
Frontiers in Neuroinformatics www.frontiersin.org December 2008 | Volume 2 | Article 7 | 1

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 16 December 2008
doi: 10.3389/neuro.11.007.2008

A Python analytical pipeline to identify prohormone 
precursors and predict prohormone cleavage sites

Bruce R. Southey1,2*, Jonathan V. Sweedler1 and Sandra L. Rodriguez-Zas2

1 Department of Chemistry, University of Illinois, Urbana, IL, USA
2 Department of Animal Sciences, University of Illinois, Urbana, IL, USA

Neuropeptides and hormones are signaling molecules that support cell–cell communication in 
the central nervous system. Experimentally characterizing neuropeptides requires signifi cant 
efforts because of the complex and variable processing of prohormone precursor proteins 
into neuropeptides and hormones. We demonstrate the power and fl exibility of the Python 
language to develop components of an bioinformatic analytical pipeline to identify precursors 
from genomic data and to predict cleavage as these precursors are en route to the fi nal bioactive 
peptides. We identifi ed 75 precursors in the rhesus genome, predicted cleavage sites using 
support vector machines and compared the rhesus predictions to putative assignments based 
on homology to human sequences. The correct classifi cation rate of cleavage using the support 
vector machines was over 97% for both human and rhesus data sets. The functionality of 
Python has been important to develop and maintain NeuroPred (http://neuroproteomics.scs.
uiuc.edu/neuropred.html), a user-centered web application for the neuroscience community 
that provides cleavage site prediction from a wide range of models, precision and accuracy 
statistics, post-translational modifi cations, and the molecular mass of potential peptides. 
The combined results illustrate the suitability of the Python language to implement an all-
inclusive bioinformatics approach to predict neuropeptides that encompasses a large number 
of interdependent steps, from scanning genomes for precursor genes to identifi cation of 
potential bioactive neuropeptides.
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Analysis Consortium, 2007), only four rhesus prohormone genes 
have been reported compared to over 90 human prohormone genes. 
Consequently, accurate bioinformatic identifi cation of neuropep-
tide genes and characterization of precursors is essential in rhesus 
neuroscience research.

Several factors make annotating prohormones and their associ-
ated peptides diffi cult. First, neuropeptides result from a complex 
series of post-translational modifi cations (PTMs) of precursor 
proteins. Second, the conserved “bioactive” peptide sequence that 
interacts with its cognate receptor can be short, only a few amino 
acids long, with large sections of diverse sequences in the prohor-
mone. Thus, homology to well-studied species is not enough to 
offer accurate neuropeptide predictions across species.

The typical structure of neuropeptide precursor after translation 
includes a signal peptide region and a region that contains one or 
more neuropeptides (Fricker, 2005; Hook et al., 2008). After trans-
lation, the signal peptide is removed by signal peptidases and the 
remaining peptide is cleaved by other proteases (notably proprotein 
or prohormone proteases) that cleave the sequence at basic (Arg 
or Lys) sites (Fricker, 2005; Hook, 2006; Hook et al., 2008). After 
cleavage, the N- terminal basic amino acids are typically removed by 
carboxylases and various additional PTMs such as amidation and 
glycosylation can occur (Fricker, 2005; Hook et al., 2008).

We address these points here with a bioinformatics toolkit to 
discover and characterize neuropeptides. Essential components 

INTRODUCTION
Neuropeptides are a class of cell–cell peptides that can act as neu-
rotransmitters and hormones and have various paracrine, endo-
crine, and autocrine effects (Boutrel, 2008; Heinrichs and Domes, 
2008). Neuropeptides directly infl uence a diverse set of biological 
processes from growth and development to learning. For example, 
oxytocin is known as a mammalian hormone associated with repro-
duction but also is a neurotransmitter that has been associated with 
social behavior traits including trust, autism, inhibition of tolerance 
to additive drugs and impaired learning and memory functions. 
Furthermore, oxytocin and arginine vasopressin are intermediar-
ies of social behaviors, including attachment, social cognition and 
stress, anxiety, and aggression (Heinrichs and Domes, 2008).

Experimental detection of neuropeptides in mammals has been 
limited to a few species (primarily human, mouse and rat) or the 
characterization of selected peptide families (such as insulin) across 
greater numbers of species. This lack of experimental characteri-
zation is predominantly because such experimental procedures 
are resource intense and the presence of neuropeptides varies 
with species, tissue, developmental stage and even organism state. 
Genomic sequencing provides the opportunity to discover neu-
ropeptides in other species with limited or no experimental studies 
on neuropeptides. For example, while the rhesus macaque monkey 
(Macaca mulatta) is widely used as model organism and its genome 
has been sequenced (Rhesus Macaque Genome Sequencing and 
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of this analytical pipeline are the computational identifi cation of 
precursor genes in nucleic databases and model-based prediction 
of cleavage and other PTMs of the precursors. Python is an ideal 
language to develop this analytical pipeline for the discovery and 
characterization neuropeptides. The core language has easy to use 
functions that facilitate complex manipulation of information and 
integration of results from the multistep analytical pathway. The 
suitability of Python is further strengthened by third-party modules 
such as BioPython (http://biopython.org) for bioinformatics (Bassi, 
2007) and Numerical and Scientifi c Python (http://www.scipy.org) 
for numerical computation (Oliphant, 2007). The combination of 
all these features in a single language makes Python an ideal choice 
for bioinformatic applications (Bassi, 2007; Kinser, 2008). In terms 
of a pipeline, the power and fl exibility of Python can be used for the 
full pipeline or to integrate different components of the pipeline 
together. We illustrate the use of Python to implement an analytical 
pipeline that integrates vastly different components necessary to 
identify rhesus neuropeptides and associated precursors.

PRECURSOR IDENTIFICATION USING BIOINFORMATICS 
RESOURCES
An exhaustive survey of neuropeptide precursors in a genome is 
the fi rst step in the complete characterization of the neuropepti-
dome of a species. The development of bioinformatics analytical 
pipeline to discover neuropeptide precursors requires the integra-
tion of multiple steps involving multiple tools. Bioinformatic tools 
including sequence homology search using BLAST (Altschul et al., 
1997) and multiple sequence alignment using T-Coffee (Notredame 
et al., 2000) are available as standalone packages or via a web inter-
face. BioPython provides an integrated environment that supports 
different aspects of bioinformatics including parsing results from 
bioinformatics tools. For example, Bassi (2007) illustrates the use 
of BLAST with BioPython.

In the fi rst step of the prohormone analytical pipeline, rhesus 
precursors were identifi ed based on precursor information from 
other mammalian species with extensive neuropeptide research. In 
particular, a list of human precursors and neuropeptide sequences 
was collected from the UniProt Knowledgebase database (The 
UniProt Consortium, 2008) and literature review (Amare et al., 
2006; Tegge et al., 2008). The set of human precursors was queried 
against the database of predicted proteins derived from the rhesus 
genome (http://www.ncbi.nlm.nih.gov/projects/genome/guide/
rhesus_macaque/) using a standalone version of BLAST (version 
2.2.18) using the default parameter settings (e.g., expectation value 
of 10 and Blosum62 scoring matrix) except for disabling the fi l-
ter option. Queries were conducted using the complete precursor 
sequence that included the regions that contain the signal peptide 
and neuropeptides to maximize the detection of the rhesus pre-
cursor. Human precursors were used because of the evolutionary 
relationships between the rhesus and human species and the com-
pleteness of the list in humans. Information from other species (e.g. 
mouse and rat) can also be used to evaluate the accuracy of the 
search process. The repetitive process of searching for each human 
precursor on the rhesus database was implemented by exploiting 
the ability of BLAST to handle multiple sequences and using Python 
to parse results. The query input fi le containing all human precur-
sors was submitted to BLAST and the output was saved in an XML 

formatted fi le. An XML format provides structured information in 
a machine readable format that permits repeated access.

The XML fi le of BLAST results can be also be parsed directly 
using standard Python libraries such as the elementtree library to 
extract the results for each of the human precursors. The script in 
Listing 1 opens the specifi ed XML fi le and recursively stores the 
contents in a Python class that contains the attributes and values 
specifi ed by the XML docment type defi nitions used by BLAST. 
After parsing the BLAST XML fi le, the script loops across the query 
sequences and displays the match and the score and e-value of the 
best match to the query sequence. Using a Python script allows 
greater control of the output including extracting precursors with 
the highest scoring BLAST hits, precursors with no hits, all hits that 
exceed a threshold determined by the user, or all hits. Furthermore, 
Python provides suffi cient fl exibility to identify the common sce-
narios with comparative genome analyses where multiple precur-
sors match the same target or the same precursor matches different 
targets with similar scores.

The complete identifi cation of precursors can require different 
levels of user input especially related to species divergence. The dif-
fi culties imposed by species divergence and available resources can 
be investigated by evaluating different BLAST specifi cations (e.g. 
selection of database, scoring matrices, E-value threshold), different 
genomic resources (e.g. unassembled sequences) and information 
from species when this is available. Due to the repetitive nature of 
these investigations, Python can be used to facilitate the rapid evalu-
ation of the different specifi cations and combining the information 
for user assessment.

Although low E-values constitute statistical evidence that sup-
ports the detection of homologous sequences between species, false 
matches and partial matches are possible. The accuracy of the iden-
tifi cation of predicted rhesus precursors was accessed by aligning 
the sequence to corresponding sequences from multiple other spe-
cies using multiple sequence alignment tools such as T-Coffee. Most 
multiple sequence alignment tools only perform a single alignment 
so that it is necessary to perform one alignment for every precur-
sor. Simple Python scripts can be used for the repetitive creation 
of sequence fi les including multiple sequences across species for 
each precursor and subsequent alignment for each precursor. The 
resulting alignments were then viewed to identify which rhesus 
precursor predictions are reliable or contain the prediction but are 
too long (the result of automated predictions and sequencing or 
assembly errors) or incomplete (due to incomplete coverage of the 
particular genomic region, sequencing or assembly errors). Based 
on the fi nal alignments, 67 rhesus neuropeptides precursors were 
identifi ed solely in the rhesus database of predicted proteins.

Identifi cation of precursors using protein predictions and auto-
mated tools is fast and effective. However, this approach misses 
precursors that are partially predicted or not predicted due to 
sequencing or assembly issues. In order to identify if a human 
precursor is present in the genome of the rhesus monkey, the pro-
tein sequences of the precursors are queried against the nucleotide 
sequences from the genome assembly. The result of the BLAST 
query only provides the locations that suffi ciently match the protein 
sequence and consequently ignore low scoring and intronic regions. 
The full precursor sequence can be extracted using Wise2 (http://
www.ebi.ac.uk/Tools/Wise2/index.html; Birney et al., 2004). Wise2 
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predicts the gene structure by comparing a protein sequence to a 
genomic DNA sequence and using a gene prediction model that 
allows for introns and frameshift errors. The genomic sequence 
required by Wise2 was obtained by using Python to read the 
genomic DNA sequence of the assembled rhesus genome, iden-
tify and extract the relevant chromosomal region and perform the 
reverse transcription into the complementary strand if necessary. If 
the extracted region is insuffi cient to accurately identify the main 
gene structure components, the genomic region can be expanded 
and resubmitted to Wise2. An additional advantage of combining 
the BLAST and Wise2 tools is that the protein sequence, mRNA 
sequence and the location of the exons are simultaneously available 
and can be used to confi rm the accuracy of the predictions.

The combined strategy of using BLAST and Wise2 directly 
identifi ed eight additional precursors that were not been previ-
ously predicted and provide valuable information for the manual 
annotation of rhesus precursors. For example, the rhesus CCKN 
precursor was identifi ed on chromosome 2 but lacked a match to 
last 28 amino acids of the human CCKN sequence. Examination 
the genomic sequence showed that a region of 91 unknown bases 
occurred immediately after the last residue of the mRNA sequence 
predicted using Wise2. This nucleotide segment most likely codes 
the missing precursor sequence that corresponded to the last exon 
of the human precursor gene and was missed in the assembly. The 
search for the missing region among the rhesus trace archives (a 
collection of raw sequence traces, http://www.ncbi.nlm.nih.gov/
projects/genome/guide/rhesus_macaque/), uncovered a hit to a 
contig that contained the missing segment and resulted in the 

prediction of a complete CCKN precursor. A different scenario 
was encountered with the NPS precursor because the Wise2 predic-
tion missed the start of the NPS precursor. This failure was most 
likely due to the structure of the human gene where the fi rst exon 
only codes for two amino acids. Consequently, the corresponding 
rhesus exon was identifi ed by a query using the complete human 
NPS nucleotide and combined with the Wise2 prediction to obtain 
the complete rhesus NPS precursor.

There were also 17 precursors that could not be recovered solely 
based on the assembly alone without further examining the trace 
archives for unassembled or incorrectly assembled contigs. For 
example, the related crab-eating macaque (M. fascicularis) insulin 
(INS) precursor has been reported (Wetekam et al., 1982) and, thus, 
is expected to be found in the rhesus genome. Queries of the human 
and M. fascicularis INS sequence on the M. mulatta genome did not 
permit full recovery of the rhesus INS precursor due to gaps and 
a stop codon in the genomic assembly. The results from a search 
of the trace achives indicated that the inclusion of different contig 
(ti|523766964) would most likely result in the identifi cation of the 
complete rhesus INS precursor.

The individual precursors undergo a number of additional 
processing steps before the fi nal bioactive peptides are created. Thus, 
once the list of precursor protein sequences has been compiled, 
expected prohormone structural features such as a signal peptide 
and prohormone cleavage sites are identifi ed for each individual 
precursor. The signal peptide was predicted using SignalP (Bendtsen 
et al., 2004) and the length of the signal peptide was recorded with 
the sequence. The rhesus precursors lack  experimental cleavage 

LISTING 1 | Parsing an BLAST XML fi le in Python.
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information so cleavage sites must be assigned based on homology 
to other animals or cleavage models. The reliability of the homol-
ogy-based prediction of cleavage relies on the degree of conserva-
tion of the precursor between species available.

Human data were expected to provide the most accurate assign-
ment of cleavage data due to the close evolutionary relationship 
between the human and rhesus species. Python scripts were devel-
oped to assign precursor cleavage information based on homology 
to human sequences. The human and rhesus sequences of each 
precursor were fi rst aligned using T-Coffee. The locations of the 
human cleavage sites were then found in the corresponding aligned 
rhesus sequence. Finally the rhesus sequence and cleavage data 
was obtained after removing any gaps that had been entered dur-
ing the sequence alignment. Assuming that the precursor cleav-
age assignment based on human information provides a perfect 
characterization of precursor processing in the rhesus, then the 
comparison of model-based cleavage predictions and confi rmed 
or homology-based cleavage information will provide the number 
of true and false positives (cleavage sites) and true and false nega-
tives (non-cleavage sites). These results can be used to construct 
further indicators of cleavage model performance including cor-
rect classifi cation rate (ratio of true versus true and false results), 
sensitivity (ratio of true positives versus all positives), specifi city 
(ratio of true negatives versus all negatives), positive and negative 
precision (Southey et al., 2006a).

CLEAVAGE PREDICTION USING MACHINE LEARNING 
TECHNIQUES
Prediction of the cleavage sites within the precursor is essential 
for identifi cation of the fi nal peptides produced by the prohor-
mones, including the neuropeptides. Previously we have shown 
that machine learning techniques including logistic regression, 
artifi cial neural networks and memory-based reasoning are suc-
cessful in predicting cleavage sites in neuropeptide precursors in 
diverse sets of species (Amare et al., 2006; Hummon et al., 2003; 
Southey et al., 2008; Tegge et al., 2008). An analytical pipeline to 
predict cleavage using machine learning involves preparing and 
processing the sequence and cleavage data, training and testing of 
prediction models using machine learning techniques to identify 
the most appropriate model, predict the possible peptides using 
the most appropriate model and any PTMs present in the predicted 
peptides.

Python can be used to process the sequence and cleavage data 
into a generic fi le that can be used by a single application as well 
by different applications following the steps outlined by Southey 
et al. (2008). Generally these steps involve: (1) reading the sequence 
and cleavage data, (2) removing the signal peptide, (3) splitting 
the remaining sequence into overlapping windows, (4) assigning 
cleavage status to the window and (5) recoding the amino acids 
as binary indicators with respect to the actual location within the 
window. The script in Listing 2 demonstrates how a single neu-
ropeptides sequence with length of signal peptide and cleavage site 
is processed. First the signal peptide is removed and the resulting 
sequence is padded to permit windows that may extend past the 
ends of the sequence. The sequence is then split into overlapping 
windows and windows with basic amino acids (Lys and Arg) are 
kept. The amino acids within each window are then recoded with 

dummy values and cleavage status is assigned. The resulting loca-
tion within the complete precursor sequence, the window of the 
sequence, cleavage status of the window and coding of the amino 
acids is then displayed.

The resulting generic fi le can be used as input to a stand-alone 
machine learning package or tool (e.g. R http://www.r-project.
org), or by a tool directly implemented in Python (e.g. the SciKit 
learn http://www.scipy.org/scipy/scikits/wiki/MachineLearning), 
or automatically passed to a stand-alone tool using a Python inter-
face and language bindings. This latter strategy will be illustrated 
using the Python bindings provided with the LibSVM package 
(Chang and Lin, 2001) that implement training and cross-valida-
tion of support vector machines in Python. The general use of 
LibSVM involves the input of data, selection of a support vector 
machine and associated parameter, training of the support vector 
machine given the data and parameters and evaluation of trained 
support vector machine. Following Salzberg (1997), the optimal 
parameters for the support vector machine were identifi ed using 
cross- validation and a grid search across the parameters of the sup-
port vector machine. Preliminary results indicated that the default 
support vector machine with a radial basis function provided the 
same performance as other types and had the advantage of only 
requiring two parameters. The LibSVM also provides k-fold cross-
validation where the training data was split into k components of 
which k − 1 components was used to train a model and the last 
component was used for testing. The cross-validation approach 
was repeated such that all data components were used as testing 
and the overall cleavage miss-classifi cation rate across complete 
data is obtained.

A Python script was used process generic fi le previously obtained 
from the human and rhesus sequence and cleavage data into human 
and rhesus data sets in the format required by the LibSVM. Part of 
the script (Listing 3) loops across the two parameters of a support 
vector machine with a radial basis function (gamma and C) and 
within the loop calls the LibSVM cross-validation routine with the 
parameters of the support vector machine and supplied degree of 
cross-validation. This script also trains the support vector machine 
for the supplied parameters on the full training data set and com-
putes the accuracy of this support vector machine on the test and 
training data sets. This script can be easily extended to evaluate 
multiple support vector machine specifi cations including linear 
and polynomial. In addition to the cross-validation, the script also 
trained a support vector machine on the full test data set for the 
supplied parameter values and tested the resulting support vector 
machine on the full test data and the training data. For data sets 
where the cross-validation and full data set support vector machine 
analyses for each combination of parameters becomes prohibitive, 
the script can be modifi ed such that the support vector machine 
analysis of the full data set is only executed after the parameter 
values that provide the lowest miss-classifi cation rate have been 
identifi ed in a prior cross-validation step.

The parsing of the results from the Python script that trained 
and tested the support vector machine models offered insights into 
the similarities between the human and rhesus cleavage patterns. 
The rhesus and human cleavage prediction models selected had 
the highest 5-fold cross-validation accuracy and the fewest predic-
tion errors in the training data. The evaluation of the parameters 
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on the full data sets was also important because support vector 
machines with similar cross-validation correct classifi cation rates 
had lower performance on the full and test data sets. For example, 
in the human support vector machine, the two highest scoring 
human support vector machines had correct classifi cation rates 
of 91.0% and 90.6% after cross-validation. However, the highest 
scoring human support vector machine had correct classifi cation 
rates of 99.9% and 99.6% in the human full data set and rhesus full 
data set, respectively. Whereas the second scoring human support 
vector machine had an approximately 3% lower correct classifi ca-
tion rate in human full data set, and rhesus full data set (97.3% 
and 96.4%, respectively).

The performance of the support vector machine models was 
compared to the mammalian logistic regression model (Amare 
et al., 2006), the human logistic regression and human artifi cial 
neural models (Tegge et al., 2008) and the empirical Known Motif 
model Southey et al. (2006b). On the human data set, the human 
support vector machine had the highest correct classifi cation 
rate (99.9%), as expected, followed by the rhesus support vector 
machine (97.9%), human artifi cial neural model (92.2%), human 
logistic regression (90.2%), mammalian logistic regression (82.5%) 

and fi nally the Known Motif model (76.6%). The rhesus support 
vector machine provided perfect classifi cation on the rhesus data 
set followed by the human support vector machine (99.6%), human 
artifi cial neural model (91.3%), human logistic regression (89.6%), 
mammalian logistic regression (82.4%) and fi nally the Known 
Motif model (76.7%). Models trained on human data had better 
prediction than general mammalian model or empirical known 
motif model. This result was expected independently of evolution-
ary relationships because the human cleavage data was used to 
assign cleavage in the rhesus.

The main reason for the different model performance was the 
lower number of false positive predictions by the support vector 
machines relative to the other methodologies. The rhesus support 
vector machine had slightly lower number of false negative predic-
tions in the human data set than the human artifi cial neural net-
work. The differences between the different prediction approaches 
are due to differences in the data sets used to train and test the 
models and the ability of the methodologies to accommodate lin-
ear and non-linear relationships between the input variables and 
cleavage patterns. Tegge et al. (2008) used 62 human precursors 
to train artifi cial neural network and logistic regression models, 

LISTING 2 | Python script to recode an amino acid sequence into generic format for machine learning applications.
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LISTING 3 | Python script for training and testing a support vector machine.

Amare et al. (2006) used 39 mammalian precursors to train logistic 
models and the human support vector machine model developed 
in this study were trained on 93 human precursors. The artifi cial 
neural network had perfect (100%) classifi cation on the human 
data set reported in Tegge et al. (2008).The lower correct classifi -
cation rate result by including more human precursors indicating 
that the human data set used by Tegge et al. (2008) likely does not 
contain complete information on cleavage that was used in training 
the support vector machines.

Across species, the impact of the precursor sequences used to 
train and test in the model performance can be assessed by compar-
ing the performance of the same model across species. Comparison 
of the data used to train the support vector machines showed that 
all rhesus precursors had homologous in the human data set but 
20 human precursors were not present on the rhesus data set. Of 
the 37 sites that received different cleavage classifi cation by the 
two support vector machines, only 10 sites corresponded to pre-
cursors that were present in both species data sets; meanwhile the 
remaining sites were only present in the human precursor data 
set. Among the sites with differential cleavage prediction between 
species, four sites pertained to rhesus sequences that have differ-
ent amino acids than the human sequence and these amino acids 

have a strong association with cleavage patterns. For example, the 
INSL4 precursor in the rhesus includes a window with the amino 
acid sequence ‘GCGPRFGKR↓MLSYCPMPE’ where ↓ denoted 
the predicted cleavage site. However, this site was assigned a non-
cleavage observed value because the homologous human win-
dow, ‘GCGPRFGKHLLSYCPMPE’, has not reported to be cleaved. 
Similarly, Southey et al. (2006b) reported a single amino acid dif-
ference between human and chimpanzee RFRP precursor that 
resulted in a false positive prediction in the chimpanzee sequence. 
These results demonstrate the value of bioinformatic prediction of 
precursor cleavage, especially in species with limited experimental 
confi rmation. One important use of across species predictions is 
to eliminate false positive results from experimental consideration. 
As another use, this same information can also identify potentially 
 species-specifi c cleavage sites to explain peptides that are unex-
pected based on homology alone.

APPLICATION/TOOL TO ASSIST IN THE IDENTIFICATION OF 
NEUROPEPTIDES
The prediction of cleavage sites in a protein sequence requires 
that the sequence must be processed into a usable format, then 
the prediction model is applied and fi nally the actual prediction 
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are returned. Each of these steps requires specialized knowledge 
ranging from processing the sequence to technical knowledge 
of applying the models derived from machine learning models. 
Developing a web application is one approach to remove spe-
cialized knowledge because a web form can be provided where 
the underlying script is responsible to convert the input into 
required format, apply the prediction models and display result-
ing predictions.

We developed NeuroPred (http:// neuroproteomics.scs.uiuc.
edu/neuropred.html), a web application in Python, to supports 
the detection and characterization of the neuropeptidome (Southey 
et al., 2006a). The user requires only a sequence basic knowledge of 
neuropepeptides and there is no requirement for specialized knowl-
edge of areas such as Python or machine learning. Using a simple 
form, users can enter one or more protein sequences and then select 
one or more prediction models and different options that control 
the subsequent processing of the resulting peptides and output. A 
user can select either simple options where most options have been 
preselected for the user a more advanced options that provide all 
possible models and control of the input and output. NeuroPred 
validates all the inputs, predict cleavage sites for all sequences 
entered and models selected. Under the default options, NeuroPred 

will display a cleavage prediction diagram indicating the predicted 
cleavage locations and optionally the probabilities of cleavage for 
the sequences entered and model selected (Figure 1).

To assist in the experimental studies using mass spectrometry 
(e.g., Hummon et al., 2005; Li and Sweedler, 2008), NeuroPred 
also computes the predicted mass of peptides including most of 
the known neuropeptide PTMs. The computation of the mass of 
the predicted peptides that can be used in high throughput mass 
spectrometry studies to assist in the identifi cation of peptides. 
Depending on the options selected, NeuroPred will list the differ-
ent peptides possible, the source for cleavage for the peptide (such 
as signal peptidase or prediction from one or more models), PTMs 
applied to the resulting peptides, predicted mass and full peptide 
sequence. NeuroPred also joins adjacent peptides to account for 
false positive cleavages and the presence of intermediate peptides 
that are eventually cleaved.

NeuroPred provides cleavage predictions using model devel-
oped from a vast range of species (including mollusk, insects and 
mammals) used in neuroscience research. Generally it is expected 
that the most appropriate model will be trained on the same or 
closely related species. However, it is expected that there are situa-
tions where there is no obvious appropriate model or that there is 

FIGURE 1 | Predicted cleavage sites of the rhesus cocaine- and amphetamine-regulated gene using different models in NeuroPred.
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a requirement for a greater understanding cleavage prediction at 
different sites. For these types of situations, NeuroPred can compute 
different model accuracy statistics when cleavage information is 
uploaded together with sequence. The resulting output enables 
the comparison of the selected models for individual precursors 
and for all precursors.

One valuable aspect of using Python was that much of the code 
developed for the analytical pipeline was reused in NeuroPred 
and can also be easily packaged into a stand-alone application. 
For example, the processing of sequence information and appli-
cation of different cleavage prediction models requires the same 
code across the different applications. This feature allows the 
main coding to be focused on integrating components rather than 
developing a completely new application. Furthermore, additional 
or more effi cient Python code developed for a new application 
can be reused by previous application. For example, the original 
prediction equations from different models were implemented 
using scalar computations. However, faster code was generated by 
implementing the prediction equations as a series of vector-matrix 
multiplications in Numerical Python. Improvements in compu-
tational speed were benefi cial for all applications and particularly 
for NeuroPred because of the volume of requests handled by this 
public web service.

The text processing capabilities in Python were important 
to enable the integration of the NeuroPred application with the 
visual appearance of the main web site. The main site provides 
static information that does not change in response to the user. 
In contrast, the output from NeuroPred is dynamic because the 
output depends on user interaction. If the html coding recoding 
is directly used within the script, the script must be changed when 
the main web site changes. However, the string processing abil-
ity of Python permits Python scripts to easily search and replace 
portions of text. In particular, the template of the main web site 
or an existing web page in the required format can be directly 
parsed by Python and the necessary portions replaced such that 
the web application will provide the same visual appearance as 
the main web site. Alternatively, Python web frameworks such as 
Django (http://www.djangoproject.com/) can be used to develop 
and maintain extensive web sites.

CONCLUSION
The Python language is well-suited to implement a bioinformat-
ics approach that encompasses a large number of interdependent 
steps, from scanning genomes for precursor genes to identifi cation 
of neuropeptides. We did not encounter any shortcomings with 
Python that were specifi c to our application or that hampered our 
efforts to obtain results. The series of steps encompassed in the 
analytical pipeline implemented in Python refl ect the fl exibility 
of this language to support diverse applications. The versatility of 
Python across all steps, identifi cation of neuropeptide precursors 
from genomic sequences, generation and training of cleavage pre-
diction models, and development of a web application to predict 
cleavage sites, PTMs, and resulting peptides was illustrated.

The components of an neuropeptide analytical pipeline devel-
oped using Python supports the examination and annotation of 
genomes, prediction of cleavage sites, and characterization of 
resulting peptides, irrespectively of the extent of experimental 
neuropeptide evidence. The successful application of the discov-
ery aspect of this pipeline led to the identifi cation of 78 rhesus 
neuropeptide precursors, including 11 precursors that had not 
been predicted during the automated annotation of the genome. 
The training and evaluation of models to predict cleavage sites in 
rhesus precursors resulted in models that had correct classifi ca-
tion rate of over 80% based on homologous cleavage assignments 
from human precursors indicating successful application of the 
cleavage prediction component of the pipeline. NeuroPred is a 
direct application of the neuropeptide analytical pipeline to pro-
vide an all-inclusive Python web application that allows users to 
predict precursor cleavage and subsequent PTMs of the resulting 
peptides. This application supports targeted experimental search 
for likely predicted peptides and greatly facilitates the laborious 
search for neuropeptides in mass spectra from high throughput 
proteomic studies.

The level of user input required to comprehensively identify 
the precursor complement depends on the available resources 
and on the divergence of the species under study with respect to 
other species with known precursor information. In this study we 
demonstrated how Python routines can aid with many tedious 
components of genome-wide precursor identifi cation and  cleavage 
prediction such as the processes that must be repeated for each 
precursor. Our routines help to address the challenges associated 
with species divergence and in-progress sequencing and assembly 
processes (e.g. coverage, accuracy) by facilitating the evaluation of 
different specifi cations (e.g. databases, scoring matrices, E-value 
thresholds) and of models from species with different level of 
divergence.

Results from characterization of the rhesus neuropeptidome 
using an analytical pipeline and implementation of the pipeline as 
a public web application that serves the neuroscience community 
demonstrate the suitability of the Python language for multiplexed 
and high throughput bioinformatics applications. The object-
 orientated nature of the Python language enabled considerable 
reuse of code at the different stages of development. A completely 
integrated approach can also be achieved by combining the bioin-
formatics tools in BioPython and the numerical tools in Numerical 
and Scientifi c Python.
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