
Frontiers in Neuroengineering www.frontiersin.org July 2009 | Volume 2 | Article 11 | 1

NEUROENGINEERING
ORIGINAL RESEARCH ARTICLE

published: 14 July 2009
doi: 10.3389/neuro.16.011.2009

Massively parallel signal processing using the graphics
processing unit for real-time brain–computer interface
feature extraction

J. Adam Wilson* and Justin C. Williams

Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA

The clock speeds of modern computer processors have nearly plateaued in the past 5 years.
Consequently, neural prosthetic systems that rely on processing large quantities of data in a short
period of time face a bottleneck, in that it may not be possible to process all of the data recorded
from an electrode array with high channel counts and bandwidth, such as electrocorticographic
grids or other implantable systems. Therefore, in this study a method of using the processing
capabilities of a graphics card [graphics processing unit (GPU)] was developed for real-time neural
signal processing of a brain–computer interface (BCI). The NVIDIA CUDA system was used to
offl oad processing to the GPU, which is capable of running many operations in parallel, potentially
greatly increasing the speed of existing algorithms. The BCI system records many channels
of data, which are processed and translated into a control signal, such as the movement of a
computer cursor. This signal processing chain involves computing a matrix–matrix multiplication
(i.e., a spatial fi lter), followed by calculating the power spectral density on every channel using
an auto-regressive method, and fi nally classifying appropriate features for control. In this
study, the fi rst two computationally intensive steps were implemented on the GPU, and the
speed was compared to both the current implementation and a central processing unit-based
implementation that uses multi-threading. Signifi cant performance gains were obtained with
GPU processing: the current implementation processed 1000 channels of 250 ms in 933 ms,
while the new GPU method took only 27 ms, an improvement of nearly 35 times.

Keywords: brain–computer interface, BCI2000, parallel processing, NVIDIA, CUDA

and the most common signal processing method is to calculate the
power spectra on several channels in “real-time,” or approximately
20–30 times per second. After including the other processing and
classifi cation steps, such as spatial fi ltering, the central processing
unit (CPU) in a computer may begin having trouble processing
large numbers of high-bandwidth signals quickly enough to main-
tain real-time capability.

As processor clock speeds have plateaued recently due to issues
with heat dissipation and the time required for transistors to accu-
mulate and dissipate charge, the primary method of achieving
increased performance has been found by adding cores to the proc-
essor in lieu of increasing the individual CPU speed itself (NVIDIA,
2008b). Each core is capable of executing an independent thread
of execution, allowing the operating system and individual pro-
grams to perform several tasks simultaneously on multiple “slower”
cores, instead of running several tasks sequentially on a single fast
core. Therefore, most commercially available processors currently
include at least two cores, and some have up to eight (e.g., the Mac
Pro with two quad-core CPUs). This emphasis on parallel process-
ing lends itself well to signal processing in BCIs, which can operate
on individual channels simultaneously to utilize multi-core tech-
nology. However, even in the best-case scenario in which all eight
cores are available to the BCI program, if it is necessary to operate
on 64+ channels, signifi cant portions of the processing chain will
be performed in series, not in parallel. As the channel count and

INTRODUCTION
The last 5 years has seen an increase in implantable electrode tech-
nology for brain–computer interfaces (BCIs) in humans (Felton
et al., 2007; Kim et al., 2008; Leuthardt et al., 2004; Schalk et al.,
2008b; Wilson et al., 2006), in particular the use of electrocortico-
graphic (ECoG) electrodes. From a signal processing and control
standpoint, ECoG is a superior choice for BCIs compared to elec-
troencephalogram (EEG), because the cortical signal sources are
much closer to the electrodes. This results in (1) a signal of higher
amplitude by several orders of magnitude, (2) increased spatial
resolution due to decreased blurring from volume conduction
through the tissue and bone surrounding the brain, and (3) a higher
frequency content in the signal. Standard EEG has amplitudes of
tens of µV, spatial resolution on the order of cm, and a frequency
bandwidth of 0–40 Hz, while ECoG has amplitudes of hundreds
of µV, a spatial resolution on the mm scale, and contains relevant
physiological information >200 Hz (Crone et al., 2006; Schalk et al.,
2008b; Wilson et al., 2006). Additionally, ECoG implants typically
contain 64 or more channels, increasing the potential amount of
information beyond what is possible with EEG.

The drawback to all of this information is what to do with it, or
more specifi cally how to do something with it. The higher band-
width necessitates a higher sampling frequency, often above 1 kHz.
ECoG-based BCIs use voluntary changes in the sensorimotor
rhythms (mu, beta, gamma, and high-gamma) as the control signal,

Edited by:

Michele Giugliano, Ecole Polytechnique
de Lausanne, Switzerland; University
of Antwerp, Belgium

Reviewed by:

Eleni Vasilaki, University of Sheffi eld,
UK; EPFL, Switzerland
Stephan Theiss, University of
Dusseldorf, Germany

*Correspondence:

J. Adam Wilson, Department of
Biomedical Engineering, University of
Wisconsin-Madison, 1550 Engineering
Drive, Madison, WI 53706, USA.
e-mail: jawilson@cae.wisc.edu

Wilson and Williams Parallel GPU BCI processing

Frontiers in Neuroengineering www.frontiersin.org July 2009 | Volume 2 | Article 11 | 2

sampling rates increase, and processing algorithms become more
complex, even eight cores may not be able to keep up for a real-
time system. In recent ECoG-based BCI studies, only a small subset
of channels are utilized for control (Leuthardt et al., 2004; Schalk
et al., 2008b; Wilson et al., 2006) , or long update periods (100 ms
or longer)are used to allow all data to be processed (Schalk et al.,
2008a). All of these examples would benefi t directly from methods
that increase the processing capabilities of the BCI system.

A few alternatives exist. The fi rst is to move the BCI system to
dedicated hardware that is capable of processing the data as needed.
The drawback to this is that it is often much more diffi cult to develop
and maintain a hardware-based solution, and it becomes much more
diffi cult to collaborate and compare data if a consistent platform
is unavailable. The alternative to hardware solutions is a generic
software solution, such as BCI2000 (Schalk et al., 2004), which
coordinates data acquisition from an amplifi er, signal processing,
and application output, all of which are run on a standard PC. The
disadvantage to using a PC for a high-speed BCI system is that the
BCI must compete with the operating system (e.g., Windows XP
or Vista) for system resources, and may be pre-empted by other
programs and processes for CPU time. BCI2000 is already a multi-
process system, in which all stages in the signal chain run simultane-
ously; however, it is limited by the number of cores available on the
machine, typically between 1 and 8. Until the number of cheaply
available cores increases beyond 8, or the CPU speeds increase, any
current PC-based solution will be limited by the number of channels
and the sampling rate that can effectively be processed.

This study introduces a parallel processing paradigm in which
the real-time signal processing algorithms are off-loaded from the
CPU to the graphics processing unit (GPU), typically on the video
card. Recently, the GPU chip manufacturer NVIDIA (Santa Clara,
CA, USA) introduced a software interface called CUDA (Compute
Unifi ed Device Architecture) that allows massively parallel algo-
rithms to be run on the video card GPU, which can contain dozens
to hundreds of cores. This API is written in the C programming
language, greatly simplifying the process of migrating existing
CPU-based code to run using CUDA. The goal of this study is to
measure the performance gains for different numbers of chan-
nels and samples processed using the CUDA system. Two algo-
rithms from BCI2000 were implemented using CUDA: the spatial
fi lter which performs a matrix multiplication of the neural data
in order to re-reference the incoming signals (e.g., a common-
average or Laplacian reference), and the power spectral estimate

for all channels, which is calculated using an auto-regressive (AR)
model. These results are compared to the BCI2000 single-threaded
algorithms, and CPU-based multi-threaded algorithms.

MATERIALS AND METHODS
COMPUTER
An 8-core Apple Mac Pro was used for all tests. This system con-
tains dual Intel Xeon quad-core processors, each with a clock speed
of 2.8 GHz; the system had 6 GB of RAM. CUDA is platform-
 independent, and runs on Windows, Macs, and Linux computers.
Experimental data was collected on this computer while running
Mac OS X 10.5.5, Windows XP SP3, and Linux Ubuntu 8.10, each
booted natively (i.e., virtualization software was not used).

VIDEO CARD
An NVIDIA 8800 GT video card was installed in a PCIe card slot.
This card contains 112 cores running at 900 MHz, has 512 MB
RAM, and can transfer up to 57.6 GB/s (NVIDIA, 2009). Version
2.1 of the CUDA software was used.

BCI SIGNAL PROCESSING
Any BCI system is comprised of several common elements, regardless
of the specifi c implementation and application. Neural signals are
acquired from an amplifi cation and digitization system, processed in
several stages to produce an appropriate control signal, which drives
the output device. The signal processing stages will vary depending on
the application, e.g., control of a virtual cursor or a spelling applica-
tion. In this study, we addressed algorithms specifi c to virtual cursor
control, which are generally the most computationally intensive, and
include a spatial fi lter, power spectral estimation, the linear combina-
tion of selected signal features to create the control signal output,
and normalization of the control signal to the desired output range
(Figure 1). Of these, the spatial fi lter and power estimation require
the most computational resources, both in terms of memory and
processing time. The fi nal three steps typically only require a few
operations, and would not benefi t signifi cantly from GPU-based
parallelization. Therefore, the goal of this study was to increase the
performance of the spatial fi lter and the power estimation algorithms
by designing parallel implementations to run both on multi-core
CPUs and on the graphics card via the CUDA interface.

The fi rst signal processing step, the spatial fi lter, relies on matrix
multiplication, which is often referred to as an “embarrassingly
parallel” problem (Foster, 1995). That is, any element of the output

Translation Algorithm

Spatial
Filtering

Feature Extraction

Temporal
Filtering Classifier

Normal-
izer

FIGURE 1 | The signal processing fl ow in any brain–computer interface. Data recorded from the brain is processed in two general steps, comprised of feature
extraction, which converts relevant brain features into an appropriate task-specifi c representation (e.g., frequency domain or time-domain average), and translation,
which converts the brain features into a control signal. This paper focuses on the feature extraction portion, which is the most computationally extensive.

Wilson and Williams Parallel GPU BCI processing

Frontiers in Neuroengineering www.frontiersin.org July 2009 | Volume 2 | Article 11 | 3

signal is independent of all other elements; thus, it is possible to
calculate each element in any order with very little synchronization,
which can slow processing.

The second processing step, which uses an AR algorithm to fi nd
model coeffi cients and subsequently the power spectral density,
does not present an immediate parallel solution because the proc-
ess contains several sequential steps which depend on previously
obtained values, and thus requires several synchronization points.
In BCI2000, the Burg AR method is used, because it always produces
stable coeffi cients (Andersen, 1978; Burg, 1975; Jansen et al., 1981;
Makhoul, 1975). Here, a recursive procedure is used in which the
model coeffi cients are re-estimated at each step, and with each itera-
tion, several inter-dependent values are calculated, a simple process
for serial processing within a single thread, but greatly complicated
with the introduction of many threads running at the same time.

The details for each algorithm implementation are provided
below, after an overview of GPU processing implementation.

GPU IMPLEMENTATION OVERVIEW
The parallel implementations for the algorithms presented are
dependent on the underlying hardware used for performing the
spatial fi lter and power spectra operations. While the methods used
for matrix multiplication and calculating the AR coeffi cients are
well-established (Press et al., 1999), it is not necessarily trivial to
port existing code intended to run on a single processor to run
in potentially thousands of threads simultaneously. Furthermore,
the graphics card architecture has a very different execution and
memory model than traditional CPU-based systems with which
most programmers are acquainted. Therefore, this section pro-
vides a general overview of the GPU device architecture, addressing
methods for optimizing threaded execution and memory access
on the graphics card. Detailed information on programming with
CUDA can be found in the NVIDIA CUDA Programming Guide
(NVIDIA, 2008b).

As a simple example, consider a parallel power estimation imple-
mentation in which a single thread does all of the calculations for

an individual channel; that is, the existing version of the algorithm,
designed to run on a single processor, is more or less copied to run
on the GPU with no changes. In this scenario, if one channel is
processed, then only one thread is used, if 10 channels are processed,
then 10 threads are used, etc. While this reduces the complexity of
the resulting implementation, it also greatly underutilizes the GPU,
which excels at performing many small tasks simultaneously, rather
than one large task sequentially. CUDA uses an execution architec-
ture called single-instruction, multiple-thread in which 32 threads
(termed a warp) execute the same instructions in parallel, until
either a synchronization point is reached, or the code branches in
a manner dependent on the particular thread executing the code.
Therefore, full effi ciency is achieved when 32 threads have the same
execution path, implying that a multiple of 32 number of threads
should be used for any operation, and that all threads should be
working at any given point in the code with minimal branching.

Groups of threads are organized into multi-dimensional com-
putational blocks, providing a way to arrange threads into larger
computational elements (Figure 2). For example, a single block
might contain 128 threads (a multiple of 32), and each thread in
the block would be responsible for operating on individual data
points in the algorithm. Thus, each block might be responsible
for performing an entire calculation on a data vector by utilizing
128 threads to perform the computation.

In addition to the threaded processing model, memory manage-
ment plays a crucial role in computational effi ciency. There are three
levels of memory spaces available to threads. At the lowest level
is the private local memory for each thread, in which temporary
variables are created for use in an individual thread, and are not
accessible outside of that thread. Next is the shared memory vis-
ible to all threads in a block, allowing many threads to work on the
same memory simultaneously. At the highest level is the global, or
device, memory, which is visible to all threads. It is most effi cient
to perform operations in shared memory, since it is located on the
chip, and only requires 4 clock cycles to issue an instruction in shared
memory; conversely, it can take between 400 and 600 clock cycles to

Block (0,0) Block (1,0) Block (J,0)...

Block (0,K) Block (1,K) Block (J,K)...

...

Private Memory

Shared Memory

Global Memory

Thread 0,0

Grid

Blocks

(0,0) (1,0) (M,0)...

(0,N) (1,N) (M,N)...

...

Block (0,0)

Threads

FIGURE 2 | The organization of threads and memory hierarchy. Individual
threads are organized into blocks, which are organized into a grid. Within a
block, an individual thread has a unique three-component index which
identifi es its position in the block; similarly each block has a three-component

index identifying its position in the grid. Each thread has a private local
memory accessible only to that thread; every block has shared memory
accessible to all threads in that block; and all threads can access global
memory.

Wilson and Williams Parallel GPU BCI processing

Frontiers in Neuroengineering www.frontiersin.org July 2009 | Volume 2 | Article 11 | 4

access global memory, which can signifi cantly slow down process-
ing times. Therefore, it is generally necessary to copy the required
segment of data from global memory to shared memory, perform
the calculations and store the result in shared memory, and copy
the result back to device memory at the end. The drawback to using
shared memory is that there is limited amount available per block
(up to 16384 bytes); therefore, operations on large data sets may
require accessing and writing to global memory several times during
execution, or operating primarily in global memory (Figure 2).

It is clear that the computational methods developed for the
single-thread model must be reconsidered to take advantage of the
massively parallel GPU architecture. New data parallel primitives
must be implemented and utilized in CUDA to effi ciently replace
serial algorithms. One such method is parallel reduction, which
is used to iterate over a data series and produce a result. A simple
problem that reduction can solve is the summation of many values
in a vector:

float s = 0;
for (int n = 0; n < N; n++)
 s += V[n];

While simple, this translates poorly to CUDA, because individual
elements of the vector can only be accessed by a single thread at
a time. Therefore, a better way to handle this problem is to use
reduction, in which all threads are active at once, each adding up
small pieces of the vector in shared memory. Using reduction it
is possible to reduce the complexity of a problem from a O(N)
operation to a O(log N) operation. Reduction is used in several
instances in the algorithms presented in this study, and although a
detailed discussion of reduction is beyond the scope of this paper,
it is provided (with examples) in the CUDA software development
kit (SDK) (NVIDIA, 2008b).

This brief introduction to GPU programming concepts provides
a basis for understanding the matrix multiplication and power spec-
tral estimation algorithms developed. The implementation details
for the spatial fi lter and power estimation follow, fi rst for CPU-
based multi-threaded systems, and then for the CUDA system.

SPATIAL FILTER OVERVIEW
In order to fairly compare GPU-based matrix–matrix multipli-
cation performance with a CPU-based implementation, a multi-
threaded version of the spatial fi lter algorithm was developed to
take advantage of modern multi-core processors.

Equation 1 shows the general equation for matrix–matrix
multiplication:

C = B × A (1)

where A is a C
in

 × S matrix, B is a C
out

 × C
in

 matrix, and C is a C
out

 × S
matrix, where S is the number of samples, C

in
 is the number of input

channels, and C
out

 is the number of resulting output channels. Then,
element C

ij
 of the output is:

C
C

i j
k

i k k j

in

B A,
=

, ,∑= ×
1

 (2)

If two matrices with dimensions of N × N are multiplied, then N3
operations are required to perform the multiplication. Therefore,

small increases in the number of elements can result in increasingly
large computation times. In BCI applications, the matrices are not
usually square: the signal matrix has dimensions of C

in
 × S, the spa-

tial fi lter matrix has dimensions of C
out

 × C
in

, and the output signal
has dimensions of C

out
 × S, requiring S × C

out
mesC

in
 operations to

complete. Typically S will be larger than C
in

 (e.g., 32 channels with
600 samples). Next, the following sections detail the multi-threaded
CPU and GPU-based spatial fi lter routines developed.

MULTI-THREADED (CPU) SPATIAL FILTER
Matrix–matrix multiplication is generally simple to implement
using parallel algorithms because it is “embarrassingly parallel,” in
that each output element is independent of all others, and requires
little synchronization or memory-sharing. Therefore, the goals of
the parallel matrix multiplication algorithm should be (1) to ensure
that the amount of work done by each thread is equal, so that one
thread does not fi nish before the others and waste computational
resources by doing nothing, and (2) to minimize the computational
overhead resulting from using threads.

The initial approach taken is to calculate each element of a loop
from the above code in a separate thread. For example, each thread
might calculate a single output sample and perform C

in
 × C

out
 oper-

ations. However, it is important to consider the number of CPU
cores available; if only two cores are available and 120 samples
requiring 120 threads are processed, the overhead required to create
each thread and switch between them will likely contribute signifi -
cantly to the total time required for the multiplication, particularly
if there are a small number of channels. Therefore, in the version
of the algorithm presented here, each thread calculates multiple
elements, where the number of elements processed in each thread
should be equal to the total number of elements divided by the
number of cores, as in Figure 3.

The general form of this algorithm is demonstrated here:

for (int s = TID; s < S; s += numThreads)
 for (int outCh = 0; outCh < Cout; outCh++){
 C[outCh][s] = 0;
 for (int inCh = 0; inCh < Cin; inCh++)
 C[outCh][s] += B[outCh][inCh]*A[inCh][s];
}

where TID is a number indicating the thread number, or thread-ID
(0 ≤ TID < numThreads), and numThreads is the total number of
threads used, which is typically equal to the number of CPU cores.

Samples

Cout

TID 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

FIGURE 3 | Threaded matrix multiplication. In this load-balanced example,
four threads each calculate four samples, for a total of 16 output samples. The
samples that thread 0 calculates are highlighted in gray.

Wilson and Williams Parallel GPU BCI processing

Frontiers in Neuroengineering www.frontiersin.org July 2009 | Volume 2 | Article 11 | 5

In the previous example with 2 CPU cores and 120 samples, each
thread would calculate the output for 60 samples, equally dividing
the processing load and minimizing thread overhead. Using this
paradigm, the load is balanced when the number of samples is a
multiple of the number of cores, i.e., S = k × numThreads. This is
illustrated by considering the case where instead of 2 cores, 8 cores
are used to process 100 samples. Here, 4 threads process 12 samples,
and 4 threads process 13 samples, resulting in an unequal load, the
effect of which is multiplied for a large number of channels. For
example, if there are 512 input and output channels, then 512 × 512,
or 262,144, additional operations will be performed on the cores
that run an extra iteration.

CUDA SPATIAL FILTER
The NVIDIA CUDA system includes an implementation of Basic
Linear Algebra Subprograms (BLAS) called CUBLAS, which pro-
vides a vector and matrix multiplication routines optimized for
GPU execution (NVIDIA, 2008a). The implementation details of
the BLAS libraries are largely hidden to the user; however, v2.0 of
the CUBLAS library incorporates methods presented in Volkov
and Demmel (2008), in which the authors presented matrix–
matrix multiply routines that run up to 60% faster that the v1.1
of CUBLAS. Depending on the matrix dimensions, it is possible to
obtain performance close to the theoretical maximum capabilities
of the GPU with the CUBLAS library.

AUTO-REGRESSIVE POWER ESTIMATION OVERVIEW
BCI2000 uses an AR model to estimate the sensorimotor rhythm
amplitudes for control. This model can be expressed as:

Y a Y et
i

i p

t i t i t= +
=

=

− −∑
1

 (3)

where Y
t
 is the predicted signal at time t, a is a vector of p coeffi -

cients, and e is the prediction error. a is a vector of estimated fi lter
coeffi cients for an all-pole model of order p, for which the power
spectrum is found as:

ˆ()

()

P e

a k e

j

k

r

p
jk

ω

ω

=
−

=

−∑

1

1

2

1

 (4)

The power P at a particular frequency ω is found using Eq. 4;
note that it is theoretically possible to fi nd the power at any arbi-
trary frequency and resolution, which is not possible with the FFT.
Several methods exist for solving for the a coeffi cients; BCI2000
employs the Maximum Entropy (or Burg) Method, which is always
guaranteed to produce a stable model (Cover and Thomas, 2006;
Fabiani et al., 2004; Krusienski et al., 2006).

BCI2000 calculates the power in adjacent bins of equal width,
generally between 1 and 5 Hz for EEG, and larger for ECoG. Within
each bin, the power is estimated at evenly spaced intervals and aver-
aged. For example, a 2-Hz bin from 10–12 Hz with 11 evaluations
would fi nd the power in 0.2 Hz intervals (Eq. 4):

10 12
10 0 2

12 2

1

1−
= , .

−

=

−= −∑ ∑
⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟⎟

ˆ ()P a k e
i

i

k

r

p
jk

ω

ω
 (5)

Thus, depending on the total frequency range and the bin width,
each channel will have a number of binned power spectrum ampli-
tudes, which are used as the control signal features in the subsequent
BCI2000 signal processing steps.

The method for calculating the AR coeffi cients is briefl y sum-
marized in this paper. The details can be found in Press et al. (1999),
and the source code is provided in the BCI2000 distribution. We
did, however, implement a more effi cient version of the algorithm
based on Andersen (1978) for all three computational methods
(BCI2000, CPU-threaded, and CUDA), which provided perform-
ance gains of more than 30% for larger data sets.

MULTI-THREADED (CPU) AUTO-REGRESSIVE POWER ESTIMATION
The CPU-based multi-threaded algorithm is identical to that found
in BCI2000 and in Press et al. (1999). Currently in BCI2000, the
power is calculated for each channel sequentially in a loop, and
does not take advantage of multi-core processors. Therefore, a
parallel method was developed in which the power is estimated
for a group of channels in individual threads, so that for T threads
and C channels, each thread calculates the power for C/T chan-
nels. For example, for C = 20 and T = 4, thread 0 will calculate
channels 1, 5, 9, 13, and 17, thread 1 will calculate 2, 6, 10, 14, and
18, etc. In the case that C is not a multiple of T, some threads will
calculate the power for one fewer channel, resulting in an imbal-
anced thread load.

CUDA AUTO-REGRESSIVE POWER ESTIMATION
The CUDA AR power estimation procedure is divided into two
distinct steps, which involves fi rst estimating the AR model coef-
fi cients, and then fi nding the binned average power. The theory
behind this algorithm is beyond the scope of this paper; discussions
of the algorithm can be found in Chen (1988), Makhoul (1975),
and Press et al. (1999). The general concepts for implementing the
AR algorithm on the GPU are presented here.

The form of the power spectrum is given in Eq. 4, in which a
p
 is

estimated using forward and backward recursion. Given the series
x

t
, the linear prediction estimate x̂t and error e

t
 are:

x̂ a xt
k

P

k t k= −
=

−∑
1

 (6)

e
t
 = x

t
 − x̂t (7)

Then, the forward and backward prediction errors at step p are
defi ned as:

e a xf t
p

k

P

k
p

t k,
=

−= ∑() ()

0

 (8)

e a xb t
p

k

P

p k
p

t k p,
=

− + −= ∑() ()

0
 (9)

The model is guaranteed to be stable and have minimum phase
by minimizing the average prediction power of the forward and
backward estimates (P

f,p
 and P

b,p
, respectively):

P
N p

e ef p
t

N p

f t
p

f t
p

,
=

−

, ,=
− ∑1

1()
 (10)

Wilson and Williams Parallel GPU BCI processing

Frontiers in Neuroengineering www.frontiersin.org July 2009 | Volume 2 | Article 11 | 6

P
N p

e eb p
t

N p

b t
p

b t
p

,
=

−

, ,=
− ∑1

1()
 (11)

P P Pp f p b p= . +, ,
⎛
⎝⎜

⎞
⎠⎟0 5 (12)

The prediction error is minimized by solving δP
p
/δa

p
 = 0 for

all values of p, giving:

a

e e

e e
p

t p

N

f t
p

b t
p

t p

N

f t
p

b t
p

=
−

+

= +
,
−

, −
−

= +
,
−

, −
−⎛

⎝
⎜
⎜

∑

∑

2
1

1
1

1

1

21 2

1
1 ⎞⎞

⎠
⎟
⎟

 (13)

With each iteration from 1 to p, a
p
 is recalculated based on the

forward and backward prediction errors at each step.
The original algorithm intended to execute on a single proces-

sor simply solved for the coeffi cients iteratively using for-loops,
e.g., for the k-th iteration, the numerator and the denominator of
Eq. 13 would be found as:

//ef = forward prediction error
//eb = backward prediction error
float num = 0.0, den = 0.0;
for (int j = 0; j < N-k; j++){
 num += ef[j]✶eb[j];
 den += ef[j]✶ef[j] + eb[j]✶eb[j];
}
a[k] = -2✶num/den;

However, as mentioned previously, it is ineffi cient to execute
loops like this on the GPU. Therefore, the reduction method is
employed in instances such as this to solve for the numerator and
denominator, so that each thread in a block calculates some small
portion of the sum instead of the entire sum. To do so, assume
that the ef and eb are of length N − k, and that a scratch buffer
named buf is available in shared memory with T elements, where
T is the number of available threads and is a power of 2. Then, to
fi nd the numerator, for example, each thread, having a thread ID
0 ≤ TID < T, executes the following code:

int pos = TID; // TID is the thread ID
buf[TID] = 0; //initialize the buffer to 0
while (pos < N-k){
 // add the square of the errors
 buf[TID] += ef[pos]✶eb[pos];
 // increment by the number of threads
 pos += numThreads;
}
// wait for all threads to finish
SynchronizeThreads();

//now, add all of the elements in buf
pos = numThreads/2;
while (pos >= 1){
 if (TID < pos){
 // add the element from the
 // other half of the buffer

 buf[TID] += buf[TID+pos];
 buf[TID+pos] = 0;
 }
 pos = pos/2;
}

Using this reduction framework, all of the summations and
iterations in the original Burg AR algorithm were ported to take
advantage of 100 s of threads running simultaneously. In fact, the
second half of the above code in which the elements of buf are
summed works for any such loop, and was therefore implemented
as a generic function used repeatedly throughout the algorithm. It
should also be noted that this section is not completely optimized
for the device architecture, but is instead presented for clarity of
the concept. A more effi cient method is used in the actual source
code, and is described in the Reduction example in the NVIDIA
CUDA SDK.

The program was confi gured so that a single block calculates
a single channel, regardless of the number of channels. For the
benchmarking procedure, the block used either 64 or 128 threads,
depending on which produced the faster time (see the Results
for details on this procedure). The algorithm uses several shared
memory buffers to hold the forward and backwards prediction
errors and other temporary buffers, the sizes of which are depend-
ent on the number of samples processed and the model order.
The total shared memory required for a single channel is equal to
[S × 3 × 4 + (M + 1) × 2 × 4 + 72] bytes, where S is the number of
samples and M is the model order. With a total of 16384 bytes of
shared memory per block, if an order 30 model is used, then at
most 1338 samples can be processed at a time. While somewhat
limiting, in practice this is equivalent to 278.75 ms of data sampled
at 4800 Hz, which is acceptable for most applications.

Once the a
p
 coeffi cients are found for each channel, the second

half of the AR algorithm uses them to calculate the power amplitude
at specifi c frequencies. In this case, the GPU computational grid is
confi gured in a two-dimensional array of blocks, where the rows
correspond to each channel, and the columns correspond to the
frequency bins for each channel. Within a block, the power in each
bin is calculated by E threads that evaluate the power spectrum at
E equally spaced locations, depending on the bin width and the
number of evaluations per bin. That is, each thread solves Eq. 4
for unique values of ω.

When all values of ω in a bin are evaluated, they are summed
using reduction, and divided by the number of evaluations per bin
to fi nd the average. This fi nal values for all channels and bins are
then transferred back to global device memory on the GPU, which
is then transferred from the GPU to the CPU, thus completing the
power calculation.

EXPERIMENTAL PROCEDURE
In a typical experiment, BCI2000 reads a block of neural data from
the amplifi er, and fi rst spatially fi lters the signal. The results of
the spatial fi lter are concatenated to the end of a buffer contain-
ing the values of the previous several blocks. Finally, the power
spectral estimate is calculated for the entire buffer. For example,
the duration of a sample block might be 50 ms with a buffer that
contains fi ve blocks of data (the current block plus the four previous

Wilson and Williams Parallel GPU BCI processing

Frontiers in Neuroengineering www.frontiersin.org July 2009 | Volume 2 | Article 11 | 7

blocks) for a total of 250 ms. The tests performed in this study
were designed to mimic realistic testing conditions; therefore, the
spatial fi lter is tested on 50 ms blocks of simulated neural data (i.e.,
a 10 Hz, 10 µV signal added to 2 µV white noise with a random
distribution) for three sampling rates (512, 2400, and 4800 Hz),
which is equivalent to sample sizes of approximately 25, 120, and
240 samples respectively. Similarly, since the power is found over
250 ms, the timing was found for sample sizes of 125, 600, and
1200 samples (250 ms at 512, 2400, and 4800 Hz, respectively).
A total of 19 different channel counts were tested, shown in Table 1.
During an actual experiment, the spatial fi lter may only produce
a subset of the output channels, e.g., only 8 channels out of 128
with relevant information might be spatially fi ltered (although all
128 channels are used for the calculation of each output channel),
and then passed to the power estimation. However, in all test cases
the number of output channels from the spatial fi lter equaled the
number of input channels, to estimate the maximum expected
processing time for a given confi guration. Every combination of
channel count (19) and sample count (3) was tested, for a total of
57 tests, and each test was repeated 100 times.

First, each test was performed using the original single-threaded
algorithms, the multi-threaded algorithms, and the CUDA algo-
rithms. An event timer with sub-ms resolution is provided by the
CUDA library for benchmarking purposes, which was started at
the beginning of each iteration of each test. This time includes the
data transfer to and from the video card for the CUDA test, which
can be a signifi cant portion of the overall processing time. For each
number of input samples, the processing times were compared for
the three computational methods. The speedup of each algorithm

was then found and compared across the number of samples by
fi nding the ratio of the processing times for two computational
methods, including single-threaded and multi-threaded, single-
threaded and CUDA, and multi-threaded and CUDA. Therefore, if
the ratio between two computational methods was >1, then second
algorithm was faster.

It is possible to select the number of threads the GPU uses for the
AR power estimate. Therefore, different numbers of threads were
tested for different numbers of input samples to determine whether
more threads is always better, as might be expected. The number
of threads tested was always a power of 2, starting at 16 threads up
to 256 (24 through 28). The number of samples tested ranged from
100 to 1200, in 100 sample increments. Only inputs of 128 channels
were tested. The minimum processing time for each sample count
was found for each number of threads.

Finally, the total overall combined processing times were meas-
ured. For the CPU multi-threaded and single-threaded methods,
this was simply the sum of the spatial fi lter and power estima-
tion times. For the CUDA method, two conditions were tested
to determine the effects of data transfer to and from the device.
In Figure 4, A shows the data path in which the GPU calculates
the spatial fi lter, transfers the data to the CPU then back to the
GPU to calculate the power. The total processing time for this
path includes two transfers to the GPU and two transfers from
the GPU, and is the sum of (t

1a
 − t

0
) and (t

3a
 − t

2a
). Conversely, in

B, the data remains on the GPU following the spatial fi lter, and is
passed directly to the power estimate; the processing time here is
found as (t

1b
 − t

0
). The memory address of the spatial fi lter result

persists in global GPU memory even after the function fi nishes;
therefore, the memory location can be passed to the power esti-
mation function without the need to transfer the data back and
forth in between functions.

The total processing times and processing speedup were then
compared as before. Additionally, the speedup for the total CUDA
processing time with and without intermediate data transfer was
compared. The mean processing times (µ), the standard deviation
(σ), coeffi cient of variation (100 × σ/µ), and maximum processing
times were found for each computational method to determine how
consistent the timing of each was over 1000 iterations. The methods
developed were tested on the Windows XP, Mac OS X, and Linux
Ubuntu 8.10 operating systems; however, the results given are for
those obtained with Windows, and any signifi cant OS-dependent
differences are noted as appropriate.

Table 1 | Test parameters.

Parameter Values

Samples (SF) 25, 120, 240

Samples (AR) 125, 600, 1200

Channels 1, 2, 4, 8, 16, 24, 32, 48, 64, 72, 96, 128, 256, 512,

 640, 768, 896, 1000

Test iterations 50

Threads (CUDA) 16, 32, 64, 128, 512

Threads (CPU) 8 (1 per 2.8 GHz core)

Tests CUDA, single-threaded, multi-threaded

CPU

GPU Power
Estimate

Spatial
Filter

Classification
Intermediate

Data
Transfer

B

A

t1a t2a t3a,t1bt0

FIGURE 4 | Two possible data transfer paths. (A) Following the spatial fi lter, data is transferred to the CPU before being transferred back to the GPU for the power
estimate. This incurs an additional overhead that can contribute signifi cantly to the overall processing time. (B) The data remains on the video card after spatial
fi ltering for the power estimation routine.

Wilson and Williams Parallel GPU BCI processing

Frontiers in Neuroengineering www.frontiersin.org July 2009 | Volume 2 | Article 11 | 8

RESULTS
SPATIAL FILTER
The spatial filtering times in µs are plotted in Figure 5A, and
the ratios of processing times for each method are shown in
Figure 5B for the three sample lengths tested. Regardless of
the number of samples, for a small number of channels the
single-threaded method out-performs the multi-threaded and
CUDA methods. The CUDA spatial filter performs better than
the single-threaded method after between 8 and 48 channels,
depending on the number of samples processed. When 1000
channels and 240 samples were tested, CUDA performs more
than 100 times faster (8 ms vs. 807 ms) than the single-threaded
method.

The CUDA version also out-performs the multi-threaded ver-
sion by at least 5×. For channel counts <8, the GPU performs about
10× faster than the CPU. However, between 8 and 100 channels, the
CPU performance increases to only 5× slower than GPU perform-
ance. Then, once the channel count surpasses 100 up to 1000, the
GPU performance jumps up to 25× faster than the CPU for 240
samples, and up to 15× for 120 and 25 samples.

AUTO-REGRESSIVE POWER ESTIMATION
Figure 6A shows the AR power estimation processing times in µs
vs. the number of channels for 125, 600, and 1200 samples, and

for the three computational methods. Figure 6B shows the ratio
of processing times for the three methods.

The multi-threaded CPU implementation out-performs the
single-threaded implementation when the number of channels is
equal to or greater than 3, 4, or 6 when 1200, 600, or 125 samples
are processed, respectively. The maximum speedup (7×) is approxi-
mately equal to the number of cores (8); however, the perform-
ance gain will never equal 8× due to the overhead associated with
threading.

Larger performance gains are seen with the CUDA implementa-
tion. Even when only a single channel is processed, the GPU method
is approximately equal to the single-thread performance (190 µs vs.
210 µs, respectively for 125 samples processed). When 1000 chan-
nels are processed, the performance gain is between 12 and 34 times,
depending on the number of samples processed.

When compared to multi-threaded CPU performance, the
CUDA method is generally at least twice as fast. However, there is
a performance plateau at about 2× when more than 128 channels
and 1200 samples are processed; when 1000 channels and 1200
samples are processed, the CUDA processing time is 27.51 ms, while
the multi-threaded time is 56 ms. This relationship holds as more
channels are added; e.g., when 2000 channels are processed (not
shown), the processing times are 54 and 115 ms, respectively, an
increase of more than 2.1×.

Channels

P
ro

c
Ti

m
e

(µ
s)

25 Samples

CPU (Single)
CPU (Threaded)
CUDA

120 Samples 240 Samples

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

Channels

S
pe

ed
up

Single/Threaded

25
120
240

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

Single/CUDA

10
0

10
1

10
2

10
3

5

10

15

20
25

Threaded/CUDA

A

B

10
0

10
2

10
4

10
6

10
0

10
2

10
4

10
6

10
0

10
2

10
4

10
6

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

FIGURE 5 | (A) The processing times for the single-threaded (dotted line), multi-
threaded (dashed line), and GPU (solid line) matrix multiplication algorithms for
time-series data with lengths of 25, 120, and 240 samples, which are equivalent
to 50 ms of data at 512, 2400, and 4800 Hz, respectively. (B) The ratios of matrix-
multiplication processing times for single-threaded to multi-threaded, single-
threaded to CUDA, and multi-threaded to CUDA implementations. The results

for input matrices with 25 (dotted line), 120 (dashed line), and 240 (solid line)
samples are shown. A value exceeding 1 indicates that the processing time for
the fi rst implementation in the ratio exceeds that of the second implementation
(e.g., if Single/Threaded >1, then the threaded version is faster). The spatial fi lter
is a square matrix with the number of rows and columns each equal to the
number of channels.

Wilson and Williams Parallel GPU BCI processing

Frontiers in Neuroengineering www.frontiersin.org July 2009 | Volume 2 | Article 11 | 9

This performance can be partially explained by Figures 7A,B,
which show the CUDA processing times vs. the number of threads
for different numbers of samples processed, from 100 to 1200 in
100-sample increments. Panel A shows that for smaller numbers of
samples processed (100–500 samples), processing using 64 threads
is more effi cient than 128 or 256 threads, while for a larger number

of samples (600–1200), 128 threads works fastest. In no case was
256 threads fastest.

Of particular importance is the large jump in time occurring
between 500 and 600 samples; this jump occurs when increasing
the sample count from 654 to 656, as shown in Figure 7B. This
sudden decrease in performance occurs due to the algorithm design

10
0

10
1

10
2

10
3

10
2

10
3

10
4

10
5

10
6

Channels

P
ro

c.
 T

im
e

(µ
s)

CPU (Single)
CPU (Threaded)
CUDA

10
0

10
1

10
2

10
3

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

0.1

0.5
1

5
10

30
50

Channels

S
pe

ed
up

Single/Threaded

128
600
1200

10
0

10
1

10
2

10
3

0.1

0.5
1

5
10

30
50

Single/CUDA

10
0

10
1

10
2

10
3

1

2

3

4
5
6

8
10

Threaded/CUDA

128 Samples 600 Samples 1200 SamplesA

B

256 512 768

10
20
30
40
50
60

(m
s)

FIGURE 6 | (A) The processing times for the single-threaded (dotted line), the
multi-threaded (dashed line), and CUDA (solid line) auto-regressive power
estimation algorithms for time-series data with lengths of 128, 600, and 1200
samples. For 1200 samples, the threaded processing time is 56 ms, while the
CUDA processing time is 24.21 ms, as shown in the blow-up graph. (B) The
ratios of power estimation processing times for single-threaded and

multi-threaded, single-threaded and CUDA, and multi-threaded and CUDA
implementations. The results for input matrices with 128 (dotted line), 600
(dashed line), and 1200 (solid line) samples are shown. A value exceeding 1
indicates that the processing time for the fi rst implementation in the ratio
exceeds that of the second implementation (e.g., if Single/Threaded >1, then
the threaded version is faster).

16 32 64 128 256
0

5

10

15

16 32 64 128 256
0

2

4

6

8

10

656
654

1200
100

A B

P
ro

c.
 T

im
e

(µ
s)

100 to 1200 Samples

Threads

650 to 660 Samples

Threads

FIGURE 7 | (A) Processing time using different numbers of threads with CUDA
for different data lengths from 100 to 1200, in 100-sample increments, and 128
input channels. A * indicates a minimum processing time. For shorter
data segments (e.g., 100–400 samples), a lower number of threads is more
effi cient, while for longer data segments (e.g., > 500 samples), an increased

number of threads results in a faster processing time. Up to 256 threads were
tested, but in no cases was 256 threads the most effi cient, showing that more
threads does not necessarily guarantee better performance. (B) When increasing
from 654 to 656 processed samples, there is a large jump in the processing time,
resulting from the way in which the data is loaded into memory on the GPU.

Wilson and Williams Parallel GPU BCI processing

Frontiers in Neuroengineering www.frontiersin.org July 2009 | Volume 2 | Article 11 | 10

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
4

10
5

10
6

Channels

P
ro

c.
 T

im
e

(µ
s)

128 Samples

CPU (Single)
CPU (Threaded)
CUDA

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
4

10
5

10
6

600 Samples

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
4

10
5

10
6

1200 Samples

10
0

10
1

10
2

10
3

10
-1

10
0

10
1

10
2

Channels

S
pe

ed
up

Single/Threaded

128
600
1200

10
0

10
1

10
2

10
3

10
-1

10
0

10
1

10
2

Single/CUDA

10
0

10
1

10
2

10
3

1

2

3
4
5
6
8

10

Threaded/CUDA

A

B

FIGURE 8 | (A) The combined spatial fi ltering and power estimation processing
times for single-threaded, threaded, and CUDA based implementations. The spatial
fi lter processed one-fi fth of the samples shown (i.e., 25, 120, and 240 samples),
while the AR algorithm estimated the power for the total length of data. The solid
horizontal line is at 50 ms, indicating the real-time performance threshold. (B) The

ratios of combined spatial fi ltering and power estimation processing times for
single-threaded and threaded, single-threaded and CUDA, and threaded and CUDA
implementations. A value exceeding 1 indicates that the processing time for the
fi rst implementation in the ratio exceeds that of the second implementation (e.g., if
Single/Threaded >1, then the threaded version is faster).

and how it interacts with the underlying hardware. As discussed
previously, the power is calculated on a channel-by-channel basis, in
which each channel is assigned to a processing block. A block runs
on an individual processor on the GPU, which has up to 16384 bytes
of shared memory available. If the block uses less than half of the
shared memory available (8192 bytes), then the memory transfers
for multiple blocks on a single processor can be hidden by the GPU;
that is, while one block is being processed, memory for the other
block can be pre-loaded into shared memory. However, if more
than half of the shared memory is used by a single block, then the
shared memory cannot be pre-loaded, and the processing time will
increase. Each channel requires [S × 3 × 4 + (M + 1) × 2 × 4 + 72]
bytes of memory, where S is the number of samples and M is the
model order. Therefore, for S = 654, M = 30, the shared memory
required is 8172 bytes, but if S = 654, M = 30, then 8196 bytes of
shared memory are required, thus reducing processing effi ciency.

TOTAL SPEEDUP
The total processing times and speedup for both the spatial fi lter
and power estimations are shown in Figure 8. In these plots, the
spatial fi lter processed 1/5 of the number of samples shown, e.g.,
when 125 samples are shown, then the spatial fi lter actually proc-
essed 25. This simulates the real-time BCI procedure, in which the
spatial fi lter is updated with every sample block (50 ms), and the
AR estimate processes fi ve blocks at a time (250 ms).

For the single and multi-threaded computational methods,
the total time is simply the sum of the processing times for each
individual step. For the CUDA method, summing the two values
produces an inaccurate estimate of the processing time, since it
would include the time required to transfer the result of the matrix
multiplication from the GPU to the CPU, then transfer it back to
the card for the AR algorithm to operate on it. Therefore, the CUDA
processing time is the correct estimate that does not include the
intermediate data transfer. Figure 9 shows the differences between
the CUDA processing times when the data transfer is included;
generally, the speedup if the extra transfer is removed is between
1.25 and 2 times faster.

Figure 8A shows the total processing time for the three methods.
As expected, the CUDA implementation outperforms the single-
threaded implementation by nearly two orders of magnitude for
large numbers of channels. The total processing time for 1000 chan-
nels with 1200 samples was 32 ms, compared to 933 ms for the sin-
gle-threaded version and 163 ms for the multi-threaded version.

The consistency of the timing is also an important considera-
tion. Table 2 shows some of the representative timing statistics for
each method. The mean (µ), standard deviation (σ), coeffi cient
of variation (C

v
), and the overall maximum times are shown for

several channel–sample count combinations. In a timing-critical
application such as a BCI, in which it is necessary to process all of
the data within a given time period (i.e., the sample block size),

Wilson and Williams Parallel GPU BCI processing

Frontiers in Neuroengineering www.frontiersin.org July 2009 | Volume 2 | Article 11 | 11

it is crucial not just that the mean processing time is less than the
critical-period, but that all processing times are less than the period.
Therefore, the standard deviation provides a measure of how much
the processing time will vary from block to block. Additionally, as
the number of processed elements increases, it is likely that the
variability in the processing times will increase as well, at least
on the CPU; C

v
 is the ratio σ/µ, and provides a method of ensur-

ing that the processing time variability scales well with the mean
processing times.

In Table 2, C
v
 is the largest for the multi-threaded methods,

which is not unexpected, since Windows runs many processes unre-
lated to the signal processing task concurrently. Therefore, if all
eight cores are used for calculating the power, there may be a delay
prior to a particular thread beginning, while the operating system
fi nished another task. In contrast, the single-thread version only
requires a single core, and is therefore less likely to be pre-empted,
resulting in less variation, even for long processing times.

For small processing times, CUDA has what seems to be a large
C

v
. In fact, this is primarily due to a small µ, which can skew the C

v

values. The timing variability remained small for small data sets;
as the processing time increased, C

v
 decreased, indicating that the

processing times are very consistent even for large data sets. This
corresponds with the fact that the OS does not preempt the GPU
as it does the CPU, and therefore the GPU can devote all of its
resources to the task.

DISCUSSION
Implantable neuroprosthetic electrode technology is continuing to
evolve by adding more recording sites and transmitting at higher
bandwidths, while increasingly complex neural feature extraction
and classifi cation algorithms are developed to improve perform-
ance. However, the current generation of computer hardware is
already being stretched to its limits by relatively low channel counts.
If real-time performance is defi ned as the ability to update the
feedback device at least every 50 ms (Schalk et al., 2004), then the
results in this study show that the current (single-threaded) version
of the signal processing routine is unable keep up when more than
100 channels are used.

Additionally, there are other system latencies present that will
also contribute to the overall time required to update the display,
including the time required to transfer data from the amplifi er to
the PC, additional signal processing latencies not addressed here
(e.g., collision detection in the cursor movement task), and the
output latency, which is the delay between when an output com-
mand is issued and when it actually happens. This depends on
the operating system, the video card (for video), and the monitor
type itself. In another study, methods were devised to measure
the latencies at each step in the signal processing chain in order to
model the expected latencies for a given task confi guration (Wilson
et al., submitted). Results from those tests indicate that the cur-
rent single-threaded version of BCI2000 would be able to process

10
0

10
1

10
2

10
3

10
3

10
4

10
5

10
1

10
2

10
3

10
1

10
2

10
3

1.25

1.5

1.75

2

125 Samples 600 Samples 1200 Samples

Channels

P
ro

c.
 T

im
e

(µ
s)

Speedup
CUDA+Mem
CUDA

Speedup

FIGURE 9 | Comparison of processing times in µs for combined spatial fi lter

and AR power estimates done with data transfer to and from the video card

in between processing steps (CUDA + Mem), and without data transfer. The

overall speedup by removing the intermediate data transfer is shown on the
Y-axis, and is generally 1.5 to 2 times faster. The graphs show the processing
times for data lengths of 125, 600, and 1200 samples, from left to right.

Table 2 | Timing consistency for CUDA, multi-threaded, and single-threaded execution for combined spatial fi ltering and power estimate. Times are

in ms. C is the number of channels, and S is the number of samples. Cv is the coeffi cient of variation, and is the ratio 100*σ/µ. The test was repeated 1000

times for all cases.

 CUDA Threaded Single

C, S µ (σ) C
v
 Max µ (σ) C

v
 Max µ (σ) C

v
 Max

8,125 0.20 (0.05) 25.68 0.55 1.09 (0.08) 6.96 1.38 0.59 (0.02) 2.99 0.68

8,1200 0.35 (0.06) 13.78 0.78 1.26 (0.07) 5.88 1.55 2.57 (0.04) 1.38 2.67

128,125 0.94 (0.04) 4.23 1.14 2.95 (0.24) 8.22 4.41 9.40 (0.21) 2.26 10.81

128,1200 3.33 (0.12) 3.02 3.84 8.59 (0.64) 7.49 13.96 38.80 (0.52) 1.33 42.73

1000,125 6.05 (0.13) 1.72 7.09 25.62 (1.74) 6.80 36.83 118.28 (4.18) 3.53 135.37

1000,1200 27.51 (0.42) 1.22 28.06 162.53 (5.86) 3.61 189.20 933.35 (18.87) 2.02 984.11

Wilson and Williams Parallel GPU BCI processing

Frontiers in Neuroengineering www.frontiersin.org July 2009 | Volume 2 | Article 11 | 12

approximately 36 channels of 2400 Hz data every 50 ms, including
all other aforementioned latencies. When the tests were run using
the CPU multi-threaded version, up to 220 channels were proc-
essed in under 50 ms, while the CUDA version supported more
than 500 channels.

In the tests shown here, the CPU-based multi-threaded algo-
rithms signifi cantly outperform the single-threaded versions,
begging the question of whether the work required to port
existing programs to run on the GPU is worth the benefi t. One
of the benefi ts of using a video card for computation is that it
is relatively cheap and simple to upgrade the video card when
new versions are released or if more performance is required.
Conversely, it requires much more work to upgrade the CPU;
the motherboard and RAM will likely need to be replaced, and
the operating system may need to be re-installed or re-activated
as well if Windows detects new hardware. Finally, the process-
ing power of video cards is progressing at a much faster rate
than CPUs. There are currently no consumer-level computers
commercially available with more than 8 cores, while the new
NVIDIA Tesla systems have more than 940 cores, compared to
<100 cores a year ago. Other current NVIDIA graphics cards with
240 cores and 896 MB RAM are available for approximately $200
(the GTX 275). This trend is likely to continue, increasing the
benefi t of using GPU computation. Another benefi t of using the
GPU for processing is that it obviates many of the benefi ts of a
real-time Linux system; since all of the processing is done on the
GPU and not the CPU, it is impossible for the OS to interrupt
or interfere with processing, as demonstrated in Table 2. Even
when large amounts of data were processed, the GPU process-
ing times have a very small standard deviation compared to the
single or multi-threaded CPU implementations. Therefore, it is
feasible to use a non-real-time OS, such as Windows, even for
time-critical applications.

Another consideration is the availability of powerful graphics
cards that are becoming available in portable laptop comput-
ers. For example, the 2009 models of the Macbook Pro laptops
from Apple have two NVIDIA cards installed. One of the cards is
intended for longer battery life and therefore has reduced process-
ing power, while the other is intended for graphics-intensive appli-
cations, and could be considered a desktop-replacement video
card. It is therefore possible to use the second card for processing
data, while the fi rst only has to handle the display updates. In
testing these new laptops, the processing power of graphics card

was found comparable to the 8-core Mac Pro using the CPU (data
not shown). For example, it required 154.34 ms to process 1000
channels sampled at 4800 Hz in 250 ms segments on the new
Macbook Pro graphics card, whereas the Mac Pro took 162.53 ms
to process the same data on the CPU. The implication is that
fully portable BCI systems with high-bandwidth, high-channel
count data are available in current-generation laptops, which are
signifi cantly less expensive than a stationary eight-core worksta-
tion, yet just as capable of processing large amounts of data. As
discussed, this trend is likely to continue in the foreseeable future:
the next generations of laptops will contain increasingly powerful
video cards, while simultaneously seeing little relative increases
in CPU power.

Finally, these processing methods introduce the possibility
of performing BCI algorithms which were once considered too
complex or intensive for real-time calculation, but otherwise are
very capable offl ine analysis tools (Chen et al., 2008; Delorme
and Makeig, 2004; Hu et al., 2005; Kim and Kim, 2003; Laubach,
2004; Letelier and Weber, 2000) . Feature extraction methods that
include neural networks, wavelet analysis, and independent or
principal component analysis could possibly be used in a real-
time environment, although these were not addressed in this
study. Furthermore, other types of data, such as neural spike data
recorded from microelectrodes (Hatsopoulos et al., 2005; Kipke
et al., 2003) or high-channel count microelectrode arrays with
neural cell cultures (Colicos and Syed, 2006), could be processed
on the computer, instead of on an expensive dedicated hardware
system.

In conclusion, the results from this study show that massively
parallel processing architectures currently available are capable of
improving the performance of BCI system by at least two orders
of magnitude with the algorithms tested. Other neural feature
extraction methods will also undoubtedly benefi t as well, and
because video cards are easily upgraded (at least in desktop sys-
tems), it is straightforward to scale processing needs for the desired
applications.

ACKNOWLEDGEMENTS
The authors would like to thank Profs. Dan Negrut and Erick
Oberstar in the Mechanical Engineering Department at the
University of Wisconsin for advice on programming with
CUDA, and Dr Gerwin Schalk at the Wadsworth Center (Albany,
NY, USA).

REFERENCES
Andersen, N. (1978). Comments on

the performance of maximum
entropy algorithms. Proc. IEEE 66,
1581–1582.

Burg, J. P. (1975). Maximum Entropy
Spectral Analysis. Ph.D. thesis,
Stanford University, Stanford, CA.

Chen, C. (1988). Signal Processing
Handbook. Boca Raton, FL, CRC
Press.

Chen, T.-C., Liu, W., and Chen, L.-G.
(2008). Vlsi architecture of leading
eigenvector generation for on-chip

principal component analysis spike
sorting system. Conf. Proc. IEEE Eng.
Med. Biol. Soc. 2008, 3192–3195.

Colicos, M., and Syed, N. (2006).
Neuronal networks and synaptic plas-
ticity: understanding complex system
dynamics by interfacing neurons with
silicon technologies. J. Exp. Biol. 209,
2312–2319.

Cover, T., and Thomas, J. (2006). Elements
of Information Theory. New York, NY,
John Wiley and Sons.

Crone, N. E., Sinai, A., and Korzeniewska, A.
(2006). High-frequency gamma

 oscillations and human brain map-
ping with electrocorticography. Prog.
Brain Res. 159, 275–295.

Delorme, A., and Makeig, S. (2004).
EEGLAB: an open source toolbox for
analysis of single-trial EEG dynamics
including independent component
analysis. J. Neurosci. Methods 134,
9–21.

Fabiani, G. E., McFarland, D. J.,
Wolpaw, J. R., and Pfurtscheller, G.
(2004). Conversion of EEG activity
into cursor movement by a brain–
computer interface (BCI). IEEE

Trans. Neural Syst. Rehabil. Eng. 12,
331–338.

Felton, E. A., Wilson, J. A., Williams, J. C.,
and Garell, P. C. (2007). Electrocortico-
graphically controlled brain– computer
interfaces using motor and sensory
imagery in patients with temporary
subdural electrode implants: report
of four cases. J. Neurosurg. 106,
495–500.

Foster, I. (1995). Designing and Building
Parallel Programs: Concepts and Tools
for Parallel Software Engineering.
Boston, MA, Addison-Wesley.

Wilson and Williams Parallel GPU BCI processing

Frontiers in Neuroengineering www.frontiersin.org July 2009 | Volume 2 | Article 11 | 13

Hatsopoulos, N., Mukand, J., Polykoff, G.,
Friehs, G., and Donoghue, J. (2005).
Cortically controlled brain–machine
interface. Conf. Proc. IEEE Eng. Med.
Biol. Soc. 7, 7660–7663.

Hu, J., Si, J., Olson, B. P., and He, J. (2005).
Feature detection in motor cortical
spikes by principal component analy-
sis. IEEE Trans. Neural Syst. Rehabil.
Eng. 13, 256–262.

Jansen, B. H., Bourne, J. R., and Ward, J. W.
(1981). Autoregressive estimation of
short segment spectra for computer-
ized EEG analysis. IEEE Trans. Biomed.
Eng. 28, 630–638.

Kim, K. H., and Kim, S. J. (2003). Method
for unsupervised classifi cation of mul-
tiunit neural signal recording under
low signal-to-noise ratio. IEEE Trans.
Biomed. Eng. 50, 421–431.

Kim, S.-P., Simeral, J. D., Hochberg, L. R.,
Donoghue, J. P., and Black, M. J.
(2008). Neural control of computer
cursor velocity by decoding motor
cortical spiking activity in humans
with tetraplegia. J. Neural Eng. 5,
455–476.

Kipke, D. R., Vetter, R. J., Williams, J. C.,
and Hetke, J. F. (2003). Silicon-sub-
strate intracortical microelectrode
arrays for long-term recording of neu-
ronal spike activity in cerebral cortex.
IEEE Trans. Neural Syst. Rehabil. Eng.
11, 151–155.

Krusienski, D., McFarland, D., and
Wolpaw, J. (2006). An evaluation
of autoregressive spectral estima-
tion model order for brain–com-
puter interface applications. Conf.
Proc. IEEE Eng. Med. Biol. Soc. 1,
1323–1326.

Laubach, M. (2004). Wavelet-based
processing of neuronal spike trains
prior to discriminant analysis.
J. Neurosci. Methods 134, 159–168.

Letelier, J. C., and Weber, P. P. (2000).
Spike sorting based on discrete wave-
let transform coeffi cients. J. Neurosci.
Methods 101, 93–106.

Leuthardt, E. C., Schalk, G., Wolpaw, J. R.,
Ojemann, J. G., and Moran, D. W.
(2004). A brain–computer interface
using electrocorticographic signals in
humans. J. Neural Eng. 1, 63–71.

Makhoul, J. (1975). Linear prediction:
a tutorial review. Proc. IEEE, 63,
561–580.

NVIDIA (2008a). CUDA CUBLAS Library,
2.0. Santa Clara, CA, NVIDIA.

NVIDIA (2008b). NVIDIA CUDA
Compute Unifi ed Device Architecture
Programming Guide, v. 2.0. Santa
Clara, CA, NVIDIA Inc.

NVIDIA (2009). NVIDIA GeForce 8
Series. URL: http://www.nvidia.com/
page/geforce8.html

Press, W. H., Teukolsky, S. A.,
Vetterling, W. T., and Flannery, B. P.

(1999). Numerical Recipes in C:
The Art of Scientific Computing.
Cambridge, MA, Cambridge
University Press.

Schalk, G., Leuthardt, E. C., Brunner, P.,
Ojemann, J. G., Gerhardt, L. A.,
and Wolpaw, J. R. (2008a). Real-
time detection of event-related brain
 activity. Neuroimage 43, 245–249.

Schalk , G. , McFar land, D. J. ,
Hinterberger, T., Birbaumer, N.,
and Wolpaw, J. R. (2004). BCI2000:
a general-purpose brain–computer
interface (BCI) system. IEEE Trans.
Biomed. Eng. 51, 1034–1043.

Schalk, G., Miller, K. J., Anderson, N. R.,
Wilson, J. A., Smyth, M. D.,
Ojemann, J. G., Moran, D. W.,
Wolpaw, J. R., and Leuthardt, E. C.
(2008b). Two-dimensional move-
ment control using electrocortico-
graphic signals in humans. J. Neural
Eng. 5, 75–84.

Volkov, V., and Demmel, J. (2008).
LU, QR and Cholesky factoriza-
tions using vector capabilities of
GPUs. Technical Report No. UCB/
EECS-2008-49. Berkeley, CA, EECS
Department, University of California,
Berkeley.

Wilson, J. A., Felton, E. A., Garell, P. C.,
Schalk, G., and Williams, J. C.
(2006). ECoG factors underly-
ing multimodal control of a

brain– computer interface. IEEE
Trans. Neural Syst. Rehabil. Eng. 14,
246–250.

Wilson, J. A., Mellinger, J., Schalk, G.,
and Williams, J. C. (submitted). A
procedure for measuring latencies
in brain–computer interfaces. IEEE
Trans. Biomed. Eng.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential confl ict
of interest.

Received: 27 April 2009; paper pend-
ing published: 18 June 2009; accepted:
24 June 2009; published online: 14 July
2009.
Citation: Wilson JA and Williams JC (2009)
Massively parallel signal processing using
the graphics processing unit for real-time
brain–computer interface feature extrac-
tion. Front. Neuroeng. (2009) 2:11. doi:
10.3389/neuro.16.011.2009
Copyright © 2009 Wilson and Williams.
This is an open-access article subject to
an exclusive license agreement between
the authors and the Frontiers Research
Foundation, which permits unrestricted
use, distribution, and reproduction in any
medium, provided the original authors and
source are credited.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

