
Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 7 | 1

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 24 March 2009
doi: 10.3389/neuro.11.007.2009

Python scripting in the Nengo simulator

Terrence C. Stewart*, Bryan Tripp and Chris Eliasmith

Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, ON, Canada

Nengo (http://nengo.ca) is an open-source neural simulator that has been greatly enhanced by
the recent addition of a Python script interface. Nengo provides a wide range of features that
are useful for physiological simulations, including unique features that facilitate development
of population-coding models using the neural engineering framework (NEF). This framework
uses information theory, signal processing, and control theory to formalize the development
of large-scale neural circuit models. Notably, it can also be used to determine the synaptic
weights that underlie observed network dynamics and transformations of represented variables.
Nengo provides rich NEF support, and includes customizable models of spike generation,
muscle dynamics, synaptic plasticity, and synaptic integration, as well as an intuitive graphical
user interface. All aspects of Nengo models are accessible via the Python interface, allowing
for programmatic creation of models, inspection and modifi cation of neural parameters, and
automation of model evaluation. Since Nengo combines Python and Java, it can also be integrated
with any existing Java or 100% Python code libraries. Current work includes connecting neural
models in Nengo with existing symbolic cognitive models, creating hybrid systems that combine
detailed neural models of specifi c brain regions with higher-level models of remaining brain
areas. Such hybrid models can provide (1) more realistic boundary conditions for the neural
components, and (2) more realistic sub-components for the larger cognitive models.

Keywords: Python, neural models, neural engineering framework, theoretical neuroscience, neural dynamics, control

theory, representation, hybrid models

NENGO
Nengo is an open-source cross-platform software package for mod-
eling neuronal circuits1, and tested on Macintosh OS X, Linux, and
Microsoft Windows. It is implemented in Java, and provides both a
detailed Application Programming Interface and a Graphical User
Interface (Figure 1), so that it is suitable for both novice and expert
modelers. As will be discussed, the Python scripting system forms
a bridge between the easy-to-use graphical environment and the
full power of the underlying programmatic interface. This ensures
a smooth transition from novice to expert, as all aspects of the
simulation are accessible at all times.

A variety of spiking point-neuron models are provided with
Nengo. This includes the standard LIF neuron and the Hodgkin-
Huxley model, as well as an adapting LIF (La Camera et al., 2004)
and the Izhikevich model (Izhikevich, 2003). Integration is per-
formed with a variable-timestep integrator, using the Dormand-
Prince 4th and 5th order Runge-Kutta formulae (Dormand and
Prince, 1980). At the network level, interaction between neurons
treats spikes as discrete events; Nengo is not meant for neural mod-
els where the detailed voltage profi le of a specifi c spike affects the
post-synaptic neurons.

These neuron models can be connected directly to form simple
networks, and input can consist of current injection or voltage
clamp. Spike times, membrane voltages, and current can be recorded
from the neurons. This approach is suitable for situations where
connectivity information is known, or where the dynamics of a

INTRODUCTION
Large-scale neural modeling requires software tools that not only
support effi cient simulation of hundreds of thousands of neurons,
but also provide researchers with high-level organizational tools.
Such neural models involve heterogeneous components with com-
plex interconnections that may be either speculative in nature or
constrained by existing neurobiological evidence. To effectively
construct, modify, and investigate the behaviour of these mod-
els, researchers need to be able to specify the collective behavior
of large groups of neurons as well as the low-level physiological
details.

In order to support this style of research, we have developed
a neural simulator package called Nengo. For high-level organi-
zation, Nengo makes use of the neural engineering framework
(NEF; Eliasmith and Anderson, 2003), which provides methods
for abstractly describing the representations and transforma-
tions involved in a neural model and how they relate to spiking
behavior. To provide access to the broad range of functionality
we require (from neural groups to individual synapses), we inte-
grated a Python language scripting system into the simulator. This
enables a variety of novel features, including the inspection and
modifi cation of running models, the ability to script common
experimental tasks, and the integration of non-neural cognitive
models. In this paper, we describe this system (see Introduction),
discuss the features related to its use of Python (see Python and
Nengo), and provide an extended example of ongoing research
that has directly benefi ted from these abilities (see Integration
with Other Libraries).

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Andrew P. Davison, CNRS, France
Jochen M. Eppler, Honda Research
Institute Europe GmbH, Germany;
Albert Ludwigs University, Germany

*Correspondence:

Terrence C. Stewart, Centre for
Theoretical Neuroscience, University of
Waterloo, 200 University Avenue West,
Waterloo, ON, Canada N2L 3G1.
e-mail: tcstewar@uwaterloo.ca

1http://nengo.ca

http://nengo.ca
http://nengo.ca

Stewart et al. Python scripting in Nengo

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 7 | 2

i has an associated preferred direction vector � (the stimulus for
which it most strongly fi res), bias current Jbias, and scaling factor α.
For a given neuron, α and Jbias can be experimentally determined
from its maximum fi ring rate and the minimum value of x for
which it responds. If the nonlinearities of any given neural model
(LIF, ALIF, etc.) are written as G[⋅] and the neural noise of variance

particular confi guration are being investigated. However, modeling
of more sophisticated population-coding networks is greatly facili-
tated by using the NEF-related features of the simulator.

NEURAL ENGINEERING FRAMEWORK
For complex neural models, it is often useful to describe the system
of interest at a higher level of abstraction, such as that shown in
Figure 2. For this reason, we defi ne heterogeneous groups of neu-
rons (where individual neurons vary in terms of their neural prop-
erties such as bias current and gain) and projections between these
groups. We can then use the NEF (Eliasmith and Anderson, 2003)
as a method for realizing this high-level description using neural
models with adjustable degrees of accuracy. The NEF provides not
only a method for encoding and decoding time-varying represen-
tations using spike trains, but also a method for deriving linearly
optimal synaptic connection weights to transform and combine
these representations. This approach combines work from a variety
of researchers, most notably Georgopoulos et al. (1986), Rieke et al.
(1999), Salinas and Abbott (1994), and Seung (1996).

The NEF has been used to model the barn owl auditory system
(Fischer, 2005), rodent navigation (Conklin and Eliasmith, 2005),
escape and swimming control in zebrafi sh (Kuo and Eliasmith,
2005), working memory systems (Singh and Eliasmith, 2006), the
translational vestibular ocular refl ex in monkeys (Eliasmith et al.,
2002), and the manipulation of symbolic representations to support
high-level cognitive systems (Stewart and Eliasmith, 2009).

Within the NEF, a neural group forms a distributed representa-
tion of a time-varying vector x(t) of arbitrary length. Each neuron

FIGURE 1 | A neural model of the basal ganglia developed in Nengo.

FIGURE 2 | A neural model of the mammalian vestibular system using

the NEF. Boxes represent distinct neural populations and arrows represent
projections between them. Inputs to the system are linear acceleration
sensed by the left and right otoliths (AL, AR) and the angular velocity from the
canals (ΩL and ΩR). From these, the system calculates inertial acceleration
(I) using the formula developed by Angelaki et al. (1999). (For further details,
see Eliasmith et al., 2002).

Stewart et al. Python scripting in Nengo

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 7 | 3

σ2 is η(σ), then the encoding of any given x(t) as the temporal spike
pattern across the neural group is given as Eq. 1.

δ α η() () ()t t G t Ji i i i
n

− = ⋅ + +⎡⎣ ⎤⎦∑ in � x bias σ

(1)

Given this spiking pattern, we can in turn estimate the original
vector as ˆ().x t In some approaches (e.g. Georgopoulos et al., 1986),
this is done by weighting each encoding vector � by the average
fi ring rate of the corresponding neuron. In the NEF, however, we
derive the linearly optimal decoding vectors � for each neuron
(see Eliasmith and Anderson, 2003 for details). This method has
been shown to uniquely combine accuracy and neurobiological
plausibility (e.g. Salinas and Abbott, 1994).

� =

=

=

−

∫
∫

Γ 1ϒ

Γ

ϒ

ij i j

j i

a a dx

a x dx

(2)

Since x(t) varies over time, we do not weight these decoding
vectors by the average fi ring rate. Instead, we weight them with the
post-synaptic current h(t) induced by each spike. The shape and
time-constant of this current are determined from the physiological
properties of the neural group:

ˆ() () () ()x t t t h t h t ti i i= − ∗ = −∑∑δ in in
inin

� �

(3)

The representational error between x(t) and ˆ()x t is dependent
on the particular neural parameters and encoding vectors, but in
general is inversely proportional to the number of neurons in the
group. Given a suffi cient number of neurons, an arbitrary level of
accuracy can be reached. For a known number of neurons with
known physiological properties, we can determine how well the
values can be represented.

The derivation of the optimal decoding vector also allows us to
determine the optimal connection weights to perform arbitrary
transformations of these representations. For linear functions,
consider two neural populations, X representing x(t) and Y repre-
senting y(t). If we want y(t) = M x(t), we can derive the following
for the neurons in population Y:

δ αt t G t J

t t t

jm j j j
m

−() = +⎡⎣ ⎤⎦

=

∑ �y

y Mx x

()

() () ()

bias

substitute: ≈≈ = −()

= −() +⎡⎣ ⎤⎦

=

∑ˆ()x

M

t h t t

G h t t J

G

i

j j j i j

j j

in
in

in

�

α

α

� �

�

bias

jj i jh t t JMφ() −() +⎡
⎣

⎤
⎦in

bias

(4)

This manipulation converts weighted post-synaptic currents
caused by the spikes in neural group X into a spiking pattern for
group Y that would cause Y to represent the value in X transformed
by the linear operation M. Crucially, if we set the synaptic connec-
tion weights between the ith neuron in X and the jth neuron in
Y to be ω αij j j i= � M� , then the post-synaptic neurons will encode
M x(t). This allows us to develop a model by defi ning the hypoth-
esized computations and directly solving for the corresponding

connection weights, rather than relying on a learning rule or manu-
ally setting the weights.

For nonlinear transformations, we can generalize the derivation of
the decoding vector to estimate the desired function f(x). This pro-
vides a new set of decoding vectors �f(x) which can be used in place of
the previous � to provide an optimal linear estimate of this function.
This allows arbitrary nonlinear functions to be computed, although
more complex nonlinearities across multiple dimensions of x will
require more neurons with � values that lie in those dimensions.

� f x f x

ij i j

j
f x

i

a a dx

a f x dx

() ()

() ()

=

=

=

−

∫
∫

Γ ϒ

Γ

ϒ

1

(5)

Treating neural groups as representing time-varying vectors and
synaptic connections as performing arbitrary transformations allows
us to organize a neural system using the powerful framework of
control theory. Eliasmith and Anderson (2003) have shown how to
translate any state-space model from modern control theory into an
equivalent neural circuit. For example, an ideal integrator is shown
in Figure 3A, and its NEF counterpart, a neural integrator imple-
mented with 300 LIF neurons, is shown in Figure 3B. Importantly,
the idealized version can be seen as an approximation of the actual
neural behaviour. As is discussed in the next section, this feature can
be used to create large-scale models where every component can
potentially be simulated at the level of neurons, even though it may
be too computationally expensive to do so for the whole system.

The NEF provides a generic method for modeling any neural
system where groups of neurons are taken to represent scalars,
vectors, and functions, and where synaptic connections implement
transformations on these representations. The system generalizes
to higher dimensional vectors and has also been used as the basis
of models of path integration (Conklin and Eliasmith, 2005) and
working memory (Singh and Eliasmith, 2006). Arbitrary nonlinear
encodings are supported by adjusting G to be the output of any
neural model. While the above derivation assumes linear dendrites,
the approach generalizes to nonlinear dendritic behavior as well
(see Eliasmith and Anderson, 2003).

PROGRAMMING INTERFACE
Nengo is a highly modular object-oriented Java program, making
the underlying simulation system extensible and adaptable to novel
modeling situations. The following features are directly exposed to
the developer by the architecture:

Neuron models
Specialized neuron models can be written in Python or Java. These
can extend existing models and/or use generic components, such as
the built-in dynamical system solver. For example, a Nengo imple-
mentation of a dopamine-sensitive bistable striatal neuron (Gruber
et al., 2003) was recently developed. The core of its implementation
is shown later in this paper.

Neural plasticity
Arbitrary functions can be added for adjusting synaptic weights
based on spike timing and modulatory signals.

Stewart et al. Python scripting in Nengo

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 7 | 4

Muscle models
For any neural models involving motor neurons, the dynamic
behavior of the muscles form an important part of the model as
well. Nengo supports multiple approaches to muscle modeling
(e.g. Keener and Sneyd, 1998; Winter, 1990).

All of these components, along with other useful tools for
modeling such as external inputs and probability distribution
functions for various neural properties, can be implemented in
either Java or Python. As discussed in further detail below, all of
the features of Nengo are exposed in both languages, allowing
developers the fl exibility to choose the approach which is most
suitable to them.

Since the software was developed for large-scale modeling, each
component within a Nengo model has an adjustable simulation
mode. For neural groups defi ned using the NEF approach, three
modes are provided: spiking neurons, rate neurons, and a direct
high-level abstraction of the overall neural behavior. This direct
mode allows for fast approximate simulations where the individual
neurons within the group are not simulated; instead the behavior
is approximated in terms of the underlying represented values x(t).
When neural groups simulated at a low level connect with groups
simulated at a high level, Eqs 1 and 3 (above) are used to determine
the corresponding spike trains and ˆ()x t values. If suffi cient time and
computational resources are available, all parts of the model can
be simulated in terms of spiking neurons. However, this capability
of mixing levels of simulation means that a detailed neural model
involving tens of thousands of neurons can be embedded within
a high-level approximation of the millions of other neurons with
which this system must interact. By switching modes of particular
neural groups, the effect of different degrees of accuracy can be
easily determined. Changing simulation models is also a useful
exploratory tool, since approximate behavior can be determined
quickly.

USER INTERFACE
Nengo also provides a graphical user interface for constructing and
simulating models. Neural groups can be created and confi gured,
projections and synaptic connection weights can be defi ned, and
simulations can be run and analyzed, all through a point-and-
click interface. This provides a direct method for visualizing the
overall organization of a complex neural circuit at multiple levels
of abstraction.

This interface is intended to be equally suitable for novice and
expert users. In particular, we wanted to ensure that while com-
mon tasks are made easier by the interface, more experienced users
have simultaneous access to the full capabilities of the programmatic
interface. To achieve this, a Python scripting interface is embedded in
the graphical user interface, complete with a full history and object-
inspection based code completion tools. Usage examples of this com-
bined graphical and scripting system are given in the next section.

Python AND NENGO
To blend the graphical interface with the full power of the under-
lying programmatic interface, we embedded a Python scripting
engine. This allows Python code and scripts to run in concert
with the user interface. In this way, users can follow a graphical
point-and-click approach for common modeling tasks, and turn
to Python scripting for more complex or specialized tasks.

Since Nengo is implemented in Java, the scripting interface
was implemented with Jython2. This is a Java implementation of
Python, which allows Python code to be compiled to the Java Virtual
Machine, and provides seamless interaction between languages,
including inheritance between languages and full access to the
Java API using Python syntax. Importantly, no extra development
effort (beyond embedding Jython within the Nengo graphical user

2http://www.jython.org

FIGURE 3 | A classic control-theory integrator (A) and an NEF integrator

(B). Both integrators are provided with the same sine wave input x(t). The NEF
integrator uses 300 LIF neurons with maximum fi ring rates distributed
uniformly between 100 and 200 Hz, post-synaptic current time constants of

20 ms, and refractory periods of 2 ms. The output value for the NEF integrator
is determined from the individual spike times of each neuron using Eq. 3.
Neuron spikes are shown as dots in panel (B), with neurons arranged along
the y-axis.

http://www.jython.org

Stewart et al. Python scripting in Nengo

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 7 | 5

interface) was required to allow Python access to the Nengo code;
Jython automatically provides the Python syntax and interactive
capabilities described here.

As an example, Figure 4 shows the Python scripting interface
being used to duplicate an existing group of neurons (groupA,
created using the point-and-click interface). This duplication is
performed using the standard Java clone() method. The name of
this new neural group is then changed to groupB and it is added
to the existing network. These tasks can also be performed via
the graphical interface; this example is meant to show the direct
relationship between the underlying Java entities, the graphically
displayed objects, and the Python scripting.

RUN-TIME INSPECTION AND MODIFICATION
The simplest use of the scripting system is to display and edit the
values of variables within the simulation. The most recent object
selected in the graphical display is always bound to the variable
that in the scripting system. This allows us to quickly inspect and
change objects. For example, to display the bias current (Jbias in
Eq. 1) of a given neuron, we can click on it in the interface and type
the following, with the output from Nengo shown in bold:

print that.bias
1.9371659755706787

The command that.bias is automatically converted by Jython
into the Java method invocation getBias() on the currently

selected object, and the result is printed to the screen. This con-
venience functionality is built in to Jython and works with any Java
code that conforms to the JavaBean properties standards.

For more complex situations, we use Python to extract relevant
information and analyze and record it in the desired manner. For
example, we can display all of the Jbias values across a group of neu-
rons, fi nd their average, and save the values in a comma-separated
values (CSV) fi le.

bias=[n.bias for n in groupA.nodes]
print bias
[1.9371659755706787, 0.5016773343086243,
0.40018099546432495, 2.8485255241394043,…
print sum(bias)/len(bias)
-17.20441970984141
import csv
csv.writer(file('output.csv','w')).writerow(bias)

This approach can also be used to set values within the simula-
tion; the command that.bias = 0.3 is converted into the Java
method setBias(0.3) by Jython. This allows model parameters
to be set in a fl exible manner. For example, to cause the RC time
constant for a group of neurons that use an LIF spike generator
to be uniformly distributed between 200 and 300 ms, we can do
the following:

for n in groupA.nodes: n.generator.tauRC=random.
uniform(0.2,0.3)

FIGURE 4 | Basic usage of the Python scripting interface to interact programmatically with a neural model.

Stewart et al. Python scripting in Nengo

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 7 | 6

PROGRAMMATIC MODEL CREATION
Python can also be used to directly create models. This involves
defi ning the various neural groups and specifying the projections
between them. As this is done, Nengo automatically solves for the
required synaptic weight matrices, based on the neural properties,
preferred direction vectors, and the desired transformation.

To confi gure a NEF neural group, we defi ne the various param-
eters based on the neurobiological properties of the particular types
of neurons being modeled. This can include specifying probability
distributions for those aspects that are heterogenous across the
group.

ef=ca.nengo.model.nef.impl.NEFEnsembleFactoryImpl()
ef.nodeFactory.tauRC=0.02
ef.nodeFactory.tauRef=0.002
ef.nodeFactory.maxRate=GaussianPDF(200,50)
ef.nodeFactory.intercept=IndicatorPDF(-1,1)

Given this defi nition, we can now create neural groups of the
desired size, encoding vectors of a given length. Terminations
are defi ned by providing the linear transformation matrix (M in
Eq. 4) and the post-synaptic time constant. Nonlinear functions are
computed by creating a separate origin and providing the desired
function. This separate origin does not imply a separate source of
action potentials; it is implemented internally using the same spike
timing as the standard projection origin (i.e. the neural group’s
axons), but with a different set of decoding vectors, as per Eq. 5.
For example, the following script will create a neural group which
accepts fi ve inputs and outputs the maximum value encoded by
those fi ve inputs, using the neural properties defi ned above.

group=ef.make('group',neurons=1000,dimensions=5)
for i in range(5):
 M=[0,0,0,0,0]
 M[i]=1
 group.addDecodedTermination('in'+i,[M],tauPSC=0.007
 .modulatory=False)
group.addDecodedOrigin('max',[PostfixFunction
 ('max(x)',5)],'AXON')

We have found this approach to be fl exible and highly useful for
our ongoing research. In particular, this has allowed us to quickly
explore the behaviors of complex cognitive models, including our
ongoing work on neural implementation of Kalman fi lters for sen-
sorimotor integration, language based reasoning, the role of basal
ganglia in motor control, and other projects. While much of Nengo
is devoted to supporting NEF-style models, similar commands are
used for models that directly specify neural connections and plas-
ticity, or that merge the two approaches.

SCRIPTING OF COMMON TASKS
Besides directly creating or modifying models, Python is also use-
ful for defi ning stimuli, controlling simulations, and analyzing or
recording results. Inputs to neural groups can be defi ned using
arbitary Python code, allowing for anything from simply adding
white noise to a baseline input value to providing dynamic inputs
based on the current motor outputs of the model.

More generally, we can use the scripting system to evaluate neu-
ral models. That is, we can easily run multiple simulations, adjusting
parameters, and recording the data. For example, the following code

runs an existing simulation 10 times, adjusts the refractory period
each time, and records the model output to a MATLAB® fi le. This
allows us to quickly explore the behavioral effects of physiological
parameters.

result=ca.nengo.io.MatlabExporter()
for i in range(10):
 for n in groupA.nodes: n.generator.tauRef=0.001*i
 simulator.run(start=0,end=1)
 result.add('data'+i,probe.data)
result.write(file('result.m','w'))

DEFINING NEURON TYPES
Given the wide range of existing neuron models, and the continual
development of new ones, Nengo needs to allow the user to easily
defi ne and use new neuron models throughout the system. This
is facilitated by a general-purpose dynamical system solver which
creates spiking neuron models based on their dynamical descrip-
tion. Given the simplicity of the Python syntax, existing published
neural models can be easily translated from their mathematical
description into code.

For example, the following Python code defi nes the membrane
dynamics for a dopamine-sensitive bistable striatal neuron devel-
oped by Gruber et al. (2003). This model’s behaviour is affected by
levels of dopamine, which are set using a separate modulatory input
within Nengo, allowing it to be controlled by other neural groups.

Cm=1; E_K=-90; g_L=.008; VKir2_h=-111; VKir2_c=-11;
gbar_Kir2=1.2
VKsi_h=-13.5; VKsi_c=11.8; gbar_Ksi=.45; R=8.315;
F=96480; T=293
VLCa_h=-35; VLCa_c=6.1; Pbar_LCa=4.2; Ca_o=.002;
Ca_i=0.0000001

class GruberDynamics(ca.nengo.dynamics.
AbstractDynamicalSystem):
 def f(self,time,input):
 I_s,mu=input
 Vm=self.state[0]

 L_Kir2=1.0/(1+exp(-(Vm-VKir2_h)/VKir2_c))
 L_Ksi=1.0/(1+exp(-(Vm-VKsi_h)/VKsi_c))
 L_LCa=1.0/(1+exp(-(Vm-VLCa_h)/VLCa_c))
 P_LCa=Pbar_LCa*L_LCa

 x=exp(-2*Vm/1000*F/(R*T))
 I_Kir2=gbar_Kir2*L_Kir2*(Vm-E_K)
 I_Ksi=gbar_Ksi*L_Ksi*(Vm-E_K)
 I_LCa=P_LCa*(4*Vm/1000*F*F/(R*T))*
 ((Ca_i-Ca_o*x)/(1-x))
 I_L = g_L*(Vm-E_K)

 return [-1000/Cm*(mu*(I_Kir2+I_LCa)+I_Ksi+I_L-I_s)]

Using this approach, any component of a neural system expressed
in terms of its internal dynamics can be integrated into a Nengo
model.

INTEGRATION WITH OTHER LIBRARIES
Since Nengo integrates a Python scripting system via Jython, Nengo
models can also make use of other code libraries. This not only
includes the standard built-in Python libraries for string processing,

Stewart et al. Python scripting in Nengo

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 7 | 7

random number generation, asynchronous communication, and
other common tasks, but also any other library written in Java or
100% Python. Unfortunately, Jython currently does not support
direct integration with Python extension modules, such as NumPy
or SciPy. To make use of such tools for data analysis, the output from
Nengo can be exported to a fi le. However, for modules which can
be directly integrated, Nengo allows for seamless communication
between systems from within the graphical user interface.

ACT-R
As an example of this model integration, we have combined Nengo
with a Python implementation of ACT-R, a high-level model of
human cognition (Anderson and Lebiere, 1998). ACT-R divides
human cognitive function into a variety of separate modules, which
map on to particular brain areas (Anderson et al., 2008). Although
no neural implementation of these modules exists as of yet, the
underlying theory provides millisecond-level timing information for
the behaviour of these modules which accords well with timing of
overt behavior and of fMRI BOLD responses. ACT-R distills decades
of cognitive science research into a form that provides a high-level
model of many brain regions that can, in theory, interact with a
lower-level neural model. In order to bring about this possibility, we
connected the Python implementation of ACT-R (Stewart and West,
2007) to Nengo. This is freely available as part of CCMSuite3.

The modules in ACT-R (see Figure 5) were developed to explain
human cognitive performance across a wide variety of tasks, includ-
ing serial recall, visual search, mental arithmetic, task switching, and
the use of graphical interfaces. Each cortical module maintains a
buffer which contains one chunk of information. This chunk is a
symbolic representation of the current working memory associated
with that module. For example, the declarative memory module may
retrieve the fact that two plus two is four, storing that in its buffer as
the chunk 'value1:two value2:two operation:plus result:
four'. The symbolic values within a chunk are organized into slots,
and a chunk of a given type always has the same set of slots.

Communication between modules is controlled by a general-
ized action selection system associated with the basal ganglia. This
contains a set of production rules: IF-THEN statements which iden-
tify which values should be placed in which buffers based on the
current values in other buffers. To fi t a wide range of behavioral
data, a cycle of determining which productions match the current
situation, selecting one of them, and sending its associated values
is assumed to take the brain approximately 50 ms.

REPRESENTATION MAPPING
To integrate ACT-R and Nengo, we need to defi ne a system of
communication between them. That is, if we construct a neural
model of a given brain region, we need to remove the corresponding
component from the ACT-R model and connect the Nengo model
in its place. This connection requires translating the symbolic

FIGURE 5 | The basic modules of ACT-R and their corresponding brain

regions. The buffers are small-capacity working memories and represent the
current cognitive state. The basal ganglia match this state against learned

production rules, resulting in and output which can change the values stored in
the different buffers. These changes in turn can cause other modules to perform
various actions, including memory recall, motor commands, and visual search.

3http://ccmlab.ca/ccmsuite.html

http://ccmlab.ca/ccmsuite.html

Stewart et al. Python scripting in Nengo

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 7 | 8

 representations used in ACT-R into spiking patterns and vice-versa,
since communication in ACT-R is via chunks and communication
in Nengo is via spikes.

Since Nengo provides access to the NEF, this mapping from
symbols to population spike trains is facilitated by Eqs 1 and 3
described above for mapping vectors to population spike trains.
We simply need to map the symbolic representation of a chunk
into a vector and back again. In theory, this could be as simple
as having a separate dimension in the vector for every possible
chunk, or as sophisticated as using Vector Symbolic Architectures
(Gayler, 2006). For example, the following code maps the chunk
'state:A' to [1,0,0], 'state:B' to [0,1,0], and 'state:C'
to [0,0,1] and vice-versa. Note that the mapping from vector to
chunk must take into account the representational noise introduced
by the spiking neurons.

class Translator:
 def convertToVector(self,model):
 chunk=str(model.input)
 if chunk=='state:A': return [1,0,0]
 elif chunk=='state:B': return [0,1,0]
 elif chunk=='state:C': return [0,0,1]
 else: return [0,0,0]
 def applyVector(self,model,vector):
 mx=max(vector)
 if mx<0.3: model.output=None
 elif mx==vector[0]: model.output=Chunk('state:A')
 elif mx==vector[1]: model.output=Chunk('state:B')
 elif mx==vector[2]: model.output=Chunk('state:C')

INTEGRATED SIMULATION
To demonstrate this integration, we can create a Nengo implemen-
tation of an ACT-R buffer and connect it to an ACT-R model. For
simplicity, the ACT-R model is of a set of three production rules
which causes the goal buffer to cycle through three possible values
(from state:A to state:B to state:C and back to state:A and
so on). This simplistic model is suffi cient to demonstrate com-
munication from the ACT-R portion of the model to the Nengo
portion and back again.

from ccm.lib.actr import *
class Model(ACTR):
 goal=Buffer()

 def production1(goal='state:A'):
 goal.set('state:B')
 def production2(goal='state:B'):
 goal.set('state:C')
 def production3(goal='state:C'):
 goal.set('state:A')

Once this model is defi ned, it can be created within Nengo.
This involves the helper function nengo.create which is pro-
vided by CCMSuite and ensures that time in the ACT-R model is
synchronized with time in the Nengo simulation. Once the model
is created, a Nengo origin and termination are defi ned that use the
defi ned mapping between ACT-R symbols and Nengo spike trains
given above. Once these origins and terminations are defi ned, they
are treated exactly as any other in Nengo, allowing neural models
to be built and connected to them via either the Nengo graphical
user interface or through the scripting system.

import ccm
model = ccm.nengo.create(Model)
goal = model.getNode('goal')
goal.createOrigin('output',Translator())
goal.createTermination('input',Translator())

For this case, we implement the buffer using a three-dimen-
sional integrator of the same type as that shown in Figure 3. This
consists of 300 LIF neurons in a single neural group which inte-
grates the value provided by ACT-R and outputs the current stored
value back to ACT-R. These neurons are confi gured as per section
“Programmatic Model Creation”

goalBuffer=ef.make("GoalBuffer",neurons=300,
 dimensions=3)

M=[[1,0,0],[0,1,0],[0,0,1]]
goalBuffer.addDecodedTermination("input",M,tauPSC=0.007,
 modulatory=False)
goalBuffer.addDecodedTermination("feedback",
 M,tauPSC=0.007,
 modulator=False)

model.addProjection(goalBuffer.getOrigin('X'),
 goalMemory.getTermination('feedback'))
model.addProjection(goalBuffer.getOrigin('X'),
 goal.getTermination('input'))
model.addProjection(goal.getOrigin('output'),
 goalMemory.getTermination('input'))

The behavior of this model is shown in Figure 6. The neural
group maintains the stored value over time, and then quickly
changes this value when requested by the ACT-R production sys-
tem. Importantly, the behavior of the model is robust over the time
frame expected by ACT-R.

DISCUSSION
Nengo greatly facilitates the creation of complex neural circuits.
The use of the NEF provides a general-purpose framework for
representing information in spiking neurons that is fl exible enough
to support a wide variety of neuron models. The way in which
the NEF systematically relates high-level information processing

FIGURE 6 | Spike pattern and vector decoding of a neural population

implementing an ACT-R goal buffer. Dots indicate spike times for each
neuron in the goal buffer, arranged along the y-axis. The three lines show the
three-dimensional value decoded from the spikes using Eq. 3. The three
dimensions correspond to the three possible values for the buffer, showing
that the represented value cycles through the three states.

Stewart et al. Python scripting in Nengo

Frontiers in Neuroinformatics www.frontiersin.org March 2009 | Volume 3 | Article 7 | 9

in a model of zebrafi sh network inter-
action. Biol. Cybern. 93, 178–187.

La Camera, G., Rauch, A., Lüscher, H.-R.,
Senn, W., and Fusi, S. (2004). Minimal
models of adapted neuronal response
to in vivo-like input currents. Neural
Comput. 16, 2101–2124.

Rieke, F., Warland, D., de Ruyter van
Steveninck, R., and Bialek, W. (1999).
Spikes: Exploring the Neural Code.
Cambridge, MIT Press.

Salinas, E., and Abbott, L. F. (1994). Vector
reconstruction from firing rates.
J. Comput. Neurosci. 1, 89–107.

Seung, H. S. (1996). How the brain keeps
the eyes still. Proc. Natl. Acad. Sci.
U.S.A. 93, 13339–13344.

Singh, R., and Eliasmith, C. (2006).
Higher-dimensional neurons explain
the tuning and dynamics of work-
ing memory cells. J. Neurosci. 26,
3667–3678.

Stewart, T. C., and Eliasmith, C. (2009).
Compositionality and biologically
plausible models. In Oxford Handbook
of Compositionality, W. Hinzen,
E. Machery and M. Werning, eds
(Oxford University Press).

Stewart, T. C., and West, R. L. (2007).
Deconstructing and reconstructing

modeling: an application to the ves-
tibular system. Neurocomputing 46,
1071–1076.

Fischer, B. (2005). A model of the com-
putations leading to a representation
of auditory space in the midbrain of
the barn owl. PhD thesis. St Louis,
Washington University in St Louis.

Gayler, R. W. (2006). Commentary: vec-
tor symbolic architectures are a viable
alternative for Jackendoff ’s challenges.
Behav. Brain. Sci. 29, 78–79.

Georgopoulos, A. P., Schwartz, A. B., and
Kettner, R. E. (1986). Neuronal popu-
lation coding of movement direction.
Science 233, 1416–1419.

Gruber, A. J., Solla, S. A., Surmeier, D. J.,
and Houk, J. C. (2003). Modulation
of striatal single units by expected
reward: a spiny neuron model dis-
playing dopamine-induced bistability.
J. Neurophysiol. 90, 1095–1114.

Izhikevich, E. M. (2003). Simple model of
spiking neurons. IEEE Trans. Neural
Netw. 14, 1569–1572.

Keener, J., and Sneyd, J. (1998).
Mathematical Physiology. New York,
Springer.

Kuo, D., and Eliasmith, C. (2005).
Integrating behavioral and neural data

ACT-R: exploring the architectural
space. Cogn. Syst. Res. 8, 227–236.

Winter, D. A. (1990). Biomechanics and
Motor Control of Human Movement.
John Wiley & Sons, New Jersey.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential confl ict
of interest.

Received: 14 September 2008; paper pend-
ing published: 10 October 2008; accepted:
20 February 2009; published online: 24
March 2009.
Citation: Stewart T, Tripp B and Eliasmith
C (2009) Python scripting in the Nengo
simulator. Front. Neuroinform. (2009) 3:7.
doi: 10.3389/neuro.11.007.2009
Copyright © 2009 Stewart, Tripp
and Eliasmith. This is an open-access
article subject to an exclusive license
agreement between the authors and the
Frontiers Research Foundation, which
permits unrestricted use, distribution,
and reproduction in any medium, pro-
vided the original authors and source are
credited.

to electro-physiology facilitates modeling of complex circuits and
validation against both behavioral and electro-physiological data.
Finally, the integrated Python scripting language, with its emphasis
on readability and rapid development, makes it ideal for quickly
creating models and exploring model variations.

This system is also supported by a rich graphical user interface
suitable for introducing new users in, for example, classroom situ-
ations. Common tasks are supported directly by the user interface,
and Python scripting offers a highly readable syntax for more com-
plex situations without extensive language-specifi c training. Nengo
is currently being used in a graduate-level course on the NEF, and
students without previous Python exposure are able to make use
of it and the user interface to create complex models, including
modeling sensorimotor control using Kalman fi lters and sequence
recognition in birdsong. Importantly, having the Python scripting
available means that both experienced researchers and new students
can use Nengo effectively.

Nengo’s ability to integrate with other software libraries written in
either Java or Python opens up many new research possibilities. For
example, there are two key research benefi ts from integrating Nengo
neural models with higher-level behavioral models such as ACT-R.
First, it is of benefi t to cognitive scientists, since the neural models pro-
vide a more detailed implementation of the components postulated
by the overall cognitive theory. This may lead to more detailed and
more accurate predictions, as well as a strong neurological ground-
ing for these components. Second, it is of benefi t to neuroscientists,
since the cognitive theory provides realistic boundary conditions for
the neural components. That is, the inputs to a neural model can be
derived from a dynamic cognitive model, and the outputs from the
neurons in turn affect the behaviour of that model. This provides a
more realistic environment for simulating neural models.

ACKNOWLEDGMENTS
We thank Shu Wu for developing Nengo’s graphical user interface.

REFERENCES
Anderson, J. R., Fincham, J. M., Qin, Y.,

and Stocco, A. (2008). A central cir-
cuit of the mind. Trends Cogn. Sci. 12,
136–143.

Anderson, J. R., and Lebiere, C. (1998).
The Atomic Components of Thought.
Mahwah, Erlbaum.

Angelaki, D. E., McHenry, M. Q.,
Dickman, J. D., Newlands, S. D., and
Hess, B. J. M. (1999). Computation
of inertial motion: neural strategies
to resolve ambiguous otolith informa-
tion. J. Neurosci. 19, 316–327.

Conklin, J., and Eliasmith, C. (2005). An
attractor network model of path inte-
gration in the rat. J. Comput. Neurosci.
18, 183–203.

Dormand, J. R., and Prince, P. J. (1980).
A family of embedded Runge–Kutta
formulae. J. Comput. Appl. Math. 6,
19–26.

Eliasmith, C., and Anderson, C. (2003).
Neural Engineering: Computation,
Representation, and Dynamics in
Neurobiological Systems. Cambridge,
MIT Press.

Eliasmith, C., Westover, M. B., and
Anderson, C. H. (2002). A general
framework for neurobiological

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

