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Nengo (http://nengo.ca) is an open-source neural simulator that has been greatly enhanced by 
the recent addition of a Python script interface. Nengo provides a wide range of features that 
are useful for physiological simulations, including unique features that facilitate development 
of population-coding models using the neural engineering framework (NEF). This framework 
uses information theory, signal processing, and control theory to formalize the development 
of large-scale neural circuit models. Notably, it can also be used to determine the synaptic 
weights that underlie observed network dynamics and transformations of represented variables. 
Nengo provides rich NEF support, and includes customizable models of spike generation, 
muscle dynamics, synaptic plasticity, and synaptic integration, as well as an intuitive graphical 
user interface. All aspects of Nengo models are accessible via the Python interface, allowing 
for programmatic creation of models, inspection and modifi cation of neural parameters, and 
automation of model evaluation. Since Nengo combines Python and Java, it can also be integrated 
with any existing Java or 100% Python code libraries. Current work includes connecting neural 
models in Nengo with existing symbolic cognitive models, creating hybrid systems that combine 
detailed neural models of specifi c brain regions with higher-level models of remaining brain 
areas. Such hybrid models can provide (1) more realistic boundary conditions for the neural 
components, and (2) more realistic sub-components for the larger cognitive models.
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theory, representation, hybrid models

NENGO
Nengo is an open-source cross-platform software package for mod-
eling neuronal circuits1, and tested on Macintosh OS X, Linux, and 
Microsoft Windows. It is implemented in Java, and provides both a 
detailed Application Programming Interface and a Graphical User 
Interface (Figure 1), so that it is suitable for both novice and expert 
modelers. As will be discussed, the Python scripting system forms 
a bridge between the easy-to-use graphical environment and the 
full power of the underlying programmatic interface. This ensures 
a smooth transition from novice to expert, as all aspects of the 
simulation are accessible at all times.

A variety of spiking point-neuron models are provided with 
Nengo. This includes the standard LIF neuron and the Hodgkin-
Huxley model, as well as an adapting LIF (La Camera et al., 2004) 
and the Izhikevich model (Izhikevich, 2003). Integration is per-
formed with a variable-timestep integrator, using the Dormand-
Prince 4th and 5th order Runge-Kutta formulae (Dormand and 
Prince, 1980). At the network level, interaction between neurons 
treats spikes as discrete events; Nengo is not meant for neural mod-
els where the detailed voltage profi le of a specifi c spike affects the 
post-synaptic neurons.

These neuron models can be connected directly to form simple 
networks, and input can consist of current injection or voltage 
clamp. Spike times, membrane voltages, and current can be recorded 
from the neurons. This approach is suitable for situations where 
connectivity information is known, or where the dynamics of a 

INTRODUCTION
Large-scale neural modeling requires software tools that not only 
support effi cient simulation of hundreds of thousands of neurons, 
but also provide researchers with high-level organizational tools. 
Such neural models involve heterogeneous components with com-
plex interconnections that may be either speculative in nature or 
constrained by existing neurobiological evidence. To effectively 
construct, modify, and investigate the behaviour of these mod-
els, researchers need to be able to specify the collective behavior 
of large groups of neurons as well as the low-level physiological 
details.

In order to support this style of research, we have developed 
a neural simulator package called Nengo. For high-level organi-
zation, Nengo makes use of the neural engineering framework 
(NEF; Eliasmith and Anderson, 2003), which provides methods 
for abstractly describing the representations and transforma-
tions involved in a neural model and how they relate to spiking 
behavior. To provide access to the broad range of functionality 
we require (from neural groups to individual synapses), we inte-
grated a Python language scripting system into the simulator. This 
enables a variety of novel features, including the inspection and 
modifi cation of running models, the ability to script common 
experimental tasks, and the integration of non-neural cognitive 
models. In this paper, we describe this system (see Introduction), 
discuss the features related to its use of Python (see Python and 
Nengo), and provide an extended example of ongoing research 
that has directly benefi ted from these abilities (see Integration 
with Other Libraries).
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i has an associated preferred direction vector � (the stimulus for 
which it most strongly fi res), bias current Jbias, and scaling factor α. 
For a given neuron, α and Jbias can be experimentally determined 
from its maximum fi ring rate and the minimum value of x for 
which it responds. If the nonlinearities of any given neural model 
(LIF, ALIF, etc.) are written as G[⋅] and the neural noise of variance 

particular confi guration are being investigated. However,  modeling 
of more sophisticated population-coding networks is greatly facili-
tated by using the NEF-related features of the simulator.

NEURAL ENGINEERING FRAMEWORK
For complex neural models, it is often useful to describe the system 
of interest at a higher level of abstraction, such as that shown in 
Figure 2. For this reason, we defi ne heterogeneous groups of neu-
rons (where individual neurons vary in terms of their neural prop-
erties such as bias current and gain) and projections between these 
groups. We can then use the NEF (Eliasmith and Anderson, 2003) 
as a method for realizing this high-level description using neural 
models with adjustable degrees of accuracy. The NEF provides not 
only a method for encoding and decoding time-varying represen-
tations using spike trains, but also a method for deriving linearly 
optimal synaptic connection weights to transform and combine 
these representations. This approach combines work from a variety 
of researchers, most notably Georgopoulos et al. (1986), Rieke et al. 
(1999), Salinas and Abbott (1994), and Seung (1996).

The NEF has been used to model the barn owl auditory system 
(Fischer, 2005), rodent navigation (Conklin and Eliasmith, 2005), 
escape and swimming control in zebrafi sh (Kuo and Eliasmith, 
2005), working memory systems (Singh and Eliasmith, 2006), the 
translational vestibular ocular refl ex in monkeys (Eliasmith et al., 
2002), and the manipulation of symbolic representations to support 
high-level cognitive systems (Stewart and Eliasmith, 2009).

Within the NEF, a neural group forms a distributed representa-
tion of a time-varying vector x(t) of arbitrary length. Each neuron 

FIGURE 1 | A neural model of the basal ganglia developed in Nengo.

FIGURE 2 | A neural model of the mammalian vestibular system using 

the NEF. Boxes represent distinct neural populations and arrows represent 
projections between them. Inputs to the system are linear acceleration 
sensed by the left and right otoliths (AL, AR) and the angular velocity from the 
canals (ΩL and ΩR). From these, the system calculates inertial acceleration 
(I) using the formula developed by Angelaki et al. (1999). (For further details, 
see Eliasmith et al., 2002).
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σ2 is η(σ), then the encoding of any given x(t) as the temporal spike 
pattern across the neural group is given as Eq. 1.

δ α η( ) ( ) ( )t t G t Ji i i i
n

− = ⋅ + +⎡⎣ ⎤⎦∑ in � x bias σ
 

(1)

Given this spiking pattern, we can in turn estimate the original 
vector as ˆ( ).x t  In some approaches (e.g. Georgopoulos et al., 1986), 
this is done by weighting each encoding vector � by the average 
fi ring rate of the corresponding neuron. In the NEF, however, we 
derive the linearly optimal decoding vectors � for each neuron 
(see Eliasmith and Anderson, 2003 for details). This method has 
been shown to uniquely combine accuracy and neurobiological 
plausibility (e.g. Salinas and Abbott, 1994).
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Since x(t) varies over time, we do not weight these decoding 
vectors by the average fi ring rate. Instead, we weight them with the 
post-synaptic current h(t) induced by each spike. The shape and 
time-constant of this current are determined from the physiological 
properties of the neural group:

ˆ( ) ( ) ( ) ( )x t t t h t h t ti i i= − ∗ = −∑∑δ in in
inin

� �
 

(3)

The representational error between x(t) and ˆ( )x t  is dependent 
on the particular neural parameters and encoding vectors, but in 
general is inversely proportional to the number of neurons in the 
group. Given a suffi cient number of neurons, an arbitrary level of 
accuracy can be reached. For a known number of neurons with 
known physiological properties, we can determine how well the 
values can be represented.

The derivation of the optimal decoding vector also allows us to 
determine the optimal connection weights to perform arbitrary 
transformations of these representations. For linear functions, 
consider two neural populations, X representing x(t) and Y repre-
senting y(t). If we want y(t) = M x(t), we can derive the following 
for the neurons in population Y:
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This manipulation converts weighted post-synaptic currents 
caused by the spikes in neural group X into a spiking pattern for 
group Y that would cause Y to represent the value in X transformed 
by the linear operation M. Crucially, if we set the synaptic connec-
tion weights between the ith neuron in X and the jth neuron in 
Y to be ω αij j j i= � M� , then the post-synaptic neurons will encode 
M x(t). This allows us to develop a model by defi ning the hypoth-
esized computations and directly solving for the corresponding 

connection weights, rather than relying on a learning rule or manu-
ally setting the weights.

For nonlinear transformations, we can generalize the derivation of 
the decoding vector to estimate the desired function f(x). This pro-
vides a new set of decoding vectors �f(x) which can be used in place of 
the previous � to provide an optimal linear estimate of this function. 
This allows arbitrary nonlinear functions to be computed, although 
more complex nonlinearities across multiple dimensions of x will 
require more neurons with � values that lie in those dimensions.
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Treating neural groups as representing time-varying vectors and 
synaptic connections as performing arbitrary transformations allows 
us to organize a neural system using the powerful framework of 
control theory. Eliasmith and Anderson (2003) have shown how to 
translate any state-space model from modern control theory into an 
equivalent neural circuit. For example, an ideal integrator is shown 
in Figure 3A, and its NEF counterpart, a neural integrator imple-
mented with 300 LIF neurons, is shown in Figure 3B. Importantly, 
the idealized version can be seen as an approximation of the actual 
neural behaviour. As is discussed in the next section, this feature can 
be used to create large-scale models where every component can 
potentially be simulated at the level of neurons, even though it may 
be too computationally expensive to do so for the whole system.

The NEF provides a generic method for modeling any neural 
system where groups of neurons are taken to represent scalars, 
vectors, and functions, and where synaptic connections implement 
transformations on these representations. The system generalizes 
to higher dimensional vectors and has also been used as the basis 
of models of path integration (Conklin and Eliasmith, 2005) and 
working memory (Singh and Eliasmith, 2006). Arbitrary nonlinear 
encodings are supported by adjusting G to be the output of any 
neural model. While the above derivation assumes linear dendrites, 
the approach generalizes to nonlinear dendritic behavior as well 
(see Eliasmith and Anderson, 2003).

PROGRAMMING INTERFACE
Nengo is a highly modular object-oriented Java program, making 
the underlying simulation system extensible and adaptable to novel 
modeling situations. The following features are directly exposed to 
the developer by the architecture:

Neuron models
Specialized neuron models can be written in Python or Java. These 
can extend existing models and/or use generic components, such as 
the built-in dynamical system solver. For example, a Nengo imple-
mentation of a dopamine-sensitive bistable striatal neuron (Gruber 
et al., 2003) was recently developed. The core of its implementation 
is shown later in this paper.

Neural plasticity
Arbitrary functions can be added for adjusting synaptic weights 
based on spike timing and modulatory signals.
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Muscle models
For any neural models involving motor neurons, the dynamic 
behavior of the muscles form an important part of the model as 
well. Nengo supports multiple approaches to muscle modeling 
(e.g. Keener and Sneyd, 1998; Winter, 1990).

All of these components, along with other useful tools for 
modeling such as external inputs and probability distribution 
functions for various neural properties, can be implemented in 
either Java or Python. As discussed in further detail below, all of 
the features of Nengo are exposed in both languages, allowing 
developers the fl exibility to choose the approach which is most 
suitable to them.

Since the software was developed for large-scale modeling, each 
component within a Nengo model has an adjustable simulation 
mode. For neural groups defi ned using the NEF approach, three 
modes are provided: spiking neurons, rate neurons, and a direct 
high-level abstraction of the overall neural behavior. This direct 
mode allows for fast approximate simulations where the individual 
neurons within the group are not simulated; instead the behavior 
is approximated in terms of the underlying represented values x(t). 
When neural groups simulated at a low level connect with groups 
simulated at a high level, Eqs 1 and 3 (above) are used to determine 
the corresponding spike trains and ˆ( )x t  values. If suffi cient time and 
computational resources are available, all parts of the model can 
be simulated in terms of spiking neurons. However, this capability 
of mixing levels of simulation means that a detailed neural model 
involving tens of thousands of neurons can be embedded within 
a high-level approximation of the millions of other neurons with 
which this system must interact. By switching modes of particular 
neural groups, the effect of different degrees of accuracy can be 
easily determined. Changing simulation models is also a useful 
exploratory tool, since approximate behavior can be determined 
quickly.

USER INTERFACE
Nengo also provides a graphical user interface for constructing and 
simulating models. Neural groups can be created and confi gured, 
projections and synaptic connection weights can be defi ned, and 
simulations can be run and analyzed, all through a point-and-
click interface. This provides a direct method for visualizing the 
overall organization of a complex neural circuit at multiple levels 
of abstraction.

This interface is intended to be equally suitable for novice and 
expert users. In particular, we wanted to ensure that while com-
mon tasks are made easier by the interface, more experienced users 
have simultaneous access to the full capabilities of the programmatic 
interface. To achieve this, a Python scripting interface is embedded in 
the graphical user interface, complete with a full history and object-
inspection based code completion tools. Usage examples of this com-
bined graphical and scripting system are given in the next section.

Python AND NENGO
To blend the graphical interface with the full power of the under-
lying programmatic interface, we embedded a Python scripting 
engine. This allows Python code and scripts to run in concert 
with the user interface. In this way, users can follow a graphical 
point-and-click approach for common modeling tasks, and turn 
to Python scripting for more complex or specialized tasks.

Since Nengo is implemented in Java, the scripting interface 
was implemented with Jython2. This is a Java implementation of 
Python, which allows Python code to be compiled to the Java Virtual 
Machine, and provides seamless interaction between languages, 
including inheritance between languages and full access to the 
Java API using Python syntax. Importantly, no extra development 
effort (beyond embedding Jython within the Nengo graphical user 

2http://www.jython.org

FIGURE 3 | A classic control-theory integrator (A) and an NEF integrator 

(B). Both integrators are provided with the same sine wave input x(t). The NEF 
integrator uses 300 LIF neurons with maximum fi ring rates distributed 
uniformly between 100 and 200 Hz, post-synaptic current time constants of 

20 ms, and refractory periods of 2 ms. The output value for the NEF integrator 
is determined from the individual spike times of each neuron using Eq. 3. 
Neuron spikes are shown as dots in panel (B), with neurons arranged along 
the y-axis.

http://www.jython.org
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interface) was required to allow Python access to the Nengo code; 
Jython automatically provides the Python syntax and interactive 
capabilities described here.

As an example, Figure 4 shows the Python scripting interface 
being used to duplicate an existing group of neurons (groupA, 
created using the point-and-click interface). This duplication is 
performed using the standard Java clone() method. The name of 
this new neural group is then changed to groupB and it is added 
to the existing network. These tasks can also be performed via 
the graphical interface; this example is meant to show the direct 
relationship between the underlying Java entities, the graphically 
displayed objects, and the Python scripting.

RUN-TIME INSPECTION AND MODIFICATION
The simplest use of the scripting system is to display and edit the 
values of variables within the simulation. The most recent object 
selected in the graphical display is always bound to the variable 
that in the scripting system. This allows us to quickly inspect and 
change objects. For example, to display the bias current (Jbias in 
Eq. 1) of a given neuron, we can click on it in the interface and type 
the following, with the output from Nengo shown in bold:

print that.bias
1.9371659755706787

The command that.bias is automatically converted by Jython 
into the Java method invocation getBias() on the currently 

selected object, and the result is printed to the screen. This con-
venience functionality is built in to Jython and works with any Java 
code that conforms to the JavaBean properties standards.

For more complex situations, we use Python to extract relevant 
information and analyze and record it in the desired manner. For 
example, we can display all of the Jbias values across a group of neu-
rons, fi nd their average, and save the values in a comma-separated 
values (CSV) fi le.

bias=[n.bias for n in groupA.nodes]
print bias
[1.9371659755706787, 0.5016773343086243, 
0.40018099546432495, 2.8485255241394043,…
print sum(bias)/len(bias)
-17.20441970984141
import csv
csv.writer(file('output.csv','w')).writerow(bias)

This approach can also be used to set values within the simula-
tion; the command that.bias = 0.3 is converted into the Java 
method setBias(0.3) by Jython. This allows model parameters 
to be set in a fl exible manner. For example, to cause the RC time 
constant for a group of neurons that use an LIF spike generator 
to be uniformly distributed between 200 and 300 ms, we can do 
the following:

for n in groupA.nodes: n.generator.tauRC=random.
uniform(0.2,0.3)

FIGURE 4 | Basic usage of the Python scripting interface to interact programmatically with a neural model.
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PROGRAMMATIC MODEL CREATION
Python can also be used to directly create models. This involves 
defi ning the various neural groups and specifying the projections 
between them. As this is done, Nengo automatically solves for the 
required synaptic weight matrices, based on the neural properties, 
preferred direction vectors, and the desired transformation.

To confi gure a NEF neural group, we defi ne the various param-
eters based on the neurobiological properties of the particular types 
of neurons being modeled. This can include specifying probability 
distributions for those aspects that are heterogenous across the 
group.

ef=ca.nengo.model.nef.impl.NEFEnsembleFactoryImpl()
ef.nodeFactory.tauRC=0.02
ef.nodeFactory.tauRef=0.002
ef.nodeFactory.maxRate=GaussianPDF(200,50)
ef.nodeFactory.intercept=IndicatorPDF(-1,1)

Given this defi nition, we can now create neural groups of the 
desired size, encoding vectors of a given length. Terminations 
are defi ned by providing the linear transformation matrix (M in 
Eq. 4) and the post-synaptic time constant. Nonlinear functions are 
computed by creating a separate origin and providing the desired 
function. This separate origin does not imply a separate source of 
action potentials; it is implemented internally using the same spike 
timing as the standard projection origin (i.e. the neural group’s 
axons), but with a different set of decoding vectors, as per Eq. 5. 
For example, the following script will create a neural group which 
accepts fi ve inputs and outputs the maximum value encoded by 
those fi ve inputs, using the neural properties defi ned above.

group=ef.make('group',neurons=1000,dimensions=5)
for i in range(5):
    M=[0,0,0,0,0]
    M[i]=1
    group.addDecodedTermination('in'+i,[M],tauPSC=0.007
                                .modulatory=False)
group.addDecodedOrigin('max',[PostfixFunction
                              ('max(x)',5)],'AXON')

We have found this approach to be fl exible and highly useful for 
our ongoing research. In particular, this has allowed us to quickly 
explore the behaviors of complex cognitive models, including our 
ongoing work on neural implementation of Kalman fi lters for sen-
sorimotor integration, language based reasoning, the role of basal 
ganglia in motor control, and other projects. While much of Nengo 
is devoted to supporting NEF-style models, similar commands are 
used for models that directly specify neural connections and plas-
ticity, or that merge the two approaches.

SCRIPTING OF COMMON TASKS
Besides directly creating or modifying models, Python is also use-
ful for defi ning stimuli, controlling simulations, and analyzing or 
recording results. Inputs to neural groups can be defi ned using 
arbitary Python code, allowing for anything from simply adding 
white noise to a baseline input value to providing dynamic inputs 
based on the current motor outputs of the model.

More generally, we can use the scripting system to evaluate neu-
ral models. That is, we can easily run multiple simulations, adjusting 
parameters, and recording the data. For example, the following code 

runs an existing simulation 10 times, adjusts the refractory period 
each time, and records the model output to a MATLAB® fi le. This 
allows us to quickly explore the behavioral effects of physiological 
parameters.

result=ca.nengo.io.MatlabExporter()
for i in range(10):
    for n in groupA.nodes: n.generator.tauRef=0.001*i
    simulator.run(start=0,end=1)
    result.add('data'+i,probe.data)
result.write(file('result.m','w'))

DEFINING NEURON TYPES
Given the wide range of existing neuron models, and the continual 
development of new ones, Nengo needs to allow the user to easily 
defi ne and use new neuron models throughout the system. This 
is facilitated by a general-purpose dynamical system solver which 
creates spiking neuron models based on their dynamical descrip-
tion. Given the simplicity of the Python syntax, existing published 
neural models can be easily translated from their mathematical 
description into code.

For example, the following Python code defi nes the membrane 
dynamics for a dopamine-sensitive bistable striatal neuron devel-
oped by Gruber et al. (2003). This model’s behaviour is affected by 
levels of dopamine, which are set using a separate modulatory input 
within Nengo, allowing it to be controlled by other neural groups.

Cm=1; E_K=-90; g_L=.008; VKir2_h=-111; VKir2_c=-11; 
gbar_Kir2=1.2
VKsi_h=-13.5; VKsi_c=11.8; gbar_Ksi=.45; R=8.315; 
F=96480; T=293
VLCa_h=-35; VLCa_c=6.1; Pbar_LCa=4.2; Ca_o=.002; 
Ca_i=0.0000001

class GruberDynamics(ca.nengo.dynamics.
AbstractDynamicalSystem):
    def f(self,time,input):
    I_s,mu=input
    Vm=self.state[0]

    L_Kir2=1.0/(1+exp(-(Vm-VKir2_h)/VKir2_c))
    L_Ksi=1.0/(1+exp(-(Vm-VKsi_h)/VKsi_c))
    L_LCa=1.0/(1+exp(-(Vm-VLCa_h)/VLCa_c))
    P_LCa=Pbar_LCa*L_LCa

    x=exp(-2*Vm/1000*F/(R*T))
    I_Kir2=gbar_Kir2*L_Kir2*(Vm-E_K)
    I_Ksi=gbar_Ksi*L_Ksi*(Vm-E_K)
    I_LCa=P_LCa*(4*Vm/1000*F*F/(R*T))*
      ((Ca_i-Ca_o*x)/(1-x))
    I_L = g_L*(Vm-E_K)

    return [-1000/Cm*(mu*(I_Kir2+I_LCa)+I_Ksi+I_L-I_s)]

Using this approach, any component of a neural system expressed 
in terms of its internal dynamics can be integrated into a Nengo 
model.

INTEGRATION WITH OTHER LIBRARIES
Since Nengo integrates a Python scripting system via Jython, Nengo 
models can also make use of other code libraries. This not only 
includes the standard built-in Python libraries for string processing, 
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random number generation, asynchronous communication, and 
other common tasks, but also any other library written in Java or 
100% Python. Unfortunately, Jython currently does not support 
direct integration with Python extension modules, such as NumPy 
or SciPy. To make use of such tools for data analysis, the output from 
Nengo can be exported to a fi le. However, for modules which can 
be directly integrated, Nengo allows for seamless communication 
between systems from within the graphical user interface.

ACT-R
As an example of this model integration, we have combined Nengo 
with a Python implementation of ACT-R, a high-level model of 
human cognition (Anderson and Lebiere, 1998). ACT-R divides 
human cognitive function into a variety of separate modules, which 
map on to particular brain areas (Anderson et al., 2008). Although 
no neural implementation of these modules exists as of yet, the 
underlying theory provides millisecond-level timing information for 
the behaviour of these modules which accords well with timing of 
overt behavior and of fMRI BOLD responses. ACT-R distills decades 
of cognitive science research into a form that provides a high-level 
model of many brain regions that can, in theory, interact with a 
lower-level neural model. In order to bring about this possibility, we 
connected the Python implementation of ACT-R (Stewart and West, 
2007) to Nengo. This is freely available as part of CCMSuite3.

The modules in ACT-R (see Figure 5) were developed to explain 
human cognitive performance across a wide variety of tasks, includ-
ing serial recall, visual search, mental arithmetic, task switching, and 
the use of graphical interfaces. Each cortical module maintains a 
buffer which contains one chunk of information. This chunk is a 
symbolic representation of the current working memory associated 
with that module. For example, the declarative memory module may 
retrieve the fact that two plus two is four, storing that in its buffer as 
the chunk 'value1:two value2:two operation:plus result:
four'. The symbolic values within a chunk are organized into slots, 
and a chunk of a given type always has the same set of slots.

Communication between modules is controlled by a general-
ized action selection system associated with the basal ganglia. This 
contains a set of production rules: IF-THEN statements which iden-
tify which values should be placed in which buffers based on the 
current values in other buffers. To fi t a wide range of behavioral 
data, a cycle of determining which productions match the current 
situation, selecting one of them, and sending its associated values 
is assumed to take the brain approximately 50 ms.

REPRESENTATION MAPPING
To integrate ACT-R and Nengo, we need to defi ne a system of 
communication between them. That is, if we construct a neural 
model of a given brain region, we need to remove the corresponding 
component from the ACT-R model and connect the Nengo model 
in its place. This connection requires translating the symbolic 

FIGURE 5 | The basic modules of ACT-R and their corresponding brain 

regions. The buffers are small-capacity working memories and represent the 
current cognitive state. The basal ganglia match this state against learned 

production rules, resulting in and output which can change the values stored in 
the different buffers. These changes in turn can cause other modules to perform 
various actions, including memory recall, motor commands, and visual search.

3http://ccmlab.ca/ccmsuite.html

http://ccmlab.ca/ccmsuite.html
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 representations used in ACT-R into spiking patterns and vice-versa, 
since communication in ACT-R is via chunks and communication 
in Nengo is via spikes.

Since Nengo provides access to the NEF, this mapping from 
symbols to population spike trains is facilitated by Eqs 1 and 3 
described above for mapping vectors to population spike trains. 
We simply need to map the symbolic representation of a chunk 
into a vector and back again. In theory, this could be as simple 
as having a separate dimension in the vector for every possible 
chunk, or as sophisticated as using Vector Symbolic Architectures 
(Gayler, 2006). For example, the following code maps the chunk 
'state:A' to [1,0,0], 'state:B' to [0,1,0], and 'state:C' 
to [0,0,1] and vice-versa. Note that the mapping from vector to 
chunk must take into account the representational noise introduced 
by the spiking neurons.

class Translator:
    def convertToVector(self,model):
        chunk=str(model.input)
        if chunk=='state:A': return [1,0,0]
        elif chunk=='state:B': return [0,1,0]
        elif chunk=='state:C': return [0,0,1]
        else: return [0,0,0]
    def applyVector(self,model,vector):
        mx=max(vector)
        if mx<0.3: model.output=None
        elif mx==vector[0]: model.output=Chunk('state:A')
        elif mx==vector[1]: model.output=Chunk('state:B')
        elif mx==vector[2]: model.output=Chunk('state:C')

INTEGRATED SIMULATION
To demonstrate this integration, we can create a Nengo implemen-
tation of an ACT-R buffer and connect it to an ACT-R model. For 
simplicity, the ACT-R model is of a set of three production rules 
which causes the goal buffer to cycle through three possible values 
(from state:A to state:B to state:C and back to state:A and 
so on). This simplistic model is suffi cient to demonstrate com-
munication from the ACT-R portion of the model to the Nengo 
portion and back again.

from ccm.lib.actr import *
class Model(ACTR):
    goal=Buffer()

    def production1(goal='state:A'):
        goal.set('state:B')
    def production2(goal='state:B'):
        goal.set('state:C')
    def production3(goal='state:C'):
        goal.set('state:A')

Once this model is defi ned, it can be created within Nengo. 
This involves the helper function nengo.create which is pro-
vided by CCMSuite and ensures that time in the ACT-R model is 
synchronized with time in the Nengo simulation. Once the model 
is created, a Nengo origin and termination are defi ned that use the 
defi ned mapping between ACT-R symbols and Nengo spike trains 
given above. Once these origins and terminations are defi ned, they 
are treated exactly as any other in Nengo, allowing neural models 
to be built and connected to them via either the Nengo graphical 
user interface or through the scripting system.

import ccm
model = ccm.nengo.create(Model)
goal = model.getNode('goal')
goal.createOrigin('output',Translator())
goal.createTermination('input',Translator())

For this case, we implement the buffer using a three-dimen-
sional integrator of the same type as that shown in Figure 3. This 
consists of 300 LIF neurons in a single neural group which inte-
grates the value provided by ACT-R and outputs the current stored 
value back to ACT-R. These neurons are confi gured as per section 
“Programmatic Model Creation”

goalBuffer=ef.make("GoalBuffer",neurons=300,
                    dimensions=3)

M=[[1,0,0],[0,1,0],[0,0,1]]
goalBuffer.addDecodedTermination("input",M,tauPSC=0.007,
                                  modulatory=False)
goalBuffer.addDecodedTermination("feedback",
                                  M,tauPSC=0.007,
                                  modulator=False)

model.addProjection(goalBuffer.getOrigin('X'),
  goalMemory.getTermination('feedback'))
model.addProjection(goalBuffer.getOrigin('X'),
  goal.getTermination('input'))
model.addProjection(goal.getOrigin('output'),
  goalMemory.getTermination('input'))

The behavior of this model is shown in Figure 6. The neural 
group maintains the stored value over time, and then quickly 
changes this value when requested by the ACT-R production sys-
tem. Importantly, the behavior of the model is robust over the time 
frame expected by ACT-R.

DISCUSSION
Nengo greatly facilitates the creation of complex neural circuits. 
The use of the NEF provides a general-purpose framework for 
representing information in spiking neurons that is fl exible enough 
to support a wide variety of neuron models. The way in which 
the NEF systematically relates high-level information processing 

FIGURE 6 | Spike pattern and vector decoding of a neural population 

implementing an ACT-R goal buffer. Dots indicate spike times for each 
neuron in the goal buffer, arranged along the y-axis. The three lines show the 
three-dimensional value decoded from the spikes using Eq. 3. The three 
dimensions correspond to the three possible values for the buffer, showing 
that the represented value cycles through the three states.
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to electro-physiology facilitates modeling of complex circuits and 
validation against both behavioral and electro-physiological data. 
Finally, the integrated Python scripting language, with its emphasis 
on readability and rapid development, makes it ideal for quickly 
creating models and exploring model variations.

This system is also supported by a rich graphical user interface 
suitable for introducing new users in, for example, classroom situ-
ations. Common tasks are supported directly by the user interface, 
and Python scripting offers a highly readable syntax for more com-
plex situations without extensive language-specifi c training. Nengo 
is currently being used in a graduate-level course on the NEF, and 
students without previous Python exposure are able to make use 
of it and the user interface to create complex models, including 
modeling sensorimotor control using Kalman fi lters and sequence 
recognition in birdsong. Importantly, having the Python scripting 
available means that both experienced researchers and new students 
can use Nengo effectively.

Nengo’s ability to integrate with other software libraries written in 
either Java or Python opens up many new research possibilities. For 
example, there are two key research benefi ts from integrating Nengo 
neural models with higher-level behavioral models such as ACT-R. 
First, it is of benefi t to cognitive scientists, since the neural models pro-
vide a more detailed implementation of the components postulated 
by the overall cognitive theory. This may lead to more detailed and 
more accurate predictions, as well as a strong neurological ground-
ing for these components. Second, it is of benefi t to neuroscientists, 
since the cognitive theory provides realistic boundary conditions for 
the neural components. That is, the inputs to a neural model can be 
derived from a dynamic cognitive model, and the outputs from the 
neurons in turn affect the behaviour of that model. This provides a 
more realistic environment for simulating neural models.
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