
Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 9 | 1

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 28 January 2009
doi: 10.3389/neuro.11.009.2008

encouraged us to standardize on Python for the spike sorting and
spike train analysis projects to follow. For one of us (M. Spacek), the
switch to Python has made programming a much more enjoyable
and productive experience, and has resulted in greatly improved
programming skills.

The benefi ts of Python have been extolled at length elsewhere
(Hetland, 2005; Langtangen, 2008; Lutz, 2006). Briefl y, Python is
a powerful, dynamically typed, interpreted language that “fi ts your
brain”, with syntax akin to “executable pseudocode”. Python’s clear,
simple syntax is perhaps its biggest selling point. Some of its clarity
stems from a philosophy to provide “one – and preferably only
one – obvious way” to do a given task (Peters, 2004), making fea-
tures easy to remember. Its clarity is also due to a strong adherence
to object-oriented programming principles [Chapter 7 of Hetland
(2005) is an excellent introduction]. In Python, nearly everything is
an object, even numbers and functions. This means that everything
has attributes and methods (methods are functions that are bound
to and act on objects), and can thus be treated in a similar way. An
object is an instance of a class. A class can inherit attributes and
methods from other classes hierarchically, allowing for substantial
code reuse, and therefore less code to maintain. Python code is
succinct compared to most other languages: a lot can be accom-
plished in only a few lines. Finally, Python is free and open source,
and encourages open source software development. This is partly
due to its interpreted nature: the source code and executable are
typically one and the same.

Python has a stable and feature-rich numeric library called
NumPy1 which provides an N-dimensional array object. NumPy
arrays can be subjected to vectorized operations, most of which call
static C functions, allowing them to run almost as fast as pure C
code. Yet, these operations remain accessible from within succinct
Python code. NumPy turns Python into an effective replacement

Python for large-scale electrophysiology

Martin Spacek1*, Tim Blanche2 and Nicholas Swindale1

1 Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
2 Redwood Center for Theoretical Neuroscience, University of California, Berkeley, CA, USA

Electrophysiology is increasingly moving towards highly parallel recording techniques which
generate large data sets. We record extracellularly in vivo in cat and rat visual cortex with
54-channel silicon polytrodes, under time-locked visual stimulation, from localized neuronal
populations within a cortical column. To help deal with the complexity of generating and analysing
these data, we used the Python programming language to develop three software projects:
one for temporally precise visual stimulus generation (“dimstim”); one for electrophysiological
waveform visualization and spike sorting (“spyke”); and one for spike train and stimulus analysis
(“neuropy”). All three are open source and available for download (http://swindale.ecc.
ubc.ca/code). The requirements and solutions for these projects differed greatly, yet we
found Python to be well suited for all three. Here we present our software as a showcase of
the extensive capabilities of Python in neuroscience.

Keywords: Python, silicon polytrodes, primary visual cortex, in-vivo

INTRODUCTION
As systems neuroscience moves increasingly towards highly paral-
lel physiological recording techniques, generation, management,
and analysis of large complex data sets is becoming the norm. We
are interested in the function of localized neuronal populations
in visual cortex. The goal is to understand how neurons in visual
cortex respond to visual stimuli, to the extent that the responses to
arbitrary stimuli can be predicted. Accurate prediction will require
an understanding of how these neurons interact with each other.
Neurons in close proximity are more likely to show functionally
interesting interactions, and insights into how such localized popu-
lations work may help guide understanding of other parts of cortex,
or even the brain as a whole. To this end we need to record and
analyse the simultaneous spiking behaviour of many neurons in
response to a wide variety of visual stimuli.

We use 54-channel silicon polytrodes, in both rat and cat pri-
mary visual cortex, to extracellularly sample spiking activity con-
strained to roughly a cortical column (Figure 1A) (Blanche et al.,
2005). Time-locked visual stimuli are presented to the animal while
simultaneously recording from dozens of neurons (Figure 1B).
Waveforms are recorded continuously at a rate of 2.7 MB/s for up
to 90 min (∼15 GB) at a time. A single animal experiment can last
up to 3 days and generate hundreds of GB of data. Setting up our
electrophysiology rig, with custom acquisition software written in
Delphi (Blanche, 2005), was the fi rst step. Although we had existing
solutions in place for visual stimulation, waveform visualization
and spike sorting, and spike train analysis, all three had limitations
which were addressed by rewriting our software in Python.

The fi rst of those tackled was visual stimulation. After an exten-
sive search for existing software, we discovered the “Vision Egg”
(Straw, 2008), a Python library for generating stimuli. We chose
the Vision Egg partly because of the language it was written in and
written for: Python. We were thus introduced to Python via one
of its many packages, and the experience was so positive that it

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Michele Giugliano, Ecole Polytechnique
Fédérale de Lausanne, Switzerland
Gaute T. Einevoll, Norwegian University
of Life Sciences, Norway

*Correspondence:

Martin Spacek, Department of
Ophthalmology and Visual Sciences,
University of British Columbia, 2550
Willow Street, Vancouver, BC V5Z 3N9,
Canada.
e-mail: frontiers@mspacek.mm.st

1http://numpy.org

http://swindale.ecc.ubc.ca/code
http://swindale.ecc.ubc.ca/code
http://numpy.org

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 9 | 2

Spacek et al. Python for large-scale electrophysiology

for MatLab (The MathWorks, Natick, MA, USA), and is used exten-
sively by dimstim, spyke, and neuropy.

While all three projects presented here were written in Python,
their use and implementation are very different. Dimstim is script
based and is run from the system’s command line. Spyke has a
graphical user interface (GUI) and looks like a native application,
while neuropy is typically accessed from the Python command
line as a library. Here, we explore some of the features and benefi ts
of Python and its many add-on packages for the electrophysiolo-
gist, by introducing our own three packages as detailed working
examples.

DIMSTIM: VISUAL STIMULUS GENERATION
In our experiments, we needed a way to display and control a wide
variety of stimuli with many different parameters, often shuffl ed
with respect to each other in various ways. Since spike times are
acquired at sub-millisecond temporal resolution, and since pre-
cise spike timing may play a role in neural coding (Mainen and
Sejnowski, 1995; VanRullen and Thorpe, 2002), we also wanted high
temporal precision in the stimulus. Our prior stimulus software was
written in Fortran and ran under DOS with a 32-bit extender. It was
written for the 8514/A graphics standard which has now lapsed. The
last graphics cards to support it were limited in the size and speed
of movie frames they could draw to screen. Moreover, these cards
were limited to a screen refresh rate of 100 Hz at our desired resolu-
tion. We found signifi cant artefactual phase-locking of responses
in visual cortex at this frequency (Blanche, 2005), which has been
a concern reported elsewhere (Williams et al., 2004; Wollman and
Palmer, 1995). For these reasons, we needed a better solution.

Dimstim displays full-screen stimuli at a refresh rate of 200 Hz,
providing precise control of the display at 5 ms intervals with-
out frame drops. Stimuli include manually controlled, drifting,
and fl ashed bars and gratings, sparse noise, and m-sequence noise
(Golomb, 1967) and natural scene movies. Stimulus parameters
can be shuffl ed with or without replacement, independently or in
covariation with each other. Parameters include spatial location and
phase, orientation, speed, duration, size, mask, contrast, brightness,

and spatial and temporal frequencies. Each stimulus session is fully
specifi ed by its own user-editable script. A copy of the script, and
an index of the contents of the screen on each screen refresh, are
sent to the acquisition computer, for simultaneous recording of
stimulus and neuronal responses.

Dimstim relies heavily on the Vision Egg2 library (Straw, 2008)
to generate stimuli. The Vision Egg uses the well-established
OpenGL3 graphics language, which thanks to the demands of video
games, is now supported by all modern video cards on all major
platforms. We currently use an Nvidia GeForce 7600 graphics card
running under Windows XP. Stimuli are displayed on a 19'' Iiyama
HM903DTB and a 22'' HM204DTA CRT monitor, two of only
a handful of consumer monitors that are capable of 800 × 600
resolution at 200 Hz. Unfortunately, like most other CRTs, these
particular models have now been discontinued, but used ones
may still be available. Hopefully the timing of LCD monitors will
improve such that they can replace CRTs for temporally precise
stimulus control.

Multitasking operating systems (OSes) present a challenge for
real-time control of the screen. Often, the OS will decide to delay
an operation to maintain responsiveness in other areas. This can
lead to frame drops, but can be mitigated by increasing the prior-
ity of the Python process. Setting the process and thread priorities
to their maximum levels in the Vision Egg completely eliminated
frame drops in Windows XP, but with the unfortunate loss of mouse
and keyboard polling. In dimstim, this meant that the user had no
way of interrupting the stimulus script, other than by resetting the
computer. Moving to a computer with a dual core CPU alleviated
this problem, as the maximum priority Python process was del-
egated to one core without interruption, while other OS tasks such
as keyboard polling ran normally on the second core.

Dimstim communicates stimulus parameters on a frame-by-
frame basis to the acquisition computer via a PCI digital out-
put board (DT340, Data Translations, Marlboro, MA, USA), for

A B

65 μm

1723 μm

stimulus
computer

video
signal

stimulus information

anesthetized

headstage
& amplifier

acquisition
computer

206 μm

FIGURE 1 | (A) One of several 54-channel silicon polytrode designs used. Recording sites are closely spaced, such that a spike will typically appear on several sites at
the same time (see Figure 3). (B) Experimental setup. Stimuli are presented to the animal while stimulus information and extracellular voltage waveforms are
acquired and saved to disk.

2http://visionegg.org
3http://opengl.org

http://visionegg.org
http://opengl.org

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 9 | 3

Spacek et al. Python for large-scale electrophysiology

 simultaneous recording of stimulus timing alongside neuronal
responses. Parameters are described by sending the row index of
a large lookup table (“sweep table”) on every screen refresh. The
sweep table contains all the combinations of the dynamic param-
eters, i.e. those stimulus parameters that can vary from one screen
refresh to the next.

The digital output board is controlled by its driver’s C library.
Because Python is written in C (other implementations also exist),
it has a C application programming interface (API), and exten-
sions to Python can be written in C. We wrote such an extension to
interact with the board’s C library, but today this is no longer nec-
essary. A new built-in Python module called “ctypes” now allows
interaction with a C library on any platform directly from within
Python code. This is much simpler, as it removes the need to both
write and compile C extension code using Python’s somewhat
tedious C API. If dimstim were rewritten today, ctypes would be
the method of choice. Dimstim includes a demo (olda_demo.py)
of how to use ctypes to directly interact with Data Translations’
Open Layers data acquisition library. Libraries for cards from
other vendors (such as National Instruments’ NI-DAQmx) can
be similarly accessed.

Frame timing was tested with a photodiode placed on the moni-
tor. The photodiode signal, along with the raster signal from the
video card and the digital outputs from the stimulus computer,
were all recorded simultaneously. We discovered that the contents
of the screen always lagged by one screen refresh, due to OpenGL’s
buffer swapping behaviour (Straw, 2008). This was corrected for
by adding one frame time (5 ms) to the timestamp of the digitized
raster signal in the acquisition system.

Gamma correction was used to ensure linear control of screen
luminance. Several levels of uncorrected luminance were measured
with a light meter (Minolta LS-100) and fi t to a power law expres-
sion to determine the exponent corresponding to the gamma value
of the screen (Blanche, 2005; Straw, 2008). Gamma correction can
be set independently for each script, or globally across all scripts
in dimstim’s confi g fi le.

Natural scene movies used by dimstim were fi lmed outdoors with
an ordinary compact digital camera (Canon PowerShot SD200) with
320 × 240 resolution at 60 frames per second (fps). Unfortunately,
this camera could record no more than 1 min of video at a time.
To generate longer movies, multiple clips were fi lmed in succes-
sion, while keeping the camera as motionless as possible between
the end of one clip and the start of the next. Concatenation of and
conversion from multiple colour .avi fi les to a single uncompressed
greyscale movie fi le was done using David McNab’s y4m4 package.
Processed movies were displayed in dimstim with the same visual
angle subtended by the camera, at 67 fps (three 5 ms screen refreshes
per movie frame).

USAGE
Dimstim’s confi g fi le stores default values for a variety of generic
parameters that apply to most stimuli. These parameters include
spatial location, size, orientation offset, and temporal and spatial
frequencies. For simplicity, all spatial parameters are specifi ed in
degrees of visual angle. The confi g fi le can be edited by hand, but

the typical procedure when optimizing parameters for the current
neural population is to run a manually controlled bar or grating
stimulus. For user convenience, the stimulus is shown simultane-
ously on two displays driven by two video outputs from the graphics
card: one for the animal, and one for the user. The parameters of
the manual stimulus are controlled in real-time with the mouse
and keyboard. Once the user is satisfi ed, the parameters are saved
to the confi g fi le. These can later be retrieved by an experiment
script for use as default values.

An example script for a drifting sinusoidal grating experiment
is shown in Figure 2. The script works in a bottom-up fashion.
First, objects for storage of static and dynamic parameters are
instantiated (“s” and “d” respectively, lines 5–6). To these are bound
various different parameters as attributes (denoted by a “ . ”). In
this example, most values are declared directly by the script, but
two static parameters, grating orientation offset and gamma cor-
rection, are retrieved from their defaults in the confi g fi le, using
the dimstim confi g parser object named “dc” (lines 15 and 23).
Dynamic parameters, if assigned a list of multiple values, will iter-
ate over those values over the course of the experiment. In this
case, grating orientation, spatial frequency, and temporal frequency
are all assigned multiple values (lines 28, 36, 38). The rest remain
constant for the duration of the experiment. In order to describe
their interdependence and shuffl ing, each multiple-value dynamic
parameter must be declared as a “Variable” (lines 53–55). Variables
with the same dimension value (“dim” keyword argument) covary
with each other, and must therefore all have the same number of
values and the same shuffl e fl ag. Variables with different dimension
values vary independently in a combinatorial fashion, with the low-
est numbered dimension varying slowest, and the highest varying
fastest. This is implemented by dynamically generating a string
object containing Python code with the correct number of nested
for loops (equalling the number of independent variables specifi ed
in the script), and then executing the contents of the string with
Python’s exec() function (see the dimstim.Core.SweepTable
class). Next, the number of times to cycle through all combinations,
and the frequency at which to insert a blank screen sweep (for
determining baseline fi ring rates) are specifi ed in their own objects
(lines 57–58). Finally, all these objects are passed together to the
Grating class (which like all other dimstim stimuli, inherits from
the Experiment class) to instantiate a Grating experiment object,
and the experiment is run (lines 62–65). With 12 orientations,
6 spatial frequencies, and 4 temporal frequencies, this experiment
has 288 unique parameter combinations, presented in shuffl ed
order. Each is presented four times for a total of 1152 stimulus
sweeps, lasting 4 s each, for a total experiment time of about 77 min
(not including blank sweeps).

Before running, various checks are done to alert for any obvious
errors in the user edited script. Then, a copy of the entire script
is sent to the acquisition computer. This makes it possible to later
reconstruct the sweep table for analysis, and even replay the entire
experiment exactly, without the need for access to the original script
on the stimulus computer. To ensure accurate timing, stimuli run
only on the animal display, while the user display shows the system
command line. In between experiments when no stimuli are run-
ning, a blank grey desktop is shown on the animal display. Scripts
can be paused or cancelled using the keyboard.4http://freenet.org.nz/y4m

http://freenet.org.nz/y4m

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 9 | 4

Spacek et al. Python for large-scale electrophysiology

FIGURE 2 | A dimstim script describing a drifting sinusoidal grating. Such
scripts may be edited at will, and are the primary way the user interacts with
dimstim. After some error checking, the script executes from the system’s

command line, to which status messages are printed. Comments, denoted by #
and """ in Python, are highlighted in red. Line numbers have been added for
reference. See text for more details.

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 9 | 5

Spacek et al. Python for large-scale electrophysiology

SPYKE: WAVEFORM VISUALIZATION AND SPIKE SORTING
Once neural waveform and stimulus data were saved to disk by
our acquisition system (written in Delphi), we needed a way to
retrieve the data for visualization and spike sorting. Our existing
program for this, also written in Delphi, had some bugs and miss-
ing features. However, the Delphi environment required a license,
the program would only run in Windows, and the code was more
procedural than object-oriented. In particular, some of the code had
blocks (if statements, for/while statements) that were nested many

 layers deep, making it diffi cult to follow. “Flat is better than nested”
(Peters, 2004) is another Python philosophy. Several short, shallow
blocks of code are easier to understand and manage than one long
deep block. We decided to start from scratch in Python.

Spyke has a cross-platform GUI with native widgets for data
visualization and navigation, and spike sorting (Figure 3). Spike
waveforms are displayed in two ways: spatially according to the
polytrode channel layout (spike window), and vertically in chart
form (chart window). Local fi eld potential (LFP) waveforms are

FIGURE 3 | Main spyke window (top), with data windows (bottom)

showing high-pass waveforms in polytrode layout (left) and chart layout

(middle). A third data window shows the low-pass LFP waveforms (right)

concurrently recorded from a subset of channels (colour coded). All data are
centred on the same timepoint. The shaded region in the middle of both the chart
and LFP windows represents the time range spanned by the window to its left.

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 9 | 6

Spacek et al. Python for large-scale electrophysiology

also displayed vertically in chart form (LFP window). Polytrode
channels are closely spaced (43–75 µm) over two or three columns
(Figure 1A). A single spike can generate a signal on multiple chan-
nels, hence the need to visualize waveforms according to their poly-
trode channel layout. Channels are colour-coded to make them easy
to distinguish and align across windows. Spyke looks and behaves
like a native GUI application, with menus, buttons, and resizable
windows. Navigation is mouse and keyboard based. A horizontal
slider and combo box at the top of the main spyke window control
fi le position in time. Left and right arrow keys, and page up and
page down keys step through the data with single timepoint or
1 ms resolution respectively. Clicking on any data window (spike,
chart, or LFP) centres all three windows on that timepoint. Holding
CTRL and scrolling the mouse wheel over a data window zooms it
in or out in time. Holding CTRL and clicking on a channel enables
or disables it. Hovering the mouse over a data window displays a
tooltip with the timestamp, channel, and voltage currently under
the mouse cursor.

Spyke uses the wxPython5 library for its GUI. This is a Python
interface to the wxWidgets C++ GUI library which generates widg-
ets on Windows, Linux, and OSX. Now well over a decade old
(Rappin and Dunn, 2006), wxPython is a stable library that has
adapted to changing OSes. Widgets include everything from win-
dows, menus, and buttons, to more complex list and tree controls.
WxPython has a big advantage over other GUI libraries in its use of
widgets that are native to the OS the program is running on, such
that they look and behave identically to normally created widgets
in that OS. WxGlade6 was used to visually lay out the GUI. Itself a
wxPython based GUI application, wxGlade takes the programmer’s
visual layout and automatically generates the corresponding layout
code in Python. This code can then be included in the programmer’s
own code base, typically by defi ning a class that inherits from the
automatically generated code. Although wxGlade is not necessary
for writing a GUI with wxPython, we found it much faster and
easier than writing all of the layout code by hand.

Unfortunately, some widgets are inherently different on differ-
ent OSes. Writing and testing a wxPython GUI on only one OS will
therefore not guarantee perfect functionality on another. To do so
would require checking for the current OS, and implementing certain
things differently depending on the OS. Spyke does not currently do
this, and has so far only been thoroughly tested in Windows. A cross-
platform GUI library faces many challenges. Although wxPython is
one of the best (Rappin and Dunn, 2006), it has bugs7 – some of them
longstanding – that had to be worked around in spyke.

Although the widgets are handled by wxPython, waveforms are
plotted using matplotlib8. Matplotlib is a 2D plotting library for
Python that generates publication quality fi gures. It has two inter-
faces: one that mimics the familiar plotting commands of MatLab,
and another that is much more object- oriented. Spyke embeds mat-
plotlib fi gures within wxPython windows. Scaling of plots is handled
automatically by matplotlib, such that when the wxPython window
is resized by dragging its corner or edge, the plotted traces inside

resize accordingly. Another benefi t of matplotlib is its antialiasing
abilities, providing beautiful output with subpixel resolution. There
is some performance penalty for using such a high level drawing
library, but performance is fast enough on fairly ordinary hard-
ware (Pentium M 1.6 GHz notebook), even when scrolling through
54 channels of data with thousands of data points on screen at a time.
More importantly, matplotlib makes plotting very easy to do.

The data acquisition fi les are complex, with different types of
data multiplexed throughout the fi le. On opening, the fi le must be
parsed to determine the number and offset values of hundreds of
thousands of records in the fi le. For multi GB fi les, this can take
up to a few minutes. To deal with this, the parsing information
is saved to disk for quicker future retrieval. This is done using
Python’s pickle module, which can take a snapshot of almost any
Python object in memory, serialize it, and save it to disk as a “pickle”.
A pickle can then later be restored (unpickled) to memory as a live
Python object, even on a different platform. In this case, a custom
written File object containing all of the parse information is saved
to disk as a .parse fi le of only a few MB in size. Restoring from the
.parse fi le is about an order of magnitude faster than reparsing the
entire acquisition fi le.

Segments of waveform data are loaded from the acquisition fi le,
Nyquist interpolated, and sample-and-hold delay (SHD) corrected
on the fl y as needed (Blanche and Swindale, 2006). Interpolation is
performed to improve spike detection, and Nyquist interpolation
is the optimum method of reconstructing a bandwidth-limited
signal at arbitrary resolution. To do so, a set of sinc function kernels
is generated (one kernel per interpolated data point, each kernel
with a different phase offset) and convolved with the data. For SHD
correction, a different set of kernels is generated for each channel.
Correcting for each channel’s SHD requires appropriate modifi ca-
tion of the phase offset of each kernel for that channel. For example,
interpolating from 25 to 50 kHz with SHD correction requires two
appropriately phase corrected kernels per channel. Each kernel is
separately convolved with the data (using numpy.convolve()),
and the resulting data points are interleaved to return the fi nal
interpolated waveform.

SPIKE SORTING
Spike sorting is done by template matching (Blanche, 2005). Event
detection is the fi rst step in generating the required multichan-
nel spike templates. Two event detection methods are currently
implemented. The “bipolar amplitude” method looks for simple
threshold crossings of either polarity. The “dynamic multiphasic”
method searches for two consecutive threshold crossings of oppo-
site polarity within a defi ned period of time. The second crossing’s
threshold is dynamically set according to the amplitude of the fi rst
phase of the spike. For both methods, primary thresholds are cal-
culated separately for each channel, based on the standard devia-
tion or median noise level of either the entire recording or of a
narrow sliding window thereof. Spatiotemporal detection lockouts
prevent double triggering off of the same spike, while minimizing
the chance of missed spikes.

Some algorithms, such as these event detection methods, cannot
be easily vectorized and require a custom loop. Due to its dynamic
typing and interpreted nature, long loops are slow to execute in
Python. For the majority of software development, this is not an

5http://wxpython.org
6http://wxglade.sf.net
7See bugs #626 and #2307 at http://trac.wxwidgets.org
8http://matplotlib.sf.net

http://wxpython.org
http://wxglade.sf.net
http://trac.wxwidgets.org
http://matplotlib.sf.net

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 9 | 7

Spacek et al. Python for large-scale electrophysiology

issue. Developer time is usually much more valuable than CPU time
(Hetland, 2005), but numerically intensive software is the exception.
Writing fast Python extensions in C has always been possible, but
the C interface code required by Python’s API is tedious to write,
and writing in C eliminates the convenience of working in Python
syntax. To get around this, the Cython9 package (a fork of the Pyrex
package) specifi es a sublanguage almost identical to Python, with
some extra keywords to declare loop variables as static C types. After
issuing the standard python setup.py build command, such
code is automatically translated into an intermediary C fi le includ-
ing all of the tedious interface code. This is subsequently compiled
into object code and is accessible as a standard C extension module
from within Python, just as a handwritten C extension would be.
This yields the computational speed of C loops when needed, with
the developmental speed, convenience and familiarity of Python
syntax to implement them. Cython was used to write the custom
loop that iterates over timepoints and channels for each of the
event detection methods. For 25 kHz sampled waveform data on
54 channels, this amounts to 1.35 million iterations per second of
data. On an average single-core notebook computer (Pentium M
1.6 GHz), this loop runs at about 5× real time.

The data is partitioned into blocks (typically 1 s long), and
each is searched independently, allowing multiple core CPUs to
be exploited. Search speed scales roughly proportionally with the
number of cores available. Due to the “global interpreter lock”
(GIL) in the C implementation of Python, multiple processes must
typically be used instead of multiple threads to take advantage of
 multiple cores. Unfortunately, a process can require signifi cantly
more memory and more time to create than a thread. There are
ways around the GIL, but the best solution for spyke is not yet
clear.

Search options are controlled in the “detect” tab in spyke’s main
window (Figure 3). Searches can be limited to specifi c time ranges
in the fi le, in the number of events detected, and whether to search
linearly or randomly. Random sampling is important to build up
a temporally unbiased collection of detected events with which to
build templates. Searching for the next or previous spike relative
to the current timestamp can be done quickly using the keyboard.
Searches are restricted to enabled channels, allowing for a targeted
increase in the number of events belonging to a spatially localized
template. This is useful for building up templates of neurons that
rarely fi re.

When a search completes, the sort window (Figure 4A) opens
and is populated with any newly detected events. The user then visu-
ally sorts the detected events (typically only a fraction of all spikes
in the recording) into templates corresponding to isolated neurons.
This is accomplished by plotting spikes over top of each other. Any
number of event or template mean waveforms can be overplot-
ted with each other. Although the mouse may be used, keyboard
commands are more effi cient for toggling the display of events and
templates, and moving events and keyboard focus around between
the sorted template tree (left column) and unsorted event list (right
column). The event list has sortable columns for event ID, maxi-
mum channel, timestamp, and match error. All the events in the
list can be matched against the currently selected template, and

those match errors populate the error column. Sorting the event
list by maximum channel or match error makes manual template
generation much easier, because it clusters similar events close to
each other in the unsorted event list.

Once templates have been generated, a full event detection is
run across the whole recording, and the templates are matched
against each detected event. Or, each template can be slid across
the recording and matched against every timepoint in the record-
ing (Blanche et al., 2005). Either way, matching to target and non-
target spikes or noise generally yields a non-overlapping bimodal
error distribution. For each template, a threshold is manually set
at the trough between the two peaks in the distribution, and events
whose match errors fall below this threshold are classifi ed as spikes
of that template.

At any point in the sorting process, the entire “Sort” session
object, which among other information includes detected events,
generated templates, and sorted spikes, can be saved to disk as a
.sort fi le, again using Python’s pickle module. Sort sessions can
then be restored from disk and sorting can resume in spyke, or
their sorted spike times can be used for spike train analysis (see
neuropy section). Waveform data for detected events and sorted
spikes is saved within the .sort fi le. This increases the fi le size, but
allows for review of detected and sorted spikes without the need to
access the original multi GB continuous data acquisition fi le.

Integrated into spyke is Patrick O’Brien’s PyShell (Figure 4B),
an enhanced Python command line that is part of the wxPython
package. This permits live command line inspection and modifi ca-
tion of all objects comprising spyke. This was, and continues to be,
a very useful tool for testing existing features and for developing
new ones. Neuropy (or almost any other Python package) can be
imported and used directly from this command line. For example,
spike sorting validation is not yet implemented in spyke’s GUI, but
all of neuropy’s functionality including autocorrelograms (to check
refractory periods) can be accessed by typing import neuropy
in spyke’s PyShell.

NEUROPY: SPIKE TRAIN ANALYSIS
After spike sorting, we needed a way to analyse spike trains and
their relation to stimuli. Our initial decision was to use MatLab for
spike train analysis, and we soon developed a collection of MatLab
scripts for the job, with one function per .m fi le. For example, one
.m fi le would load each neuron’s data from disk and return all
of them in a cell array of structures. This was highly procedural
instead of object-oriented. Furthermore, the code became diffi cult
to manage as each additional function required an additional .m
fi le. We were also faced with out of memory errors, limited GUI
capabilities, and a high licensing cost.

Although MatLab’s toolboxes are a major benefi t, SciPy10 (Jones
et al., 2001), an extensive Python library of scientifi c routines,
provides most of the equivalent functionality. Much of SciPy is
a wrapper for decades-old, highly tested and optimized Fortran
code. Another package, mlabwrap11, allows a licensed MatLab user
to access all of MatLab’s functionality, including all of its toolboxes,
directly from within Python. Although in the end we did not need

9http://cython.org

10http://scipy.org
11http://mlabwrap.sf.net

http://cython.org
http://scipy.org
http://mlabwrap.sf.net

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 9 | 8

Spacek et al. Python for large-scale electrophysiology

to use mlabwrap, its existence erased any remaining hesitations
about switching to Python for analysis.

A data-centric object hierarchy (Figure 5A) quickly emerged
as a natural way to organize neuropy. Each object in the hierarchy
has an attribute that references its parent object, as well as all of its
child objects. Specifi cally, “Data” is an abstract object from which all
“Animals” are accessible. Each Animal has polytrode “Tracks”, each
Track has “Recordings”, and each Recording has both “Sorts” (spike
sorting sessions) and “Experiments” (which describe stimuli).

Finally, each Sort contains a number of “Neurons”, one of whose
attributes is a NumPy array of spike times.

Neuropy relies on a hierarchy of data folders on the disk with
a fairly rigid naming scheme, such that animal, track, recording,
experiment, and sort IDs can be extracted from fi le and folder
names. This forces the user to keep sorted data organized. All
objects have a unique ID under the scope of their parent, but not
necessarily under the scope of their grandparent. All data can be
loaded in at once by creating an instance of the Data class and then

FIGURE 4 | (A) An example of spyke’s sort window. Templates and their
member spikes are represented in the tree (left), and unsorted detected
events in the list (middle). Selecting a template or event in either the tree or
the list plots its waveform (right). The tree currently has keyboard focus,
making its selections more distinctly coloured than those of the list. Unsorted
events have colour coded channels, while each template (and its member
spikes) has a single identifying colour. Here, template 0 (red), a putative
neuron near the top of the polytrode, has 6 member spikes, and its mean
waveform is being overplotted with an unsorted event (#1260, multicoloured),

which fi ts quite well. Template 1 (orange) and all of its member spikes are
plotted near the middle of the polytrode. Also plotted further down is another
unsorted event (#1150, multicoloured), which obviously does not fi t either
template. The error values listed are from a match against template 0.
(B) The integrated PyShell window exposes all of spyke’s objects and
functionality at the Python command line. Template 0’s dictionary (a mapping
from names to values) of its 6 member events is referenced and returned on
lines 1–2. The “Sort” object’s attributes and methods are displayed in a
popup on line 3.

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 9 | 9

Spacek et al. Python for large-scale electrophysiology

calling its .load() method. However, most often only a subset of
data is needed, such as only the data from a given animal, track, or
recording. For example, an object representing recording 92 from
the default track of the default animal can be instantiated by typ-
ing Recording(92) at the command line. This recording’s data
can then be loaded from disk into the object by calling its .load()
method. Default animal and track IDs can be modifi ed from the
command line. A recording loads the neurons from its default sort,
which can also be modifi ed.

Some analyses are written as simple methods of one of the data
objects, but most have their own separate class which is instantiated
by a data object’s method call. Many analyses generate plots, some
of them interactive (such as the population spike raster plot), again
using matplotlib and wxPython. Currently implemented analyses
include interspike interval histograms, instantaneous fi ring rates
and their distributions, cross- correlograms and autocorrelograms,
and spike-triggered averages (STAs) (Dayan and Abbott, 2001).
More specialized analyses include binary codes of population spike
trains, their correlation coeffi cient distributions, maximum entropy
Ising modelling of such codes (using scipy.maxent), and several
other related analyses (Schneidman et al., 2006; Shlens et al., 2006;
Spacek et al., 2007). Because of the data-centric organization, new
analyses are easy to add.

Neuropy is used interactively as a library from the Python
command prompt, usually in an enhanced shell such as PyShell
(Figure 4B) or the more widely used IPython12. An example of
neuropy use is shown in Figure 5B, which calculates and plots the
STA of neurons 2 and 5 of the default animal and track. The STA
estimates a neuron’s spatiotemporal receptive fi eld by averaging the
stimulus (in this case, an m-sequence noise movie) at fi xed time
intervals preceding each spike. Recording 92 was recorded during
m-sequence noise movie playback, and is used in this example.

Line 1 imports all of neuropy’s functionality into the local name-
space. Next, an object representing recording 92 is instantiated and
bound to the name r92 for convenience, and its data is loaded from
disk (lines 2–3). Its dictionary of available experiments is requested
and printed out (lines 4–5); only one experiment is available, with
ID 0. STAs are calculated with respect to this experiment by calling
its .sta() method and passing the IDs of the desired neurons (line 6).
The calculated STAs are returned in an “STAs” object, which upon
further inspection contains two “STA” objects, one per requested
neuron (lines 7–10). Finally, the STAs object’s .plot() method is
called with default options, displaying the result for both neurons
(Figure 5C).

Python’s object orientation has benefi ts even at the command line.
It allows the user to quickly discover what methods and attributes
are available for any given object, eliminating the need to recall them
from memory (Figure 4B). Instead of immediately returning the
raw result or plotting it, most analyses in neuropy return an analysis
object, which usually has .calc() and .plot() methods. The .calc()
method is run automatically on instantiation, and the results are
stored as attributes of the analysis object. Settings used to do the
calculation are also stored as attributes. These can be modifi ed, and
.calc() can be called again to update the result attributes. Once satis-
fi ed with the calculation, the user can call the .plot() method. This
can be done several times to generate different plots with different
plot settings. Each time a new plot is generated, it does so from the
existing results, saving on unnecessary recalculation time.

CONCLUSION
We have described Python packages for three tasks pertinent to
systems neuroscience: visual stimulus generation, waveform visu-
alization and spike sorting, and spike train analysis. Python allowed
us to meet these software challenges with a level of performance
not normally associated with a dynamically typed interpreted lan-
guage. Performance challenges included time-critical display and

FIGURE 5 | (A) Neuropy’s object hierarchy. (B) Example code using neuropy to
plot the spike-triggered average (STA) of two neurons in response to an
m-sequence noise movie (see text for details). (C) The resulting plot window.

Each row corresponds to a neuron, and each column corresponds to the
STA within a fi xed time range following the m-sequence white noise stimulus.
ON responses are red, OFF responses are blue.

12http://ipython.scipy.org

http://ipython.scipy.org

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 9 | 10

Spacek et al. Python for large-scale electrophysiology

communication of visual stimuli, parsing and streaming of mul-
tiplexed data from GB sized fi les, on the fl y Nyquist interpolation
and SHD correction, fast execution of non-vectorizable algorithms,
and parallelization. Other challenges, whose solutions were simpler
than in a statically compiled language, included a cross-platform
native GUI, the storage and retrieval of relatively complex data
structures to and from fi le (.parse and .sort fi les), and a command
line environment for interactive data analysis.

Dimstim is the oldest of the three packages, and the most
stable. Spyke is the most recent and remains under heavy devel-
opment, while new analyses are added to neuropy as needed. As
with most other Python packages, all three can be used alone or
from within another Python module. All three depend on each
other to a limited extent. Neuropy relies on the stimulus descrip-
tion and timing signals generated by dimstim, and on the spike
sorting results from spyke. Spyke can use parts of neuropy for
spike sorting validation. These three packages depend on many
other open source packages, which themselves rely on yet other
packages (e.g. the Vision Egg currently depends on PyOpenGL and
PyGame). Modularity and code reuse is thus maximized across
the community.

Because it greatly encourages object-oriented programming,
Python code is easier to organize and reuse than MatLab code. This
is important for scientifi c code which tends to continually evolve as
new avenues are explored. Often, scientifi c code is quickly written

and bug-tested, used once or twice, and then forgotten about, with
little chance of re-use outside of copying and pasting. Python has
reduced this tendency for us. Its object orientation and excellent
error handling have also helped to reduce bugs.

Finally, Python was chosen for these projects for its clear, suc-
cinct syntax. Dimstim, spyke, and neuropy have roughly 3000, 5000,
and 4000 lines of code respectively (excluding comments and blank
lines). Fewer lines make code maintenance easier, not just because
there is less code to maintain, but also because each line is closer
to all other lines, making it easier to navigate. Concise syntax also
makes collaboration easier.

We encourage others in neuroscience to consider Python for
their programming needs, and hope that our three examples (avail-
able at http://swindale.ecc.ubc.ca/code) may be of use
to others, whether directly or otherwise. Rallying around a common
open-source language may help foster efforts to increase sharing
of data and code, efforts deemed necessary (Teeters et al., 2008) to
push forward progress in systems neuroscience.

ACKNOWLEDGEMENTS
Keith Godfrey wrote dimstim’s C extension to interface with the
Data Translations board. Reza Lotun contributed code to early
versions of spyke. Funding came from grants from the Canadian
Institutes of Health Research, and the Natural Sciences and
Engineering Research Council of Canada.

REFERENCES
Blanche, T. J. (2005). Large scale neu-

ronal recording. Ph.D. dissertation,
University of British Columbia,
Vancouver, BC.

Blanche, T. J., Spacek, M. A., Hetke, J. F.,
and Swindale, N. V. (2005). Polytrodes:
high-density silicon electrode arrays
for large-scale multiunit recording.
J. Neurophysiol. 93, 2987–3000.

Blanche, T. J., and Swindale, N. V.
(2006). Nyquist interpolation improves
neuron yield in multiunit recordings.
J. Neurosci. Methods 155, 81–91.

Dayan, P., and Abbott, L. F. (2001). Theor-
etical Neuroscience: Computational
and Mathematical Modeling of
Neural Systems. Cambridge, MA,
MIT Press.

Golomb, S. W. (1967). Shift Register
Sequences. San Francisco, Holden-Day.

Hetland, M. L. (2005). Beginning Python:
From Novice to Professional. Berkeley,
CA, Apress.

Jones, E., Oliphant, T., Peterson, P., et al.
(2001). SciPy: open source scientifi c
tools for Python. http://scipy.org.

Langtangen, H. P. (2008). Python Scripting
for Computational Science, 3rd Edn.
Berlin, Springer-Verlag.

Lutz, M. (2006). Programming Python,
3rd Edn. Sebastopol, CA, O’Reilly.

Mainen, Z. F., and Sejnowski, T. J. (1995).
Reliability of spike timing in neocorti-
cal neurons. Science 268, 1503.

Peters, T. (2004). The Zen of Python.
http://www.python.org/dev/peps/
pep-0020.

Rappin, N., and Dunn, R. (2006). wxPy-
thon in Action. Greenwich, CT,
Manning.

Schneidman, E., Berry, M. J. II, Segev, R.,
and Bialek, W. (2006). Weak pairwise
correlations imply strongly correlated
network states in a neural population.
Nature 440, 1007–1012.

Shlens, J., Field, G. D., Gauthier, J. L.,
Grivich, M. I., Petrusca, D., Sher, A.,
Litke, A. M., and Chichilnisky, E. J.
(2006). The structure of multi- neuron
firing patterns in primate retina.
J. Neurosci. 26, 8254–8266.

Spacek, M. A. , Blanche, T. J. ,
Seamans, J. K., and Swindale, N. V.

(2007). Accounting for network
states in cortex: are (local) pairwise
correlations suffi cient? Soc. Neurosci.
Abstr. 33, 790.1. http://swindale.ecc.
ubc.ca/Publications.

Straw, A. D. (2008). Vision Egg: an
open-source library for realtime
visual stimulus generation. Front.
Neuroinform. 2, 4.

Teeters, J. L., Harris, K. D., Millman, K. J.,
Olshausen, B. A., and Sommer, F. T.
(2008). Data sharing for computa-
tional neuroscience. Neuroinformatics
6, 47–55.

VanRullen, R., and Thorpe, S. J. (2002).
Surfi ng a spike wave down the ventral
stream. Vis. Res. 42, 2593–2615.

Williams, P. E., Mechler, F., Gordon,
J., Shapley, R., and Hawken, M. J.
(2004). Entrainment to video dis-
plays in primary visual cortex of
macaque and humans. J. Neurosci.
24, 8278–8288.

Wollman, D. E., and Palmer, L. A.
(1995). Phase locking of neuronal
responses to the vertical refresh of
 computer display monitors in cat

lateral geniculate nucleus and stri-
ate cortex. J. Neurosci. Methods 60,
107–113.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential confl ict
of interest.

Received: 18 September 2008; paper pend-
ing published: 04 November 2008; accepted:
19 December 2008; published online: 28
January 2009.
Citation: Spacek M, Blanche T and Swindale
N (2009) Python for large-scale electrophys-
iology. Front. Neuroinform. (2009) 2:9. doi:
10.3389/neuro.11.009.2008
Copyright © 2009 Spacek, Blanche and
Swindale. This is an open-access article
subject to an exclusive license agreement
between the authors and the Frontiers
Research Foundation, which permits unre-
stricted use, distribution, and reproduc-
tion in any medium, provided the original
authors and source are credited.

http://swindale.ecc.ubc.ca/code
http://scipy.org
http://www.python.org/dev/peps/pep-0020
http://www.python.org/dev/peps/pep-0020
http://swindale.ecc.ubc.ca/Publications
http://swindale.ecc.ubc.ca/Publications

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

