, but the relatively large inter-sample distances indicate a 
differential code of some form that is not closely related to the 
semantic stimulus category.

EXTRACELLULAR RECORDINGS
The extracellular dataset analyzed in this section is previously 
unpublished, thus, we fi rst briefl y describe the experimental 
and acquisition setup. Animal experiments were carried out in 
accordance with the National Institute of Health Guide for the 
Care and Use of Laboratory Animals and approved by Rutgers 
University. Sprague-Dawley rats (300–500 g) were anaesthetized 
with urethane (1.5 g/kg) and held with a custom naso-orbital 
restraint. After preparing a 3 mm square window in the skull over 
auditory cortex, the dura was removed and a silicon microelec-
trode consisting of eight four-site recording shanks (NeuroNexus 
Technologies, Ann Arbor, MI, USA) was inserted. The recording 
sites were in the primary auditory cortex, estimated by stere-
otaxic coordinates, vascular structure (Sally and Kelly, 1988) and 

tonotopic variation of frequency tuning across recording shanks, 
and located within layer V, determined by electrode depth and 
fi ring patterns.

Five pure tones (3, 7, 12, 20, 30 kHz at 60 dB) and fi ve different 
natural sounds (extracted from the CD “Voices of the Swamp”, 
Naturesound Studio, Ithaca, NY, USA) were used as stimuli. Each 
stimulus had a duration of 500 ms followed by 1500 ms of silence. 
All stimuli were tapered at beginning and end with a 5 ms cosine 
window. The data acquisition took place in a single-walled sound 
isolation chamber (IAC, Bronx, NY, USA) with sounds presented 
free fi eld (RP2/ES1, Tucker-Davis, Alachua, FL, USA).

Individual units29 were isolated by a semi-automatic algorithm 
(KlustaKwik30) followed by manual clustering (Klusters31). Post-
stimulus time histograms (PSTH) of spike counts per each unit 
for all 1734 stimulation onsets were estimated using a bin size of 
3.2 ms. To ensure an accurate estimation of PSTHs only units with a 

FIGURE 4 | Sensitivity analysis of the four-category fMRI dataset. The upper 
part shows the ROI-wise scores computed from SMLR classifi er weights and 
ANOVA F-scores (limited to the 20 highest and the three lowest-scoring ROIs). 

The lower part shows dendrograms with clusters of average category samples 
(computed using squared Euclidean distances) for voxels with non-zero SMLR-
weights and a matching number of voxels with the highest F-scores in each ROI.

29The term “unit” in the text refers to a single entity, which was segregated from the 
recorded data, and is expected to represent a single neuron.
30http://klustakwik.sourceforge.net.
31http://klusters.sourceforge.net.

http://klustakwik.sourceforge.net
http://klusters.sourceforge.net
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mean fi ring rate higher than 2 Hz were selected for further analysis, 
leaving us with a total of 105 units.

Since the segregation of individual units out of the extra-
cellular recordings is carried out without taking the respective 
stimulus condition into account, i.e., in unsupervised fashion 
(in ML terminology), it does not guarantee that the activity of 
any particular unit can be easily attributed to some set of stimulus 
conditions. From the stimulus-wise descriptive statistics of the 
units presented in the top plots of Figure 5 it is diffi cult to state 
that the activity of any particular unit at some moment in time is 
specifi c for a given stimulus. Furthermore, due to the inter-trial 
variance in the spike counts, it is even more diffi cult to reliably 
assess what stimulus condition any particular trial belongs to. 
Hence, the purpose of the PyMVPA analysis was to complement 
the results of the unsupervised clustering with a characterization 
of all extracted units in terms of their specifi city to any given 
stimulus at any given time.

The analysis pipeline was similar to the one used for EEG, 
MEG, and fMRI data. We ran a standard eightfold cross- validation 
procedure for an SMLR classifi er, which achieved a mean of 
77.57% accuracy estimate across all 10 types of stimuli. This gen-
eralization accuracy is well above chance (10%) for all stimulus 
categories and allows one to conclude that the neuronal popula-
tion activity pattern at the recording site carries a differential 
signal across all 10 stimuli. Misclassifi cations mostly occurred for 
low-frequency stimuli. Pure tones with 3 and 7 kHz were more 
often confused with each other than tones with a larger frequency 

difference (see Figure 6), which suggests a high similarity in the 
spiking patterns for these stimuli. We could further speculate that 
this neuronal population is more tuned towards the processing 
of higher frequency tones.

Besides being able to label yet unseen trials with high accuracy, 
the trained classifi er can readily provide its sensitivity estimates 
for each unit, time bin, and stimulus condition (see bottom plots 
of Figure 5). Temporal sensitivity profi les of any particular unit 
(see unit #42 profi les in lower left plot of Figure 5) can reveal that 
the stimulus specifi c information is contained in spike times rela-
tive to stimulus onset or can be represented as slowly modulated 
pattern of spike counts (see 3 kHz stimuli). An aggregate sensitivity 
(in this case the sum of absolute sensitivities) across all time-bins 
provides a summary statistic of any unit’s sensitivity to a given 
stimulus condition (see lower right plot of Figure 5). In contrast 
to a simple variance measure, it provides an easier way to associate 
any given unit to a set of stimulus conditions. Additionally, it can 
identify units which might lack a substantial amount of variance, 
but nevertheless carry a stimulius-specifi c signal (e.g. unit #28 and 
30 kHz stimulus).

CONCLUSIONS
In this article we presented PyMVPA, a data analysis framework 
especially tailored to neural data from a wide range of acquisition 
modalities. PyMVPA provides ML techniques as core functional-
ity, addressing recent trends in neuroscience research. To illustrate 
the generalizability of the PyMVPA analysis pipeline we provided 

FIGURE 5 | Statistics of multiple single unit extracellular simultaneous 

recordings and corresponding classifi er sensitivities. All plots sweep through 
different stimuli along vertical axis, with stimuli labels presented in the middle of 
the plots. The upper part shows basic descriptive statistics of spike counts for 
each stimulus per each time bin (on the left) and per each unit (on the right). 
Such statistics seem to lack stimulus specifi city for any given category at a given 
time point or unit. The lower part on the left shows the temporal sensitivity 
profi le of a representative unit for each stimulus. It shows that stimulus specifi c 

information in the response can be coded primarily temporally (few specifi c 
offsets with maximal sensitivity like for song2 stimulus) or in a slowly modulated 
pattern of spikes counts (see 3 kHz stimulus). Associated aggregate sensitivities 
of all units for all stimuli in the lower right fi gure indicate each unit’s specifi city to 
any given stimulus. It provides better specifi city than simple statistics like 
variance, e.g., unit 19 is active in all stimulation conditions according to its high 
variance, but according to its classifi er sensitivity it carries little, if any, stimuli-
specifi c information for natural songs 1–3.
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example analyses of data from EEG, MEG, fMRI and extracellular 
recordings.

The framework presented here is Python-based, sophisticated, 
free and open-source software. Its intended audience is threefold. 
First, there are neuroscience researchers interested in testing ML 
algorithms on neural data, e.g., people working on brain- computer 
interfaces (BCI, see Birbaumer and Cohen, 2007; Lebedev and 
Nicolelis, 2006). PyMVPA provides researchers with the ability 
to execute complex analysis tasks in very concise code. Second, it 
is also designed for ML researchers interested in testing new ML 
algorithms on neural data. PyMVPA offers a highly-modularized 
architecture designed to minimize the effort of adding new algo-
rithms. Moreover, the availability of neuroscience-related code-
examples (like the ones presented in this article) and datasets greatly 
reduces the time to get actual results. Finally, PyMVPA is welcoming 
code contributors from both neuroscience and ML communities 
interested in improving or adding modality-specifi c functions or 
new algorithms. PyMVPA offers a community-based development 
model together with a distributed version control system and exten-
sive reference documentation.

FUTURE WORK
PyMVPA does not aim to provide all possible ML analysis algorithms, 
and it will likely not come close, even in the future. Given that PyMVPA 
is tailored towards the high-dimensional problems found in neuro-
science, it currently provides many of the most common algorithms 
tuned for this target. Still, as the neuroscience and ML communities 
unite, new and promising algorithms are constantly emerging and 
being added to PyMVPA. Beyond the inclusion of new ML algorithms, 
there are numerous plans for future enhancements to PyMVPA.

Because the current use of ML techniques in neuroscience is 
mainly limited to the application of only basic algorithms to neural 
data, one of the next, most intriguing, new directions of PyMVPA 
will be to provide custom workfl ows designed for specifi c neuroscience 
modalities. An example of such a custom workfl ow is the analysis 
of fMRI data from experiments with event-related designs, where 
multiple fMRI volumes after the onset of the event compose a single 
sample within a dataset provided to the ML methods for processing. 
Combining multiple volumes into a single sample obviates the need 
to provide a hemodynamic response function because the important 
features can be extracted independently for each voxel.

FIGURE 6 | Confusion matrix of SMLR classifi er predictions of stimulus 

conditions from of multiple unit recordings. The classifi er was trained to 
discriminate between stimuli of fi ve pure tones and fi ve natural sounds. 
Elements of the matrix (numeric values and color-mapped visualization) show 
the number of trials which were correctly (diagonal) or incorrectly 

(off-diagonal) classifi ed by a SMLR classifi er during an eightfold cross-validation 
procedure. The results suggest a high similarity in the spiking patterns for stimuli 
of low-frequency pure tones, which lead the classifi er to confuse them more 
often, whenever responses to natural sound stimuli and high-frequency tones 
were hardly ever confused with each other.
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In addition, PyMVPA has yet to confront the problem of model 
selection. Currently, only Gaussian process regression has the 
ability to select hyper-parameters of the model. Uniform model 
selection for ML methods within PyMVPA is planned for the 
next major release of the project. It will provide the facility to 
automatically search for the best set of parameters for each clas-
sifi er without sacrifi cing unbiased estimates of the generalization 
performance.

SUPPLEMENTAL MATERIAL
The Supplemental Materials (e.g., source code) for this article can 
be found online at http://www.frontiersin.org/neuroinformatics/ 
paper/10.3389/neuro.11/003.2009.
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