
Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 12 | 1

NEUROINFORMATICS
ORIGINAL RESEARCH ARTICLE

published: 29 January 2009
doi: 10.3389/neuro.11.012.2008

PyNEST: A convenient interface to the NEST simulator

Jochen Martin Eppler1,2*†, Moritz Helias2†, Eilif Muller3, Markus Diesmann2,4,5 and Marc-Oliver Gewaltig1,2

1 Honda Research Institute Europe GmbH, Offenbach, Germany
2 Bernstein Center for Computational Neuroscience, Albert-Ludwig University, Freiburg, Germany
3 Laboratory for Computational Neuroscience, Swiss Federal Institute of Technology, EPFL, Lausanne, Switzerland
4 Theoretical Neuroscience Group, RIKEN Brain Science Institute, Wako City, Japan
5 Brain and Neural Systems Team, Computational Science Research Program, RIKEN, Wako City, Japan

The neural simulation tool NEST (http://www.nest-initiative.org) is a simulator for
heterogeneous networks of point neurons or neurons with a small number of compartments.
It aims at simulations of large neural systems with more than 104 neurons and 107 to 109
synapses. NEST is implemented in C++ and can be used on a large range of architectures from
single-core laptops over multi-core desktop computers to super-computers with thousands of
processor cores. Python (http://www.python.org) is a modern programming language that
has recently received considerable attention in Computational Neuroscience. Python is easy to
learn and has many extension modules for scientifi c computing (e.g. http://www.scipy.org).
In this contribution we describe PyNEST, the new user interface to NEST. PyNEST combines
NEST’s effi cient simulation kernel with the simplicity and fl exibility of Python. Compared to
NEST’s native simulation language SLI, PyNEST makes it easier to set up simulations, generate
stimuli, and analyze simulation results. We describe how PyNEST connects NEST and Python
and how it is implemented. With a number of examples, we illustrate how it is used.

Keywords: Python, modeling, integrate-and-fi re neuron, large-scale simulation, scientifi c computing, networks,

programming

(van Rossum, 2008). To do so, it is common to map the application’s
functions and data structures to Python classes and functions. This
approach has the advantage that the coupling between the applica-
tion and Python is as tight as possible. But there is also a drawback:
Whenever a new feature is implemented in the application, the
interface to Python must be changed as well.

On many high-performance computers Python is not available
and we have to preserve NEST’s native simulation language SLI.
In order to avoid two different interfaces, one to Python and one
to SLI, we decided to deviate from the standard way of coupling
applications to Python. Rather than using NEST’s classes, we use
NEST’s simulation language as the interface: Python sends data
and SLI commands to NEST and NEST responds with Python
data structures.

Exchanging data between Python and NEST is easy since
all important data types in NEST have equivalents in Python.
Executing NEST commands from Python is also straightfor-
ward: Python only needs to send a string with commands to
NEST, and NEST will execute them. With this approach, we only
need to maintain one binary interface to the simulation kernel
instead of two: Each new feature of the simulation kernel only
needs to be mapped to SLI and immediately becomes accessible
in PyNEST without changing its binary interface. This generic
interpreter interface allows us to program PyNEST’s high-level
API in Python. This is an advantage, because programming in
Python is more productive than programming in C++ (Prechelt,
2000). Python is also more expressive: A given number of lines of
Python code achieve much more than the same number of lines
in C++ (McConnell, 2004).

INTRODUCTION
The fi rst user interface for NEST (Gewaltig and Diesmann, 2007;
Plesser et al., 2007) was the simulation language SLI, a stack-based
language derived from PostScript (Adobe Systems Inc., 1999).
However, programming in SLI turned out to be diffi cult to learn
and users asked for a more convenient programming language for
NEST.

When we decided to use Python as the new simulation language,
it was almost unknown in Computational Neuroscience. In fact,
Matlab (MathWorks, 2002) was far more common, both for simula-
tions and for analysis. Other simulators, like e.g. CSIM (Natschläger,
2003), already used Matlab as their interface language. Thus, Matlab
would have been a natural choice for NEST as well.

Python has a number of advantages over commercial soft-
ware like Matlab and other free scripting languages like Tcl/Tk
(Ousterhout, 1994). First, Python is installed by default on all Linux
and Mac-OS based computers. Second, Python is stable, portable,
and supported by a large and active developer community, and has
a long history in scientifi c fi elds outside the neurosciences (Dubois,
2007). Third, Python is a powerful interactive programming lan-
guage with a surprisingly concise and readable syntax. It supports
many programming paradigms such as object-oriented and func-
tional programming. Through packages like NumPy (http://
www.numpy.org) and SciPy (http://www.scipy.org), Python
supports scientifi c computing and visualization à la Matlab. Finally,
a number of neuroscience laboratories meanwhile use Python for
simulation and analysis, which further supports our choice.

Python is powerful at steering other applications and provides
a well documented interface (API) to link applications to Python

Edited by:

Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:

Upinder S. Bhalla, National Center for
Biological Sciences, India
Terrence C. Stewart, Carleton
University, Canada

*Correspondence:

Jochen Martin Eppler, Honda
Research Institute Europe GmbH,
Carl-Legien-Str. 30, 63073 Offenbach
am Main, Germany.
e-mail: eppler@biologie.uni-freiburg.de
†Eppler and Helias contributed equally
to this work.

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 12 | 2

Eppler et al. PyNEST: A convenient interface to NEST

NEST users benefi t from the increased productivity. They can
now take advantage of the large number of extension modules for
Python. NumPy is the Python interface to the BLAS libraries, the same
libraries which power Matlab. Matplotlib (http://matplotlib.
sourceforge.net) provides many routines to plot scientifi c data in
publication quality. Many other packages exist to analyze and visualize
data. Thus, PyNEST allows users to combine simulation, data analysis,
and visualization in a single programming language.

In the Section “Using PyNEST”, we introduce the basic modeling
concepts of NEST. With a number of PyNEST code examples, we
illustrate how simulations are defi ned and how the results are ana-
lyzed and plotted. In the Section “The Interface Between Python
and NEST”, we describe in detail how we bind NEST to the Python
interpreter. In the Section “Discussion”, we discuss our implementa-
tion and analyze its performance. The complete API reference for
PyNEST is contained in Appendix A. In Appendix B we illustrate
advanced PyNEST features, using a large scale model.

USING PyNEST
A neural network in NEST consists of two basic element types: Nodes
and connections. Nodes are either neurons, devices or subnetworks.
Devices are used to stimulate neurons or to record from them. Nodes
can be arranged in subnetworks to build hierarchical networks like
layers, columns, and areas. After starting NEST, there is one empty
subnetwork, the so-called root node. New nodes are created with the
command Create(), which takes the model name and optionally the
number of nodes as arguments and returns a list of handles to the new
nodes. These handles are integer numbers, called ids. Most PyNEST
functions expect or return a list of ids (see Appendix A). Thus it is easy
to apply functions to large sets of nodes with a single function call.

Nodes are connected using Connect(). Connections have a
confi gurable delay and weight. The weight can be static or dynamic,
as for example in the case of spike timing dependent plasticity
(STDP; Morrison et al., 2008). Different types of nodes and con-
nections have different parameters and state variables. To avoid
the problem of fat interfaces (Stroustrup, 1997), we use dictionar-
ies with the functions GetStatus() and SetStatus() for the
inspection and manipulation of an element’s confi guration. The
properties of the simulation kernel are controlled through the com-
mands GetKernelStatus() and SetKernelStatus(). PyNEST
contains the submodules raster_plot and voltage_trace to visualize
spike activity and membrane potential traces. They use Matplotlib
internally and are good templates for new visualization functions.
However, it is not our intention to develop PyNEST into a toolbox
for the analysis of neuroscience data; we follow the modularity
concept of Python and leave this task to others (e.g. NeuroTools,
http://www.neuralensemble.org/NeuroTools).

EXAMPLE
We illustrate the key features of PyNEST with a simulation of a
neuron receiving input from an excitatory and an inhibitory popu-
lation of neurons (modifi ed from Gewaltig and Diesmann, 2007).
Each presynaptic population is modeled by a Poisson generator,
which generates a unique Poisson spike train for each target. The
simulation adjusts the fi ring rate of the inhibitory input population
such that the neurons of the excitatory population and the target
neuron fi re at the same rate.

First, we import all necessary modules for simulation, analysis
and plotting.

 1 from nest import *
 2 from scipy.optimize import bisect
 3 import nest.voltage_trace as plot

Second, the parameters for the simulation are set.

 4 t_sim = 100000.0 #[ms] simulation time
 5 n_ex = 16000 #size of exc. population
 6 n_in = 4000 #size of inh. population
 7 r_ex = 5.0 #[Hz] rate of exc. neurons
 8 epsc = 45.0 #[pA] amplitude of exc.
 9 #synaptic currents
10 ipsc = −45.0 #[pA] amplitude of inh.
11 #synaptic currents
12 d = 1.0 #[ms] synaptic delay
13 lower = 5.0 #[Hz] lower bound of the
14 #search interval
15 upper = 25.0 #[Hz] upper bound of the
16 #search interval
17 prec = 0.05 #accuracy goal (in percent
18 #of inhibitory rate)

Third, the nodes are created using Create(). Its arguments
are the name of the neuron or device model and optionally the
number of nodes to create. If the number is not specifi ed, a single
node is created. Create() returns a list of ids for the new nodes,
which we store in variables for later reference.

19 neuron = Create("iaf_neuron")
20 noise = Create("poisson_generator", 2)
21 voltmeter = Create("voltmeter")
22 spikedetector = Create("spike_detector")

Fourth, the excitatory Poisson generator (noise[0]) and the
voltmeter are confi gured using SetStatus(), which expects a list
of node handles and a list of parameter dictionaries. The rate of
the inhibitory Poisson generator is set in line 32. For the neuron
and the spike detector we use the default parameters.

23 SetStatus([noise [0]], [{ "rate" : n_ex*r_ex }])
24 SetStatus(voltmeter, [{ "interval" : 1000.0,
25 "withgid" : True}])

Fifth, the neuron is connected to the spike detector and the
voltmeter, as are the two Poisson generators to the neuron:

26 Connect(neuron, spikedetector)
27 Connect(voltmeter, neuron)
28 ConvergentConnect(noise, neuron,
29 [epsc, ipsc], [d, d])

The command Connect() has different variants. Plain
Connect() (line 26 and 27) just takes the handles of pre- and
 postsynaptic nodes and uses the default values for weight and delay.
ConvergentConnect() (line 28) takes four arguments: A list of
presynaptic nodes, a list of postsynaptic nodes, and lists of weights
and delays. It connects all presynaptic nodes to each postsynaptic
node. All variants of the Connect() command refl ect the direc-
tion of signal fl ow in the simulation kernel rather than the physi-
cal process of inserting an electrode into a neuron. For example,
neurons send their spikes to a spike detector, thus the neuron is the

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 12 | 3

Eppler et al. PyNEST: A convenient interface to NEST

fi rst argument to Connect() in line 26. By contrast, a voltmeter
polls the membrane potential of a neuron in regular intervals, thus
the voltmeter is the fi rst argument of Connect() in line 27. The
documentation of each model explains the types of events it can
send and receive.

To determine the optimal rate of the neurons in the inhibitory
population, the network is simulated several times for different
values of the inhibitory rate while measuring the rate of the target
neuron. This is done until the rate of the inhibitory neurons is
determined up to a given relative precision (prec), such that the
target neuron fi res at the same rate as the neurons in the excitatory
population. The algorithm is implemented in two steps:

First, the function output_rate() is defi ned to measure the
fi ring rate of the target neuron for a given rate of the inhibitory
neurons.

30 def output_rate(guess):
31 rate = float(abs(n_in*guess))
32 SetStatus([noise [1]], [{"rate": rate}])
33 SetStatus(spikedetector, [{"n_events": 0}])
34 Simulate(t_sim)
35 n_events = GetStatus(spikedetector,
36 "n_events")[0]
37 r_target = n_events*1000.0/t_sim
38 print "r_in = %.4f Hz," % guess,
39 print "r_target = %.3f Hz" % r_target
40 return r_target

The function takes the fi ring rate of the inhibitory neurons as
an argument. It scales the rate with the size of the inhibitory popu-
lation (line 31) and confi gures the inhibitory Poisson generator
(noise[1]) accordingly (line 32). In line 33, the spike-counter of
the spike detector is reset to zero. Line 34 simulates the network
using Simulate(), which takes the desired simulation time in mil-
liseconds and advances the network state by this amount of time.
During the simulation, the spike detector counts the spikes of the
target neuron and the total number is read out at the end of the
simulation period (line 35). The return value of output_rate()
is an estimate of the fi ring rate of the target neuron in Hz.

Second, we determine the optimal fi ring rate of the neurons of
the inhibitory population using the bisection method.

41 print "Desired target rate: %.2f Hz" % r_ex
42 r = bisect(lambda x: output_rate(x)-r_ex,
43 lower, upper, rtol=prec)
44 print "Resulting inhibitory rate: %.4f" % r

The SciPy function bisect() takes four arguments: First a
function whose zero crossing is to be determined. Here, the fi ring
rate of the target neuron should equal the fi ring rate of the neurons
of the excitatory population. Thus we defi ne an anonymous func-
tion (using lambda) that returns the difference between the actual
rate of the target neuron and the rate of the excitatory Poisson
generator, given a rate for the inhibitory neurons. The next two
arguments are the lower and upper bound of the interval in which
to search for the zero crossing. The fourth argument of bisect()
is the desired relative precision of the zero crossing.

Finally, we plot the target neuron’s membrane potential as a
function of time.

45 plot.from_device(voltmeter, timeunit="s")

A transcript of the simulation session and the resulting plot are
shown in Figure 1.

PyNEST ON MULTI-CORE PROCESSORS AND CLUSTERS
NEST has built-in support for parallel and distributed computing
(Morrison et al., 2005; Plesser et al., 2007): On multi-core proces-
sors, NEST uses POSIX threads (Lewis and Berg, 1997), on computer
clusters, NEST uses the Message Passing Interface (MPI; Message
Passing Interface Forum, 1994). Nodes and connections are assigned
automatically to threads and processes, i.e. the same script can be
executed single-threaded, multi-threaded, distributed over multiple
processes, or using a combination of both methods. This naturally
carries over to PyNEST: To use multiple threads for the simulation,
the desired number has to be set prior to the creation of nodes and
connections. Note that the network setup is carried out by a single
thread, as only a single instance of the Python interpreter exists

A

jochen@winston:˜$ python balancedneuron.py
NEST 1.9.7865 (C) 2008 The NEST Initiative
Desired target rate: 5.00 Hz

r in=5.0000 Hz, r target=434.580 Hz
r in=25.0000 Hz, r target=0.020 Hz
r in=15.0000 Hz, r target=347.410 Hz
r in=20.0000 Hz, r target=34.350 Hz
r in=22.5000 Hz, r target=0.000 Hz
r in=21.2500 Hz, r target=0.680 Hz
r in=20.6250 Hz, r target=7.160 Hz

...
r in=20.7837 Hz, r target=4.640 Hz
r in=20.7825 Hz, r target=5.000 Hz

Resulting inhibitory rate: 20.7825 Hz

B

FIGURE 1 | Results of the example simulation. (A) The transcript of the
simulation session shows the intermediate results of r_target as bisect()
searches for the optimal rate. (B) The membrane potential of the target neuron

as a function of time. Repeated adjustment of the spike rate of the inhibitory
population by bisect() results in a convergence of the mean membrane
potential to −112 mV, corresponding to an output spike rate of 5.0 Hz.

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 12 | 4

Eppler et al. PyNEST: A convenient interface to NEST

in each process. Only the simulation takes advantage of multiple
threads. Distributed simulations can be run via the mpirun com-
mand of the respective MPI implementation. Where, for SLI, one
would execute mpirun -np n nest simulation.sli to distrib-
ute a simulation onto n processes, one has to call mpirun -np n
python simulation.py to get the same result with PyNEST. In
the distributed case, n Python interpreters run in parallel and execute
the same simulation script. This means that both network setup
and simulation are parallelized. With third-party tools like IPython
(http://ipython.scipy.org) or MPI for Python (http://
mpi4py.scipy.org), it is possible to use PyNEST interactively
even in distributed scenarios. For a more elaborate documentation
of parallel and distributed simulations with NEST, see the NEST
user manual (http://www.nest-initiative.org).

THE INTERFACE BETWEEN PYTHON AND NEST
NEST’s built-in simulation language (SLI) is a stack-based language
in which functions expect their arguments on an operand stack
to which they also return their results. This means that in every
expression, the arguments must be entered before the command
that uses them (reverse polish notation). For many new users, SLI is
diffi cult to learn and hard to read. This is especially true for math:
The simple expression α = t · e−t/τ has to be written as /alpha t
t neg tau div exp mul def in SLI. But SLI is also a high-level
language where functions can be assembled at run time, stored in
variables and passed as arguments to other functions (functional
programming; Finkel, 1996). Powerful indexing operators like
Part and functional operators like Map, together with data types
like heterogeneous arrays and dictionaries, allow a compact and
expressive formulation of algorithms.

Stack-based languages are often used as intermediate languages
in compilers and interpreters (Aho et al., 1988). This inspired
us to couple NEST and Python using SLI as an intermediate
language.

THE PyNEST LOW-LEVEL INTERFACE
The low-level API of PyNEST is implemented in C/C++ using the
Python C-API (van Rossum, 2008). It exposes only three func-
tions to Python, and has private routines for converting between
SLI data types and their Python equivalents. The exposed func-
tions are:

1. sli_push(py_object), which converts the Python object
py_object to the corresponding SLI data type and pushes it
onto SLI’s operand stack.

2. sli_pop(), which removes the top element from SLI’s ope-
rand stack and returns it as a Python object.

3. sli_run(slicommand), which uses NEST’s simulation lan-
guage interpreter to execute the string slicommand. If the
command requires arguments, they have to be present on SLI’s
operand stack or must be part of slicommand. After the com-
mand is executed, its return values will be on the interpreter’s
operand stack.

Since these functions provide full access to the simulation lan-
guage interpreter, we can now control NEST’s simulation kernel
without explicit Python bindings for all NEST functions. This
interface also provides a natural way to execute legacy SLI code

from within a PyNEST script by just using the command sli_
run("(legacy.sli) run"). However, it does not provide any
benefi ts over plain SLI from a syntactic point of view: All simulation
specifi c code still has to be written in SLI. This problem is solved
by a set of high-level functions.

THE PyNEST HIGH-LEVEL INTERFACE
To allow the researcher to defi ne, run and evaluate NEST simula-
tions using only Python, PyNEST offers convenient wrappers for
the most important functions of NEST. These wrappers are imple-
mented on top of the low-level API and execute appropriate SLI
expressions. Thus, at the level of PyNEST, SLI is invisible to the user.
Each high-level function consists essentially of three parts:

1. The arguments of the function are put on SLI’s operand
stack.

2. One or more SLI commands are executed to perform the desi-
red action in NEST.

3. The results (if any) are fetched from the operand stack and
returned as Python objects.

A concrete example of the procedure is given in the following
listing, which shows the implementation of Create():

1 def Create(model, n=1):
2 sli_run("/%s" % model)
3 sli_push(n)
4 sli_run("CreateMany")
5 lastid = sli_pop()
6 return range(lastid - n + 1, lastid + 1)

In line 2, we fi rst transfer the model name to NEST. Model names
in NEST have to be of type literal, a special symbol type that is not
available in Python. Because of this, we cannot use sli_push() for
the data transfer, but have to use sli_run(), which executes a given
command string instead of just pushing it onto SLI’s stack. The
command string consists of a slash followed by the model name,
which is interpreded as a literal by SLI. Line 3 uses sli_push()
to transmit the number of nodes (n) to SLI. The nodes are then
created by CreateMany in line 4, which expects the model name
and number of nodes on SLI’s operand stack and puts the id of
the last created node back onto the stack. The id is retrieved in
line 5 via sli_pop(). To be consistent with the convention that
all PyNEST functions work with lists of nodes, we build a list of
all created nodes’ ids, which is returned in line 6.

A sequence diagram of the interaction between the different
software layers of PyNEST is shown in Figure 2 for a call to the
Create() function.

DATA CONVERSION
From Python to SLI
The data conversion between Python and SLI exploits the fact that
most data types in SLI have an equivalent type in Python. The func-
tion sli_push() calls PyObjectToDatum() to convert a Python
object py_object to the corresponding SLI data type (see in
Figure 2). PyObjectToDatum() determines the type of py_object
in a cascade of type checks (e.g. PyInt_Check(), PyString_
Check(), PyFloatCheck()) as described by van Rossum (2008).
If a type check succeeds, the Python object is used to create a new

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 12 | 5

Eppler et al. PyNEST: A convenient interface to NEST

SLI Datum of the respective type. PyObjectToDatum() is called
recursively on the elements of lists and dictionaries. The listing
below shows how this technique is used for the conversion of the
Python type float and for NumPy arrays of doubles:

 1 Datum* PyObjectToDatum(PyObject *py_object)
 2 {
 3 if (PyFloat_Check(py_object)) //float?
 4 {
 5 return new DoubleDatum(PyFloat_AsDouble(
 6 py_object));
 7 }
 8
 9 if (PyArray_Check(py_object)) //NumPy array?
10 {
11 int size = PyArray_Size(py_object);
12 PyArrayObject *array;
13 array = (PyArrayObject*) py_object;
14 assert(array != 0);
15 switch (array->descr->type_num)
16 {
17 case PyArray_DOUBLE:
18 {
19 double *begin = (double*) array->data;
20 return new DoubleVectorDatum(
21 new std::vector<double>(
22 begin, begin+size));
23 }
24 //cases for NumPy arrays of other types
25 }

26 }
27 //checks for other supported Python types
28 }

From SLI to Python
To convert a SLI data type to the corresponding Python type, we can
avoid the cascade of type checks, since all SLI data types are derived
from a common base class, called Datum. The C++ textbook solution
would add a pure virtual conversion function convert() to the class
Datum. Each derived class (e.g. DoubleDatum, DoubleVectorDatum)
then overloads this function to implement its own conversion to the
corresponding Python type. This approach is shown for the SLI
type DoubleDatum in the following listing. The function get() is
implemented in each Datum and returns its data member.

1 PyObject*
2 DoubleDatum::convert()
3 {
4 return PyFloat_FromDouble(get());
5 }

However, this solution would make SLI’s type hierarchy (and
thus NEST) depend on Python. To keep NEST independent of
Python, we split the implementation in two parts: The fi rst is
Python-unspecifi c and resides in the NEST source code (Figure 3,
left rectangle), the second is Python-specifi c and defi ned in the
PyNEST source code (Figure 3, right rectangle).

We move the Python-specifi c conversion code from convert()
to a new function convert_me(), which is then called by the

FIGURE 2 | Sequence diagram showing the interaction between Python

and SLI. A call to the PyNEST high-level function Create() fi rst transmits
the model name to SLI using sli_run(). It is converted to the SLI type
literal by the interpreter (). Next, it pushes the number of nodes (10) to
SLI using sli_push(). The PyNEST low-level API converts the argument
to a SLI datum () and pushes it onto SLI’s operand stack. Next, it

executes appropriate SLI code to create the nodes of type iaf_neuron in
the simulation kernel. Finally it retrieves the results of the NEST
operations using sli_pop(), which converts the data back to a Python
object (). The result of the operation in SLI (the id of the last node created)
is used to create a list with the ids of all new nodes, which is returned to
Python.

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 12 | 6

Eppler et al. PyNEST: A convenient interface to NEST

interface function use_converter(). This function is now inde-
pendent of Python:

1 void
2 Datum::use_converter(DatumConverter& converter)
3 {
4 converter.convert_me(* this);
5 }

The function use_converter() is defi ned in the base class
Datum and inherited by all derived classes. It calls the convert_
me() function of converter that matches the type of the derived
Datum. NEST’s class DatumConverter is an abstract class that
defi nes a pure virtual function convert_me(T&) for each SLI
type T:

1 class DatumConverter
2 {
3 public:
4 virtual void convert_me(Datum&);
5 virtual void convert_me(DoubleDatum&)=0;
6 virtual void convert_me(DoubleVectorDatum&)=0;
7 //convert_me() function for other Datums
8 };

The Python-specifi c part of the conversion is encapsu-
lated in the class DatumToPythonConverter, which derives
from DatumConverter and implements the convert_me()
functions to actually convert the SLI types to Python objects.
DatumToPythonConverter::convert_me() takes a reference
to the Datum as an argument and is overloaded for each SLI type. It
stores the result of the conversion in the class variable py_object.
An example for the conversion of DoubleDatum is given in the
following listing:

1 void
2 DatumToPythonConverter::convert_me(
3 DoubleDatum& dd)
4 {
5 py_object = PyFloat_FromDouble(dd.get());
6 }

DatumToPythonConverter also provides the function con-
vert(), which converts a given Datum d to a Python object by
calling d.use_converter() with itself as an argument. It is used
in the implementation of sli_pop() (see in Figure 2). After the
call to use_converter(), the result of the conversion is available
in the member variable py_object, and is returned to the caller:

1 PyObject*
2 DatumToPythonConverter::convert(Datum& d)
3 {
4 d.use_converter(*this);
5 return py_object;
6 }

In the Computer Science literature, this method of decoupling
different parts of program code is called the acyclic visitor pattern
(Martin et al., 1998). Our implementation is based on Alexandrescu
(2001).

As an example, the diagram in Figure 4 illustrates the
sequence of events in sli_pop(): First, sli_pop() retrieves
a SLI Datum d from the operand stack (not shown). Second, it
creates an instance of DatumToPythonConverter and calls its
convert() function, which then passes itself as visitor to the
use_ converter() function of d. Datum::use_converter()
calls the DatumToPythonConverter’s convert_me() function
that matches the type of d. The function convert_me() then cre-
ates a new Python object from the data in d and stores it in the
DatumToPythonConverter’s member variable py_object,
which is returned to sli_pop().

NumPy support
To make PyNEST depend on NumPy only if it is available, we
use conditional compilation based on the preprocessor macro
HAVE_NUMPY, which is determined during the confi guration of
PyNEST prior to compilation. For example, the following listing
shows the implementation of the DatumToPythonConverter::
convert_me() function to convert homogeneous arrays of doubles
from SLI to Python. If NumPy is available during compilation, its

FIGURE 3 | Class diagram for the acyclic visitor pattern used to convert SLI

types to Python types. The left rectangle contains classes belonging
to NEST, the right rectangle contains classes that are part of PyNEST. All
SLI data types are derived from the base class Datum and inherit its function

use_converter(). The class DatumConverter is the base class of
DatumToPythonConverter. The actual data conversion is carried out in
one of DatumToPythonConverter’s convert_me() functions. Virtual
functions are typeset in italics.

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 12 | 7

Eppler et al. PyNEST: A convenient interface to NEST

 homogeneous array type is used to store the data. Without NumPy,
a Python list is used instead.

 1 void
 2 DatumToPythonConverter::convert_me(
 3 DoubleVectorDatum& d)
 4 {
 5 int dims = d->size();
 6 #ifdef HAVE_NUMPY
 7 PyArrayObject* array;
 8 array = (PyArrayObject*)
 9 PyArray_FromDims(1, &dims, PyArray_DOUBLE);
10 std::copy(d->begin(), d->end(),
11 (double*) array->data);
12 py_object = (PyObject*) array;
13 #else
14 py_object = PyList_New(dims);
15 for(int i=0; i<dims; i++)
16 PyList_SetItem(py_object, i,
17 PyFloat_FromDouble((*d)[i]));
18 #endif
19 }

ERROR HANDLING
Error handling in NEST is implemented using C++ exceptions
that are propagated up the calling hierarchy until a suitable error
handler catches them. In this section, we describe how we extend
this strategy to PyNEST.

PyNEST executes SLI code using sli_run() as described in the
Section “The PyNEST High-Level Interface”. However, the high-
level API does not call sli_run() directly, but rather through the
wrapper function catching_sr():

1 def catching_sr(cmd):
2 sli_run("{" + cmd + "} runprotected")
3 if not sli_pop(): #cmd caused an error

4 errorname = sli_pop()
5 commandname = sli_pop()
6 raise NESTError("NEST error: " +
7 errorname + " in " +
8 commandname)

In line 2, catching_sr() converts the command string cmd to
a SLI procedure by adding braces. It then calls the SLI command
runprotected (see listing below), which executes the procedure
in a stopped context (PostScript; Adobe Systems Inc., 1999). If an
error occurs, stopped leaves the name of the failed command on
the stack and returns true. In this case, runprotected extracts the
name of the error from SLI’s error dictionary, converts it to a string,
and puts it back on the operand stack, followed by false to indicate
the error condition to the caller. Otherwise, true is put on the stack.
In case of an error, catching_sr() uses both the name of the
command and the error to raise a Python exception (NESTError),
which can be handled by the user’s simulation code. The following
listing shows the implementation of runprotected:

 1 /runprotected
 2 {
 3 stopped dup
 4 {
 5 errordict /commandname get cvs
 6 % tell NEST that the error was handled
 7 errordict /newerror false put
 8 } if
 9 not
10 } def

Forwarding the original NEST errors to Python has the advan-
tage that PyNEST functions do not have to check their arguments,
because the underlying NEST functions already do. This makes the
code of the high-level API more readable, while at the same time,
errors are raised as Python exceptions without requiring additional

FIGURE 4 | Sequence diagram of the acyclic visitor pattern for data

conversion from SLI to Python. For the conversion of a SLI datum d, sli_
pop() creates an instance of DatumToPythonConverter. It then calls the
DatumToPythonConverter’s convert() function, which passes itself as a

visitor to the use_converter() function of d. Datum::use_converter()
calls the DatumToPythonConverter’s convert_me() function that matches
d’s type. convert_me() creates a new Python object from the data contained
in d. The new Python object is returned to sli_pop().

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 12 | 8

Eppler et al. PyNEST: A convenient interface to NEST

code. Moreover, this results in consistent error messages in NEST
and PyNEST.

DISCUSSION
The previous sections describe the usage and implementation of
PyNEST. Here we discuss consequences and limitations of the
PyNEST implementation.

PERFORMANCE
The use of PyNEST entails a certain computational overhead over
pure SLI-operated NEST. This overhead can be split into two main
components:

1. Call overhead because of using SLI over direct access to the
NEST kernel.

2. Data exchange between Python and NEST.

For most real-world simulations, the fi rst is negligible, since
the number of additional function calls is small. In practice, most
overhead is caused by the second component, which we can reduce
by minimizing the number of data conversions. For an illustration
of the technique, see the following two listings that both add up
a sequence of numbers in SLI. The fi rst creates the sequence of
numbers in Python, pushes them to SLI one after the other and
lets SLI add them. Executing it takes approx. 15 s on a laptop with
an Intel Core Duo processor at 1.83 GHz.

1 sli_push(0)
2 for i in range(1, 100001):
3 sli_push(i)
4 sli_run("add")

The second version computes the same result, but instead of
creating the sequence in Python, it is created in SLI:

1 sli_run("0 1 1 100000 { add } for")

Although Python loops are about twice as fast as SLI loops,
this version takes only 0.6 s, because of the reduced number of
data conversions and, to a minor extent, the repeated parsing of
the command string and the larger number of function calls in
the fi rst version.

The above technique is used in the implementation of the
PyNEST high-level API wherever possible. The same technique is
also applied for other loop-like commands (e.g. Map) that exist in
both interpreters. However, it is important to note that the total run
time of the simulation is often dominated by the actual creation and
update of nodes and synapses, and by event delivery. These tasks
take place inside of the optimized C++ code of NEST’s simulation
kernel, hence the choice between SLI or Python has no impact on
performance.

INDEPENDENCE
One of the design decisions for PyNEST was to keep NEST inde-
pendent of third-party software. This is important because NEST is
used on architectures, where Python is not available or only avail-
able as a minimal installation. Moreover, since NEST is a long term
project that has already seen several scripting languages and graph-
ics libraries coming and going, we do not want to introduce a hard
dependency on one or the other. The stand-alone version of NEST

can be compiled without any third-party libraries. Likewise, the
implementation of PyNEST does not depend on anything except
Python itself. The use of NumPy is recommended, but optional.
The binary part of the interface is written by hand and does not
depend on interface generators like SWIG (http://www.swig.
org) or third-party libraries like Boost.Python (http://www.
boost.org). In our opinion, this strategy is important for the
long-term sustainability of our scientifi c software.

EXTENSIBILITY
NEST can never provide all models and functions needed by every
researcher. Extensibility is hence important.

Due to the asymmetry of the PyNEST interface (see “Assymmetry
of the Interface”), neuron models, devices and synapse models
have to be implemented in C++, the language of the simulation
kernel. However, new analysis functions and connection routines
can be implemented in either Python, SLI or C++, depending on the
performance required and the skills of the user. The implementa-
tion in Python is easy, but performance may be limited. However,
this approach is safe, as the real functionality is performed by SLI
code, which is often well tested. To improve the performance, the
implementation can be translated to SLI. This requires knowledge
of SLI in addition to Python. Migrating the function down to the
C++ level yields the highest performance gain, but requires knowl-
edge of C++ and the internals of the simulation kernel.

Since the user can choose between three languages, it is easy to
extend PyNEST, while at the same time, it is possible to achieve
high performance if necessary. The hierarchy of languages also
provides abstraction layers, which make it possible to migrate
the implementation of a function between the different lan-
guages, without affecting user code. The intermediate layer of
SLI allows the decoupling of the development of the simula-
tion kernel from the development of the PyNEST API. This is
also helpful for developers of abstraction libraries like PyNN
(Davison et al., 2008), who only need limited knowledge of the
simulation kernel.

ASSYMMETRY OF THE INTERFACE
Our implementation of PyNEST is asymmetric in that SLI code
can be executed from Python, but NEST cannot respond, except for
error handling and data exchange. Although this is suffi cient to run
NEST simulations from within a Python session, it could be ben-
efi cial to allow NEST to execute Python code: The user of PyNEST
already knows the Python programming language, hence it might
be easier to extend NEST in Python rather than to modify the C++
code of the simulation kernel. SciPy, NumPy and other packages
provide well tested implementations of mathematical functions
and numerical algorithms. Together with callback functions, these
libraries would allow rapid prototyping of neuron and synapse
models or to initialize parameters of neuron models or synapses
according to complicated probability distributions: Python could
be the middleware between NEST’s simulation kernel and the
numerical package. Using online feedback from the simulation,
callback functions could also control simulations. Moreover, with a
symmetric interface and appropriate Python modules it would be
easier to add graphical user interfaces to NEST, along with online
display of observables, and experiment management.

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 12 | 9

Eppler et al. PyNEST: A convenient interface to NEST

Different implementations of the symmetric interface are pos-
sible: One option is to pass callback functions from Python to NEST.
Another option is to further exploit the idea that the “language is
the protocol”. In the same way as PyNEST generates SLI code, NEST
would emit code for Python. Already Harrison and McLennan
(1998) mention this technique, and in experimental implementa-
tions it was used successfully to symmetrically couple NEST with
Tcl/Tk (Diesmann and Gewaltig, 2002), Mathematica, Matlab and
IDL. The fact that none of these interfaces is still maintained con-
fi rms the conclusions of the Section “Independence”.

LANGUAGE CONSIDERATIONS
At present, PyNEST maps NEST’s capabilities to Python. Further
advances in the expressiveness of the language may be easier to
achieve at the level of Python or above (e.g. PyNN; Davison et al.,
2008) without a counterpart in SLI. An example for this is the sup-
port of units for physical quantities as available in SBML (Hucka
et al., 2002) or Brian (Goodman and Brette, 2008).

More generally, the development of simulation tools has not kept
up with the increasing complexity of network models. As a conse-
quence the reliable documentation of simulation studies is chal-
lenging and laboratories notoriously have diffi culties in reproducing
published results (Djurfeldt and Lansner, 2007). One component of
a solution is the ability to concisely formulate simulations in terms
of the neuroscientifi c problem domain like connection topologies
and probability distributions. At present little research has been car-
ried out on the particular design of such a language (Davison et al.,
2008; Nordlie et al., 2008), but a general purpose high-level language
interface to the simulation engine is a fi rst step towards this goal.

APPENDIX
A. PyNEST API REFERENCE
Models
Models(mtype="all", sel=None): Return a list of all available

models (nodes and synapses). Use mtype="nodes" to only see
node models, mtype="synapses" to only see synapse models.
sel can be a string, used to fi lter the result list and only return
models containing it.

GetDefaults(model): Return a dictionary with the default
parameters of the given model, specifi ed by a string.

SetDefaults(model, params): Set the default parameters of the
given model to the values specifi ed in the params dictionary.

GetStatus(model, keys=None): Return a dictionary with sta-
tus information for the given model. If keys is given, a value
is returned instead. keys may also be a list, in which case a list
of values is returned.

CopyModel(existing, new, params=None): Create a new
model by copying an existing one. Default parameters can be
given as params, or else are taken from existing.

Nodes
Create(model, n=1, params=None): Create n instances of type

model in the current subnetwork. Parameters for the new nodes
can be given as params (a single dictionary, or a list of dictionar-
ies with size n). If omitted, the model’s defaults are used.

GetStatus(nodes, keys=None): Return a list of parameter
dictionaries for the given list of nodes. If keys is given, a list

of values is returned instead. keys may also be a list, in which
case the returned list contains lists of values.

SetStatus(nodes, params, val=None): Set the parameters
of the given nodes to params, which may be a single diction-
ary, or a list of dictionaries of the same size as nodes. If val
is given, params has to be the name of a property, which is set
to val on the nodes. val can be a single value, or a list of the
same size as nodes.

Connections
Connect(pre, post, params=None, delay=None, model=

"static_synapse"): Make one-to-one connections of type
model between the nodes in pre and the nodes in post. pre
and post have to be lists of the same length. If params is given
(as a dictionary or as a list of dictionaries with the same size as
pre and post), they are used as parameters for the connections.
If params is given as a single fl oat, or as a list of fl oats of the
same size as pre and post, it is interpreted as weight. In this
case, delay also has to be given (as a fl oat, or as a list of fl oats
with the same size as pre and post).

ConvergentConnect(pre, post, weight=None, delay=None,
model="static_synapse"): Connect all nodes in pre to each
node in post with connections of type model. If weight is
given, delay also has to be given. Both can be specifi ed as a
fl oat, or as a list of fl oats with the same size as pre.

RandomConvergentConnect(pre, post, n, weight=None,
delay=None, model="static_synapse"): Connect n ran-
domly selected nodes from pre to each node in post with connec-
tions of type model. Presynaptic nodes are drawn independently
for each postsynaptic node. If weight is given, delay also has
to be given. Both can be specifi ed as a fl oat, or as a list of fl oats
of size n.

DivergentConnect(pre, post, weight=None, delay=None,
model="static_synapse"): Connect each node in pre to all
nodes in post with connections of type model. If weight is
given, delay also has to be given. Both can be specifi ed as a fl oat,
or as a list of fl oats with the same size as post.

RandomDivergentConnect(pre, post, n, weight=None,
delay=None, model="static_synapse"): Connect each
node in pre to n randomly selected nodes from post with con-
nections of type model. If weight is given, delay also has to
be given. Both can be specifi ed as a fl oat, or as a list of fl oats
of size n.

Structured networks
CurrentSubnet(): Return the id of the current subnetwork.
ChangeSubnet(subnet): Make subnet the current subnetwork.
GetLeaves(subnet): Return the ids of all nodes under subnet

that are not subnetworks.
GetNodes(subnet): Return the complete list of subnet’s children

(including subnetworks).
GetNetwork(subnet, depth): Return a nested list of subnet’s

children up to depth (including subnetworks).
LayoutNetwork(model, shape, label=None, customdict=

None): Create a subnetwork of shape shape that contains
nodes of type model. label is an optional name for the sub-
network. If present, customdict is set as custom dictionary of

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 12 | 10

Eppler et al. PyNEST: A convenient interface to NEST

the subnetwork, which can be used by the user to store custom
information.

BeginSubnet(label=None, customdict=None): Create a new
subnetwork and change into it. label is an optional name for
the subnetwork. If present, customdict is set as custom diction-
ary of the subnetwork, which can be used by the user to store
custom information.

EndSubnet(): Change to the parent subnetwork and return the
id of the subnetwork just left.

Simulation control
Simulate(t): Simulate the network for t milliseconds.
ResetKernel(): Reset the simulation kernel. This will destroy the

network as well as all custom models created with CopyModel().
The parameters of built-in models are reset to their defaults.
Calling this function is equivalent to restarting NEST.

ResetNetwork(): Reset all nodes and connections to the defaults
of their respective model.

SetKernelStatus(params): Set the parameters of the simula-
tion kernel to the ones given in params.

GetKernelStatus(): Return a dictionary with the parameters
of the simulation kernel.

PrintNetwork(depth=1, subnet=None): Print the network
tree up to depth, starting at subnet. If subnet is omitted, the
current subnetwork is used instead.

B. ADVANCED EXAMPLE
In the Section “Using PyNEST”, we introduced the main features
of PyNEST with a short example. This section contains a simula-
tion of a balanced random network of 10,000 excitatory and 2,500
inhibitory integrate-and-fi re neurons as described in Brunel (2000).
We start with importing the required modules.

1 from nest import *
2 import nest.raster_plot as plot
3 import time

We store the current time at the start of the simulation.

4 startbuild = time.time()

Next, we use SetKernelStatus() to set the temporal resolu-
tion for the simulation to 0.1 ms.

5 SetKernelStatus({"resolution": 0.1})

We defi ne variables for the simulation duration, the network
size and the number of neurons to be recorded.

6 simtime = 500.0 #[ms] Simulation time
7 NE = 10000 #number of exc. neurons
8 NI = 2500 #number of inh. neurons
9 N_rec = 50 #record from 50 neurons

The following are the parameters of the integrate-and-fi re neu-
ron that deviate from the defaults.

10 tauMem = 20.0 #[ms] membrane time constant
11 theta = 20.0 #[mV] threshold for firing
12 t_ref = 2.0 #[ms] refractory period
13 E_L = 0.0 #[mV] resting potential

The synaptic delay and weights and the number of afferent syn-
apses per neuron are assigned to variables. By choosing the relative

strength of inhibitory connections to be | J
in

 | / | J
ex

 | = g = 5.0, the
network is in the inhibition-dominated regime.

14 delay = 1.5 #[ms] synaptic delay
15 J_ex = 0.1 #[mV] exc. synaptic strength
16 g = 5.0 #ratio between inh. and exc.
17 J_in = −g*J_ex #[mV] inh. synaptic strength
18 epsilon = 0.1 #connection probability
19 CE = int(epsilon*NE) #exc. synapses/neuron
20 CI = int(epsilon*NI) #inh. synapses/neuron

To reproduce Figure 8C from Brunel (2000), we choose param-
eters for asynchronous, irregular fi ring: νθ denotes the external
Poisson rate which results in a mean free membrane potential equal
to the threshold. We set the rate of the external Poisson input to
ν

ext
 = ηνθ = 2νθ.

21 eta = 2.0 #fraction of ext. input
22 nu_th = theta/(J_ex*tauMem) #[kHz] ext. rate
23 nu_ext = eta*nu_th #[kHz] exc. ext. rate
24 p_rate = 1000.0*nu_ext #[Hz] ext. Poisson rate

In the next step we set up the populations of excitatory
(nodes_ex) and inhibitory (nodes_in) neurons. The neurons
of both pools have identical parameters, which are confi gured
for the model with SetDefaults(), before creating instances
with Create().

25 print "Creating network nodes …"
26 SetDefaults("iaf_psc_delta", {"C_m" : tauMem,
27 "tau_m": tauMem,
28 "t_ref": t_ref,
29 "E_L" : E_L,
30 "V_th" : theta})
31 nodes_ex = Create("iaf_psc_delta", NE)
32 nodes_in = Create("iaf_psc_delta", NI)
33 nodes = nodes_ex+nodes_in

Next, a Poisson spike generator (noise) is created and its
rate is set. We use it to provide external excitatory input to the
network.

34 noise = Create("poisson_generator",
35 params={"rate": p_rate})

The next paragraph creates the devices for recording spikes from
the excitatory and inhibitory population. The spike detectors are
confi gured to record the spike times and the id of the sending
neuron to a fi le.

36 SetDefaults("spike_detector", {"withtime": True,
37 "withgid" : True,
38 "to_file" : True})
39 espikes = Create("spike_detector")
40 ispikes = Create("spike_detector")

Next, we use CopyModel() to create copies of the synapse model
"static_synapse", which are used for the excitatory and inhibi-
tory connections.

41 SetDefaults("static_synapse", {"delay": delay})
42 CopyModel("static_synapse", "excitatory",
43 {"weight": J_ex})
44 CopyModel("static_synapse", "inhibitory",
45 {"weight": J_in})

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 12 | 11

Eppler et al. PyNEST: A convenient interface to NEST

The following code connects neurons and devices.
DivergentConnect() connects one source node with each of
the given target nodes and is used to connect the Poisson genera-
tor (noise) to the excitatory and the inhibitory neurons (nodes).
ConvergentConnect() is used to connect the fi rst N_rec excita-
tory and inhibitory neurons to the corresponding spike detectors.

46 print "Connecting network …"
47 DivergentConnect(noise, nodes,
48 model="excitatory")
49 ConvergentConnect(nodes_ex[:N_rec], espikes,
50 model="excitatory")
51 ConvergentConnect(nodes_in[:N_rec], ispikes,
52 model="excitatory")

The following lines connect the neurons with each other. The
function RandomConvergentConnect() draws CE presynaptic
neurons randomly from the given list (fi rst argument) and con-
nects them to each postsynaptic neuron (second argument). The
presynaptic neurons are drawn repeatedly and independent for
each postsynaptic neuron.

53 RandomConvergentConnect(nodes_ex, nodes, CE,
54 model="excitatory")
55 RandomConvergentConnect(nodes_in, nodes, CI,
56 model="inhibitory")

To calculate the duration of the network setup later, we again
store the current time.

57 endbuild = time.time()

We use Simulate() to run the simulation.

58 print "Simulating", simtime, "ms …"
59 Simulate(simtime)

Again, we store the time to calculate the runtime of the simula-
tion later.

60 endsimulate = time.time()

The following code calculates the mean fi ring rate of the excita-
tory and the inhibitory neurons, determines the total number of

synapses, and the time needed to set up the network and to simulate
it. The fi ring rates are calculated from the total number of events
received by the spike detectors. The total number of synapses is avail-
able from the status dictionary of the respective synapse models.

61 events_ex = GetStatus(espikes, "n_events")[0]
62 rate_ex = event_ex/simtime*1000.0/N_rec
63 events_in = GetStatus(ispikes, "n_events")[0]
64 rate_in = events_in/simtime*1000.0/N_rec
65 synapses_ex = GetStatus("excitatory",
66 "num_connections")
67 synapses_in = GetStatus("inhibitory",
68 "num_connections")
69 synapses = synapses_ex+synapses_in
70 build_time = endbuild−startbuild
71 sim_time = endsimulate−endbuild

The next lines print a summary with network and runtime
statistics.

72 print "Brunel network simulation using PyNEST:"
73 print "Number of neurons :", len(nodes)
74 print "Number of synapses:", synapses
75 print " Exitatory :", synapses_ex
76 print " Inhibitory :", synapses_in
77 print "Excitatory rate : %.2f Hz" % rate_ex
78 print "Inhibitory rate : %.2f Hz" % rate_in
79 print "Building time : %.2f s" % build_time
80 print "Simulation time : %.2f s" % sim_time

Finally, nest.raster_plot is used to visualize the spikes of the
N_rec selected excitatory neurons, similar to Figure 8C of Brunel
(2000).

81 plot.from_device(espikes, hist=True)

The resulting plot is shown in Figure 5 together with a transcript
of the simulation session. The simulation was run on a laptop with
an Intel Core Duo processor at 1.83 GHz and 1.5 GB of RAM.

ACKNOWLEDGMENTS
We are grateful to our colleagues in the NEST Initiative and the
FACETS project for stimulating discussions, in particular to Hans

A

jochen@winston:˜$ python brunel.py
NEST 1.9.7753 (C) 2008 The NEST Initiative
Creating network nodes ...
Connecting network ...
Simulating 500.0 ms ...
Brunel network simulation using PyNEST:
Number of neurons : 12500
Number of synapses: 15637600

Excitatory : 12512600
Inhibitory : 3125000

Excitatory rate : 31.52 Hz
Inhibitory rate : 31.96 Hz
Building time : 34.06 s

Simulation time : 78.88 s

B

FIGURE 5 | Results of the balanced random network simulation. (A) The
transcript of the simulation session shows the output during network setup and

the summary printed at the end of the simulation. (B) Spike raster (top) and
spike time histogram (bottom) of the N_rec recorded excitatory neurons.

Frontiers in Neuroinformatics www.frontiersin.org January 2009 | Volume 2 | Article 12 | 12

Eppler et al. PyNEST: A convenient interface to NEST

REFERENCES
Adobe Systems Inc. (1999). Postscript

Language Reference Manual, third
edn. Reading, MA, Addison-Wesley.

Aho, A. V., Sethi, R., and Ullman, J. D.
(1988). Compilers, Principles,
Techniques, and Tools. Reading, MA,
Addison-Wesley.

Alexandrescu, A. (2001). Modern C++
Design. Boston, Addison-Wesley.

Brunel, N. (2000). Dynamics of sparsely
connected networks of excitatory and
inhibitory spiking neurons. J. Comput.
Neurosci. 8, 183–208.

Davison, A., Brüderle, D., Eppler, J. M.,
Kremkow, J., Muller, E., Pecevski, D.,
Perrinet, L., and Yger, P. (2008).
PyNN: a common interface for
neuronal network simulators.
Front. Neuroinformatics 2. doi:
10.3389/neuro.11.011.2008.

Diesmann, M., and Gewaltig, M.-O. (2002).
NEST: an environment for neural sys-
tems simulations. In Forschung und
wisschenschaftliches Rechnen, Beitrage
zum Heinz-Billing-Preis 2001, Vol. 58
of GWDG-Bericht, T. Plesser and V.
Macho, eds (Gottingen, Ges. für Wiss.
Datenverarbeitung), pp. 43–70.

Djurfeldt, M., and Lansner, A. (2007).
Workshop report: 1st INCF workshop
on large-scale modeling of the nerv-
ous system. Nature Precedings, doi:
10.1038/npre.2007.262.1.

Dubois, P. F. (2007). Guest editor’s intro-
duction: Python: batteries included.
Comput. Sci. Eng. 9, 7–9.

Finkel, R. A. (1996). Advanced
Programming Languages. Menlo Park,
CA, Addison-Wesley.

Gewaltig, M.-O., and Diesmann, M.
(2007). NEST (Neural Simulation
Tool). Scholarpedia 2, 1430.

Goodman, D., and Brette, R. (2008). Brian:
a simulator for spiking neural networks
in Python. Front. Neuroinformatics 2.
doi: 10.3389/neuro.11.005.2008.

Harrison, M., and McLennan, M. (1998).
Effective Tcl/Tk Programming:
Writing Better Programs with Tcl and
Tk. Reading, MA, Addison-Wesley.

Hucka, M., Finney, A., Sauro, H. M.,
Bolouri, H., Doyle, J. C., Kitano, H.,
Arkin, A. P., Bornstein, B. J., Bray, D.,
Cornish-Bowden, A. et al. (2002). The
systems biology markup language
(SBML): a medium for representa-
tion and exchange of biochemical
network models. Bioinformatics 19,
524–531.

Lewis, B., and Berg, D. J. (1997).
Multithreaded Programming With
PThreads.Upper Saddle River: Sun
Microsystems Press.

Martin, R. C., Riehle, D., and Buschmann, F.
(eds) (1998). Pattern Languages of
Program Design 3. Reading, MA,
Addison-Wesley.

MathWorks (2002). MATLAB The
Language of Technical Computing:
Using MATLAB. Natick, MA, 3 Apple
Hill Drive.

McConnell, S. (2004). Code Complete:
A practical Handbook of Software

Construction. 2nd edn. Redmond,
WA, Microsoft Press.

Message Passing Interface Forum
(1994). MPI: A Message-Passing
Interface Standard. Technical Report
UT-CS-94-230.

Mor r i son, A . , Diesmann, M. ,
a n d G e r s t n e r, W. (2 0 0 8) .
Phenomenological models of synaptic
plasticity based on spike-timing. Biol.
Cybern. 98, 459–478.

Morrison, A., Mehring, C., Geisel, T.,
Aertsen, A., and Diesmann, M.
(2005). Advancing the boundaries of
high connectivity network simulation
with distributed computing. Neural
Comput. 17, 1776–1801.

Natschläger, T. (2003). CSIM: A Neural
Circuit SIMulator. Technical report.

Nordlie, E., Plesser, H. E., and Gewaltig, M.-
O. (2008). Towards reproducible
descriptions of neuronal network
models. Volume Conference Abstract:
Neuroinformatics 2008. doi: 10.3389/
conf.neuro.11.2008.01.086.

Ousterhout, J. K. (1994). Tcl and
the Tk Toolkit. Professional
Computing. Reading Massachusetts:
Addison-Wesley.

Plesser, H. E., Eppler, J. M., Morrison, A.,
Diesmann, M., and Gewaltig, M.-O.
(2007). Effi cient parallel simulation
of large-scale neuronal networks on
clusters of multiprocessor computers.
In Euro-Par 2007: Parallel Processing,
Volume 4641 of Lecture Notes in
Computer Science, A.-M. Kermarrec,

L. Bouge, and T. Priol, eds (Berlin,
Springer-Verlag), pp. 672–681.

Prechelt, L. (2000). An empirical compari-
son of seven programming languages.
COMPUTER 33, 23–29.

Stroustrup, B. (1997). The C++
Programming Language, 3rd edn.
New York, Addison-Wesely.

van Rossum, G. (2008). Python/C API
Reference Manual. Available at: http://
docs.python.org/api/api.html.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential confl ict
of interest.

Received: 14 September 2008; paper pend-
ing published: 29 September 2008; accepted:
30 December 2008; published online: 29
January 2009.
Citation: Eppler JM, Helias M,
Muller E, Diesmann M and Gewaltig
M-O (2009) PyNEST: a convenient
interface to the NEST simulator.
Front. Neuroinform. (2009) 2:12. doi:
10.3389/neuro.11.012.2008
Copyright © 2009 Eppler, Helias, Muller,
Diesmann and Gewaltig. This is an open-
access article subject to an exclusive license
agreement between the authors and the
Frontiers Research Foundation, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the
original authors and source are credited.

Ekkehard Plesser for drawing our attention to the visitor pat-
tern. Partially funded by DIP F1.2, BMBF Grant 01GQ0420 to the
Bernstein Center for Computational Neuroscience Freiburg, EU
Grant 15879 (FACETS), and “The Next-Generation Integrated

Simulation of Living Matter” project, part of the Development
and Use of the Next-Generation Supercomputer Project of the
Ministry of Education, Culture, Sports, Science and Technology
(MEXT) of Japan.

