
Frontiers in Neuroengineering www.frontiersin.org January 2010 | Volume 2 | Article 17 | 1

NEUROENGINEERING
METHODS ARTICLE

published: 20 January 2010
doi: 10.3389/neuro.16.017.2009

 supercomputer (IBM Blue Gene) with 10,000 processors to model a
rat neocortical column (one processor per neuron). Despite current
analytical and computational limitations, Henry Markram suggests
there will be suffi cient computational advances to model an entire
human brain within 10 years. With a ‘complete’ brain model, behav-
ioral complexity could be investigated through simulated interac-
tions with the environment. An alternative to this approach is to
directly investigate behavioral complexity by modeling the relation-
ship between behavior and brain subsystems (e.g. single neurons,
neural ensembles) in vivo. This modeling may be achieved in a
typical neurophysiology laboratory given simple models. Notice
that both of these approaches only address one area of complexity
(anatomical or behavioral).

Alternatively, it would be useful to provide increased compu-
tational capacity to facilitate real-time modeling of interactions
between multiple brain subsystems, learning, and behaviors. Such
interactions may provide insight into existing research questions
(e.g. hierarchical vs. connectionist organization) by revealing func-
tional relationships within the brain and between the brain and
external world. Recently, increased computation power has been
harnessed via a multi-core graphics processing unit for parallel

INTRODUCTION
In the last decade, there has been an explosion in the number of
models and amount of physiological data that can be obtained from
either basic neuroscience or computational neuroscience experi-
ments (Trappenberg, 2002; Purves et al., 2004). The data from these
experiments is beginning to be leveraged to address the problem of
reverse-engineering the brain (Markram, 2006). This process has been
identifi ed by the U.S. National Academy of Engineering as one of
the 21st Century’s great challenges for engineering and neuroscience
because it has the potential to: (1) impact human health by providing
a guide for repairing diseased neural tissue and (2) create innovation
in neuromorphic systems based on details of brain function. The chal-
lenge arises due to both anatomical and behavioral complexity. Human
brains contain approximately 1015 synapses connecting 1011 neurons
of different classes which are hierarchically self- organized across mul-
tiple temporal and spatial scales (Abeles, 1991). Furthermore, the
neuronal properties, structural networks, and functional networks
can adapt based on experience and learning.

A prominent project addressing anatomical complexity is
the Blue Brain Project which combines realistic neuron mod-
els (Markram, 2006). Currently, experimental data is fed to a

Cyber-workstation for computational neuroscience

Jack DiGiovanna1*, Prapaporn Rattanatamrong2, Ming Zhao3, Babak Mahmoudi4, Linda Hermer5,

Renato Figueiredo2, Jose C. Principe6, Jose Fortes2 and Justin C. Sanchez4

1 Neuroprosthetics Control Group, ETH Zurich, Switzerland
2 Advanced Computing & Information Systems Lab, University of Florida, Gainesville, FL, USA
3 School of Computing & Information Sciences, Florida International University, Miami, FL, USA
4 Neuroprosthetics Research Group, University of Florida, Gainesville, FL, USA
5 Department of Psychology, University of Florida, Gainesville, FL, USA
6 Computational NeuroEngineering Laboratory, University of Florida, Gainesville, FL, USA

A Cyber-Workstation (CW) to study in vivo, real-time interactions between computational
models and large-scale brain subsystems during behavioral experiments has been designed
and implemented. The design philosophy seeks to directly link the in vivo neurophysiology
laboratory with scalable computing resources to enable more sophisticated computational
neuroscience investigation. The architecture designed here allows scientists to develop new
models and integrate them with existing models (e.g. recursive least-squares regressor) by
specifying appropriate connections in a block-diagram. Then, adaptive middleware transparently
implements these user specifi cations using the full power of remote grid-computing hardware.
In effect, the middleware deploys an on-demand and fl exible neuroscience research test-bed to
provide the neurophysiology laboratory extensive computational power from an outside source.
The CW consolidates distributed software and hardware resources to support time-critical and/or
resource-demanding computing during data collection from behaving animals. This power and
fl exibility is important as experimental and theoretical neuroscience evolves based on insights
gained from data-intensive experiments, new technologies and engineering methodologies.
This paper describes briefl y the computational infrastructure and its most relevant components.
Each component is discussed within a systematic process of setting up an in vivo, neuroscience
experiment. Furthermore, a co-adaptive brain machine interface is implemented on the CW to
illustrate how this integrated computational and experimental platform can be used to study
systems neurophysiology and learning in a behavior task. We believe this implementation is
also the fi rst remote execution and adaptation of a brain-machine interface.

Keywords: cyber-workstation, distributed parallel processing, real-time computational neuroscience, brain-machine

interface

Edited by:

Michele Giugliano, Ecole Polytechnique
Federale De Lausanne, Switzerland;
University of Antwerpen, Belgium;
University of Antwerp, Belgium

Reviewed by:

Alessandro E. P. Villa, Université Joseph
Fourier Grenoble, France
Gediminas Luksys, Basel University,
Switzerland

*Correspondence:

Jack DiGiovanna, Neuroprosthesis
Control Group, Automatic Control Lab,
Physikstrasse 3, Zürich 8057,
Switzerland.
e-mail: digiovanna@control.ee.ethz.ch

Frontiers in Neuroengineering www.frontiersin.org January 2010 | Volume 2 | Article 17 | 2

DiGiovanna et al. Cyber-workstation for computational neuroscience

computations (Wilson and Williams, 2009). Additionally, the ability
for researchers to share (and improve) models has proven successful
in projects like BCI2000 (Schalk et al., 2004) and Physiome (Asai
et al., 2008). The Concierge platform at RIKEN provides central-
ized experimental results and analysis for researchers around the
world (Sakai et al., 2007). Here we aim to incorporate aspects of all
those systems into a modular, user-friendly workstation for in vivo
experiments. We further believe that information technology has
an important role to play in encapsulating many details of the labo-
ratory work – translating advanced computational neuroscience
methods into accessible tools for experimental neuroscience. The
Cyber-Workstation (CW) developed here was designed with those
philosophies in mind.

The CW provides a computational infrastructure for real-time
neural systems modeling and collection (and storage) of mul-
tiple channels of neural and environmental data during behav-
ior. Synchronous modeling and experimentation can provide a
window to functional aspects of neural systems that combine
sensory, cognitive, and motor processing while interacting with
dynamic environments. The CW allows a neuroscientist to expand
in vivo paradigms by providing as much computational power
as needed.

The CW was developed around and will be demonstrated via a
Co-Adaptive Brain-Machine Interface (CABMI). Brain-Machine
Interfaces (BMIs) generally create a model of a specifi c brain sub-
system’s (e.g. motor, parietal) interaction with the external world
(Sanchez and Principe, 2007) such that the BMI can decode user
intention to control a prosthetic. Co-adaptive BMIs go a step
 further by engaging both the user and a computer model to learn
to control a prosthetic’s movements based on interaction with
the environment (DiGiovanna et al., 2009). The CW is an ideal
platform for CABMI approaches which naturally require con-
current modeling and experimentation. Although neuroscience
encompasses many more topics than BMI; implementing a BMI
is a microcosm of the challenges in blending computational and
experimental neuroscience.

The next section specifi es system requirements for BMI research
and design choices given our available computational resources.
The section ‘Architecture’ describes the system architecture, how
the middleware interfaces the software and hardware, and the web-
portal user interface. The section ‘Evaluating the CyberWorkstation’

introduces BMI and overviews the CABMI used to demonstrate
some CW capabilities. The fi nal section discusses implications of
the CW for computational neuroscience.

FUNCTIONAL SYSTEM REQUIREMENTS
The practical embodiment of our CW consolidated soft-
ware and hardware resources across three collaborating labs:
Neuroprosthetics Research Group (NRG), Advanced Computing
and Information Systems (ACIS) Lab, and Computational
NeuroEngineering Laboratory (CNEL) at the University of
Florida. The CW enables neurophysiology researchers to setup,
carry out, monitor and review experiments locally that require
powerful remote online and/or offl ine data processing. The initial
design of the CW was centered around the development of BMIs
where neural activity was used to directly control the position of
a robotic (prosthetic) arm. The CW was designed to improve the
effi ciency and effi cacy of the typical workfl ow required by closed-
loop experiments. Specifi cally, several aspects of the workfl ow
can be automated, hidden or supported by a cyberinfrastructure
that exposes, through a single point of access, only the needed
functionality for a neuroscientist to conceptualize, conduct and
reason about an experiment. Figure 1 depicts a high-level view
of what such an infrastructure might consist of. Neural signals
are sampled from behaving animals at NRG and sent across the
network for computing. At ACIS (>500 m away from NRG), a
variety of computational models process these data on a pool
of servers; then results are aggregated and used to control robot
movement in real-time at NRG. The architecture of the CW
is described in the next section and has general applicability
beyond the specifi c environments of the ACIS, NRG and CNEL
laboratories.

Under the hood of such interface, middleware would be
 responsible for supporting:

• Real-time operations that scale with biological responses
(<100 ms)

• Parallel processing capability for many multi-input, multi-
output models

• Large memory capacity for neurophysiological data streams
and model parameterization

• Customizable signal processing models

FIGURE 1 | Infrastructure for execution of BMI experiments and online/offl ine analysis of data. Individual components (e.g. experiment management, parallel
computing) are discussed in the next section and Figure 2.

Frontiers in Neuroengineering www.frontiersin.org January 2010 | Volume 2 | Article 17 | 3

DiGiovanna et al. Cyber-workstation for computational neuroscience

• Data warehousing for large volumes of neural signals,
 experiment parameters, and computational results (e.g. pro-
sthetic movements)

• Integrated analysis platform for visualization of modeling and
physiological parameters

• Simple yet powerful user interfaces for scientists to manage
experiments

These application requirements arise from over three decades of
BMI research (Leuthardt et al., 2006; Hatsopoulos and Donoghue,
2009; Nicolelis and Lebedev, 2009). Prior BMI researchers have
exploited distributed local computation (Laubach et al., 2003;
Wilson and Williams, 2009) or controlled robots by sending con-
trol signals around the world (Fitzsimmons et al., 2009). However,
to our knowledge, the CW is the fi rst architecture to meet these
requirements through distributed, remote computing.

ARCHITECTURE
The CW architecture was designed to satisfy all of the application
requirements in the prior section. Researchers may combine exist-
ing models (e.g. a toolbox) and/or develop novel models via object
oriented programming constructs. These models are connected
in a block diagram and then adaptive middleware transparently
implements the specifi cations using the full power of the remote
hardware. In effect, the middleware deploys an on-demand neu-
roscience research test-bed that consolidates distributed software
and hardware resources to support time-critical and resource-
 demanding computing.

Multiple interacting and customizable components make it
 diffi cult to give a single ‘blueprint’ of the CW. However, the CW is
divided into four functional layers in Figure 2; these layers mirror
the key stages of the typical workfl ow (Sanchez and Principe, 2007)
of a BMI experiment:

• Access to experimental test-bed
• Model selection and composition
• Virtual resources request and reservation
• Run-time management of experiments

Each of these four stages is discussed in this section, fi rst in a
general context and then as embodied in our CW implementation.
Real-time system operation is achieved through the use of low-level
communication protocols and interfaces, use of parallel computing
to reduce computation times and careful optimization of mid-
dleware components in the critical path (closed loop in Figure 1).
These and other IT-related design and implementation details will
be reported elsewhere (Rattanatamrong et al., 2009).

ACCESS TO EXPERIMENTAL TEST-BED
This functionality enables neuroscientists to gain access to a physi-
cal system consisting of the subject and all devices needed to enable
and monitor subject-environment interaction. Necessarily, such a
system is specifi c to a class of experiments and may change over time
(e.g. subject specifi c differences). If a test-bed can be reused among
several researchers, ideally individual researchers could avoid the
overhead (time and cost) of interfacing and maintaining different

FIGURE 2 | Functional CyberWorkstation layers. The left side of each panel
represents entities/actions at a neurophysiology lab and the right side
represents their associated events at a computing lab. (A) Physical Access and
Setup: The CW is confi gured to communicate with the user’s specifi c recording
hardware and prosthetic. (B) Model Selection and Composition: The user
specifi es and connects models and, implicitly, necessary resources to run them.

(C) Virtual Resources Request and Reservation: The middleware transparently
allocates and confi gures computing resources and network links (black lines are
connected, gray lines not used). (D) Run-time Management: Ensures
experiment operates within expected timings and provides user-specifi ed
visualizations. Here the ‘real-time’ CW operation loop is shown by green
(outgoing) and red (returning) lines.

Frontiers in Neuroengineering www.frontiersin.org January 2010 | Volume 2 | Article 17 | 4

DiGiovanna et al. Cyber-workstation for computational neuroscience

components. Instead, it is desirable to allow researchers to specify
needed confi gurations without having to directly modify individual
components, each of which may have its own idiosyncratic pro-
gramming procedures.

The CW enables both the reuse of existing system components
and the ability to integrate with remote resources during experi-
ments through what we labeled as a physical layer (see Figure 2A).
This physical layer is transparent to the CW users but provides an
interface with data acquisition hardware and prosthetic devices.
This layer ensures that formatting conventions are respected and
network communication between the neurophysiology lab and
remote computational resources is stable and reliable. During
experimental design, the user must confi gure the physical layer,
i.e. specify the manufacturer and model number such that the
CW is aware of all hardware it should interact with. However, this
confi guration is kept at a block-diagram level. Next we provide an
example of basic interfacing in the physical layer and communica-
tion to the remote facility.

Data acquisition from neurophysiology hardware
In our physical layer, the CW was confi gured to sample neural sig-
nals from a multi-channel, digital signal-processing (DSP) device1.
The DSP contains buffers that store estimated fi ring rates from elec-
trodes implanted in behaving animals at the NRG laboratory. After
acquiring neural activity from the brain, the CW packs data into an
input data structure and sends it over the campus network to the
ACIS compute cluster. Our implementation sampled 32 electrodes
(up to 96 neurons on our DSPs) in 8.1 ms (see “Evaluation” section).
Expanding this to 256 neurons (assuming eight detected neurons
per electrode) with current Tucker-Davis Technologies components
would only double the necessary sampling (due to better compres-
sion). The theoretical maximum number of electrodes the CW
could support involves a tradeoff between other processes in the
computation budget and network transfer speed. We believe this
sampling time will scale linearly with the number of electrodes for
the range of array sizes used in current BMI studies (Hatsopoulos
and Donoghue, 2009).

Prosthetic control
The physical layer also must be confi gured to control the prosthetic.
At NRG the prosthetic was a robotic arm (Dynaservo, Markham,
ON, Canada) using four degrees of freedom. This robot accepts
both incremental and point-to-point types of movement commands.
Incremental control specifi es differential changes for each joint
of the robot arm, which must fi nish within a closed-loop cycle
(∼100 ms). Alternatively, point-to-point control specifi es absolute
endpoints but does not guarantee completion time. The CW could
seamlessly communicate with the robot in either mode (and switch
between modes) to exploit the advantages of each.

Communication to remote facilities
Once this layer is confi gured, it is necessary to communicate with
the remote compute cluster. A connectionless User Datagram
Protocol (RFC 768 Standard) socket was selected to provide low

latency communication between the data collection site (NRG)
and processing site (ACIS). This protocol provides lower over-
head for real-time operation at the expense of reliability. Data loss
and unexpected delay could happen at any time during the com-
munication over the campus network because of its unreliable
and shared nature; thus, reliable data transfer must be ensured
at the application level via middleware to support reliable and
real-time experiments. Middleware at the remote facility creates
a timeout if it is unlikely that computation results will be avail-
able in time to meet the deadline. A circular fi rst-in-fi rst-out
(FIFO) buffer is utilized to store newly acquired data samples
while retransmitting the previously failed results. The possible
delay between neural activity and robot action is limited by the
size of the buffer, which is adjustable based on model require-
ments and user preference.

MODEL SELECTION AND COMPOSITION
This functionality enables a computational neuroscientist to
choose and implement models on the basis of experimental goals.
These models may have components involving statistics and
machine learning (e.g. adaptive fi lters, neural networks, Hidden
Markov models, etc. (Trappenberg, 2002)). Desirably, an investiga-
tor should have access to a toolbox of models that could be instanti-
ated easily and composed as necessary to capture the architecture
of the neural system under investigation. The toolbox should be
easy to extend and share with different researchers. We provided
this toolbox in what we labeled an allocation layer (see Figure 2B).
It uses a template-based approach where a researcher can specify
his or her choices of modules for each part of the template. As
long as the modules satisfy pre-specifi ed interface requirements,
the components instantiated on the template are guaranteed to
communicate and interact correctly. In this layer, the user speci-
fi es data fl ow, model types, experiment priority, and visualization
parameters. Middleware infers the amount and type of resources
that need to be reserved to execute all the models to meet these
specifi cations. Additionally, it checks the software design in the
user-created models to ensure there are no logic violations with
respect to the expected interfaces. Next we provide more details of
basic confi guration in the allocation layer.

Data fl ow
Notice in Figure 2A that the local BMI Controller box, which coor-
dinates data acquisition, signal processing, model adaptation, and
prosthetic control, is grayed out. The CW makes that component
unnecessary in the neurophysiology lab; instead users specify
how neuro-physiological data will be processed (e.g. serially or
in parallel) at the remote facilities by creating a block diagram to
establish the data fl ow to/from computational models. Figure 2B
 illustrates possible connections with gray arrows and possible
parallel processing (of model sets) with gray planes. This allows
user fl exibility and also conveys explicitly what can be executed
concurrently in order to exploit the parallel computing capability
of remote machines. The data fl ow partially specifi es the over-
all complexity of the remote processing and can also be used to
implicitly identify further parallelism at a fi ner grain. The actual
models used in each block (e.g. Model A, B, or C) also contribute
to complexity and are discussed next.

1The NRG lab uses Tucker-Davis Technologies (Alachua, FL USA) devices; however,
the CW should generalize to any recording hardware with buffers that can be sam-
pled within experiment time limits (e.g. 25–100 ms).

Frontiers in Neuroengineering www.frontiersin.org January 2010 | Volume 2 | Article 17 | 5

DiGiovanna et al. Cyber-workstation for computational neuroscience

Model selection
After specifying the data fl ow, the user must also specify lower-level
processing, i.e. which computational models will be used for each
block. Here the user has the option to select from a toolbox of
established signal processing models (e.g. recursive least squares,
moving average). This toolbox is advantageous because the mod-
els will have been thoroughly error-checked and vetted by other
users. Alternatively, the user can upload custom C++ algorithms
for each block.

Visualizations
The user also specifi es which experimental variables will need to
be monitored during the actual experiment, i.e. at run-time. This
is also done in the block diagram (see Figure 2D). The user inserts
and connects a visualization block to an appropriate area to monitor
a variable. The user then specifi es which type of visualization (e.g.
trace, histogram, error rate) is appropriate.

Experiment priority and type
The fi nal decision is the experiment’s priority. The user informs the
CW what type of experiment they plan to run, i.e. online, real-time
analysis, or offl ine. An online experiment will run at the user’s lab
and has the highest priority – the CW must meet all user- specifi ed
deadlines. A real-time analysis experiment piggybacks onto a col-
laborator’s experiment, e.g. a user at the CNEL lab can run real-time
analysis of an online experiment at the NRG lab. An offl ine experi-
ment has the lowest priority because it does not have any hard
deadlines. Offl ine experiments are useful to try new signal process-
ing techniques on existing data.

VIRTUAL RESOURCES REQUEST AND RESERVATION
Computing BMI models in real-time often requires investigators to
properly structure their models into computational tasks that can
be executed concurrently and/or use models that have been previ-
ously optimized for parallel execution. These tasks then need to be
programmed and deployed on computers that could be dedicated
to the test bed or part of a shared computer facility that is usually
remote. In the latter case, researchers need to fi gure out the neces-
sary amount of resources, how to request and reserve them, how to
connect to these remote resources and how to submit tasks to (and
retrieve results from) them. Ideally, investigators should instead
only have to do high-level organization that relies on their domain
knowledge (i.e. specifi c connectivity and processing in the alloca-
tion layer) rather than having to refashion algorithms and making
sure that communications and computations take place properly on
available hardware, both of which require IT expertise. Depending
on the extent of the computational demands, the need for real-time
computation and the complexity of accessing remote resources, this
experimental stage can be rather complex and a signifi cant barrier
to the successful completion of an experiment.

We provided this functionality in what we labeled the con-
fi guration layer. This transparent layer includes middleware that
organizes and allocates virtual resources to the appropriate physi-
cal machines based on the needs specifi ed by the allocation layer.
An example of user design choices and middleware reservations
is shown using black arrows on the left and right side Figure 2C
respectively. The CW uses virtualization technology to create

 virtual machines (VM) and each VM can be customized with the
necessary execution environment, including operating system
and libraries, to support seamless deployment of a computational
model. Multiple models can run concurrently with dedicated
VMs, where resources are dynamically provisioned accord-
ing to model demands and timing requirements. Virtualization
provides effi cient utilization and isolation of resources (e.g. for
parallel computation).

Communication between different models is realized using the
Message Passing Interface (MPI). MPI allows communication with
both simplicity and portability across systems (Snir et al., 1995). The
integrity and consistency of data in the CW is protected through the
mechanisms available from communication channels. In addition,
we isolate data addition, modifi cation and deletion from different
users in the CW using a lock mechanism. Further improvement
via transaction-based consistency protocol is expected as the CW
becomes available to more users.

RUN-TIME MANAGEMENT OF EXPERIMENTS
After physical connection, confi guration, allocation the experi-
ment is ready to run. All data must properly collected and unan-
ticipated situations properly handled and documented. Beyond
collecting data, it is desirable to be able to graphically visualize
spatio- temporal data, critical measures, and control experimental
parameters (if necessary). The CW includes what we label a runtime
layer (see Figure 2D) to ensure all specifi cations are met.

At the compute cluster, control scripts are used to orchestrate
computation processes and communication among them. The
master process (blue server in Figure 2D) manages and distributes
data to other computers (worker processes) in the cluster (black
servers). The worker processes execute the user’s control scheme.
The control scheme comprises both computation of commands
from neural signal and continuous model adaptation. All model
set (black planes) results are aggregated at the master process and
sent back to NRG for prosthetic control. Model adaptation occurs
between neural commands.

Middleware monitors the elapsed time after sending out
neural data. The elapsed time includes the segments marked in
Figure 2D with green (outgoing) and red (incoming) arrows.
A timeout happens when it detects that it is unlikely to get the
computation results back (following the red path) in time to meet
the deadline (e.g. 100 ms). In a timeout, the middleware stores
the failed data sample in a circular fi rst-in-fi rst-out buffer, and
starts a new closed-loop cycle by polling the neurophysiology
hardware. During the new cycle, it queues the newly acquired
sample in the buffer and retries the transmission of the previously
failed sample. A delay between neural activity and robot action
will occur after this type of timeout. However, the acceptable
extent of this delay is adjustable based on model requirements
and user preference.

WEB PORTAL
The prior sections provided an abstract overview of the CW’s
functional architecture. Here we describe the Web-based portal2
where users actually interact with the CW. Through this portal,

2http://bmi.acis.ufl .edu/

2http://bmi.acis.ufl.edu/

Frontiers in Neuroengineering www.frontiersin.org January 2010 | Volume 2 | Article 17 | 6

DiGiovanna et al. Cyber-workstation for computational neuroscience

model API, into the CW’s collection via the integration portlet.
This portlet requires an XML (Sperberg-McQueen et al., 2008)
model specifi cation fi le (containing all information regarding
the model’s confi gurable parameters), sample input fi les, and
default parameter values; this information enables the experi-
ment manager portlet to automatically generate a model con-
fi guration interface for users.

A conceptual overview of visualization portlet is given in
Figure 4, it is a window to the CW’s run-time layer. The visuali-
zation portlet supports the monitoring of prosthetic and model
behavior via real-time video streaming. When the user terminates
the experiment (as scheduled or due to an emergency), they will not
lose any results. All details of the experiment can be downloaded
as one archived fi le and examined locally after the experiment is
ended. Also, users can perform extensive, remote analysis imme-
diately with the tools (e.g. Matlab) provided in the CW. Offl ine
and analysis experiments are confi gured similarly (Experiment
types detailed in the section ‘Experiment Priority and Type’). If
the user would like to adjust the model confi guration to study
alternative parameters or to improve performance, they can fi ne-
tune dynamic model parameters during the experiment in the
experiment management portlet.

EVALUATING THE CYBERWORKSTATION
The CW has been designed to meet seven specifi cations listed in the
section ‘Functional System Requirements’. In the prior sections, we
have developed an architecture that is powerful, fl exible, and user-
friendly. Here, we use an online BMI experiment to benchmark the

users can access the CW from anywhere with an Internet connec-
tion. Portal functionalities are provided via AJAX-based JSR-168
compliant portlets, which allow fl exible interface customization
and responsive, asynchronous content update. Users can confi gure
the portal environment to meet their needs. The main portlets
developed were model integration, experiment management,
and visualization.

Figure 3 illustrates how a user would interact with the web
portal to confi gure the allocation layer (see Model Selection and
Composition). After making all physical connections with the
CW (e.g. physical layer), the user should be able to interface with
all other CW layers through the Web portal. All input, output,
and confi guration data of this experiment are persistently stored
in the compute cluster, so users can retrieve data or replay the
experiment later. The experiment management portlet in the Web
portal handles the selection of motor control model sets and
model connectivity (i.e. allocation layer). It also ensures that any
custom models follow the CW’s model API. Model confi gura-
tion (e.g. static and dynamic parameters, initializations, etc.)
and visualization planning will also be performed in this port-
let. Additionally, users can fi ne-tune dynamic model parameters
on the fl y. Beyond the collection of models already provided in
the CW, users can add custom models, developed by the CW’s

FIGURE 4 | Conceptual interface with CW run-time layer.

FIGURE 3 | Flow diagram to confi gure allocation and confi guration layers

via the web portal. Orange shapes represent explicit actions the user makes
in the CW’s interface, while green shapes represent implicit actions (e.g.
decisions, modifi cations).

Frontiers in Neuroengineering www.frontiersin.org January 2010 | Volume 2 | Article 17 | 7

DiGiovanna et al. Cyber-workstation for computational neuroscience

TD learning is a boot-strapping method using future value estimates
to improve current estimates. TD learning is sensitive to the accu-
racy of Q because it assumes Q(s

t + 1
, a

t + 1
) is a good approximation

of R
t + 1

; hence, it may become unstable. However, TD methods
asymptotically converge to Q* (Sutton and Barto, 1998).

Q s a P Q s ass
a

ss
a

s

∗ γ ∗(,) (,)= + ′ ′⎡
⎣

⎤
⎦′ ′ ′

′
∑ R max

a

(4)

δ γt t t t t tr Q s a Q s a= + () − ()+ + +1 1 1, ,
 (5)

RL-based BMI (RLBMI)
We model the interaction of a paralyzed patient (i.e. user) with an
intelligent prosthetic controller (agent) to maneuver a robotic arm
to a target lever and press it (similar to reach and grasp) as a coop-
erative RL task (DiGiovanna et al., 2009). A RL framework is useful
for a BMI because it creates an agent that constantly learns from
interacting with the world without requiring a ‘desired’ (training)
signal (e.g. user movements). We assume relevant control features
(e.g. robot position, goal) will be detected by the user and affect the
user’s neuronal modulations. To achieve control, the agent must
learn both how to detect relevant neuronal states and, given the
state, evaluate each possible control action such that it can complete
tasks (i.e. earn reward).

Briefl y, rats had to use a BMI to maneuver a robot to one of
two possible targets (randomly selected). Rats were given cues (e.g.
lights, target position, robot position) for the task. In brain control,
the rat’s objective was to modulate neurons in primary motor cortex
to create a neural state. The agent’s objective was to perform value
function estimation on this neural state and select a robot control
action every 100 ms. If the agent and rat successfully maneuvered
(selected a sequence of actions) the robot endpoint proximal to a
target within 4.3 s, both were given a reward and the trial ended
successfully. Otherwise, the robot was reset to original position and
neither entity was rewarded. Important RL features:

• States: ensemble of neuronal fi ring rates
• Actions: robot endpoint motions (set of 26)
• Rewards: +1 proximal to correct target, else −0.01

Value function estimation
Neuronal state detection and value function estimation in the above
paradigm are both non-trivial tasks for the agent. The state was
(average) 60 dimensional (one fi ring rate or history per dimension)
which is intractable for familiar look-up table approaches (Sutton
and Barto, 1998). Instead, an adaptive projection transforms the
state into a subspace where segmentation is performed (DiGiovanna
et al., 2007). Specifi cally, a Multi-Layer Perceptron (MLP) both seg-
ments the state (in the hidden layer) and estimates the value Q (in
the output layer) as:

Q s s w wk t i t ij
i

jk
j

() =
⎛
⎝⎜

⎞
⎠⎟∑∑ tanh ,

(6)

Q is a function of state and weights (w) with i, j, and k index-
ing the state, hidden layer, and output layers respectively. An ε-
greedy policy typically selects the action corresponding to the
maximum Q

k
.

CW’s effectiveness in meeting each requirement. BMI architectures
and learning tasks are briefl y overviewed for context. Then we dem-
onstrate CW performance for each of the seven specifi cations.

BRAIN-MACHINE INTERFACES
Conceptually, a BMI learns an unknown mapping between neural
signals and some prosthetic output (e.g. cursor position, endpoint
velocity) to decode user ‘intent’. This mapping is typically initially
random but is adapted over time to minimize some error metric (e.g.
misalignment, failed trials). There are many BMI implementations
(e.g. linear regressors, population vectors, kernel methods, point
process models); each is tailored towards a particular application
(Schwartz et al., 2006; Sanchez and Principe, 2007; Hatsopoulos and
Donoghue, 2009). The CW’s fl exible architecture supports a variety
of BMI systems whether they use single models [e.g. Recursive
Least Squares (RLS)] or combinations of models (e.g. mixtures of
experts). We developed a BMI based on Reinforcement Learning
(RL) (DiGiovanna et al., 2009); in the next subsections we describe
RL, RL-based BMI, and the learning tasks. This BMI specifi cally
used real-time processing, limited parallel computation, ‘large’
memory capacity, and data warehousing capabilities of the CW.
Later, we also address how other CW abilities could be exploited.

Reinforcement learning
The RL paradigm involves an agent that learns to interact with an
environment in a fashion that maximizes future rewards (Sutton
and Barto, 1998). The agent environment interface is modeled as
a Markov Decision Process. Agent actions infl uence environmental
state and after completing an action, the environment may provide
a reward. The agent tries to maximize return R

t
 which is simply the

discounted (γ≤1) sum of rewards r
n
 for all future times n. Equation

1 shows that return is conditional on current state-action pairs. The
agent does not know whether selected actions were optimal as they
are executed. However, over time it can build an estimate of return
– a value function Q. These value functions (Eq. 2) are recursively
consistent such that Eq. 2 can be rearranged into Eq. 3 (please refer
to Sutton and Barto, 1998 for derivation). Given Eq. 3 the agent can
start with an initially random Q and learn the value function from
observations of states, actions, and rewards. If the agents learns the
optimal value function Q*, then it can always maximize reward by
taking actions which maximize Q*.

R r s s a at
k

k t
k

t= = =+ +
=

∞

∑γ t 1 | ,
0

(1)

Q s a E R s s a at t t(,) | ,= = =()
(2)

Q s a r Q s at t t t t(,) (,)= ++ + +1 1 1γ
 (3)

RL can provide an unbiased estimator of the Bellman Optimality
Equation (4) (Sutton and Barto, 1998) which can be solved if the
state transition Pss

a
′ and reward probabilities R ss

a are known and
stationary. In situations where these probabilities are unknown
and/or non-stationary (e.g. a BMI), RL methods can adapt the
value function (Eq. 3) towards the Q* based on temporal difference
(TD) error (Eq. 5) (TD error is created by rearranging the terms in
Eq. 3). Positive error indicates things are better than expected and
Q(s, a) should be increased, negative error indicates the opposite.

Frontiers in Neuroengineering www.frontiersin.org January 2010 | Volume 2 | Article 17 | 8

DiGiovanna et al. Cyber-workstation for computational neuroscience

There are two computational tasks created here, network ini-
tialization and adaptation. Initialization refers to rapid adaptation
of initially random MLP weights to estimate Q based on a sequence
of observed states, actions, and rewards. Here the mapping is non-
linear and contains many local minima. To increase the probability
of converging to a global minimum, multiple networks were cre-
ated and trained. Networks were adapted by back-propagation of
TD(λ) error (similar to TD error described above) as described
in (Sutton and Barto, 1998). Each network was trained for up to
1000 times (epochs). We initially did this offl ine due to compu-
tational limitations (speed and memory) in our local worksta-
tion. Initialization includes many adaptations; however, real-time
adaptation is challenge that cannot be addressed offl ine. After each
action (every step) the agent has a new state, action, and reward
observation; hence new error. Q(λ) learning can require up to 42
complete weight updates [see Real-Time Operation that Scale with
Biological Responses (<100 ms)] per time-step in this task. This
must be completed within 100 ms for adaptation and as soon as
possible for initialization.

EXPERIMENTAL SETUP
A series of both online and simulated RLBMI experiments was used
to benchmark CW performance. A 100-ms deadline was imposed on
each closed-loop control cycle, which consists of four phases: data
acquisition, network transfer, model computation, and robot control
(see Figure 2D). Neural signals (32 channels) were sampled through
a DSP device (online) or from offl ine data stores (simulated). The
data acquisition and robot control server (local) has dual 2.4 GHz
Xeon processors and runs Windows Server 2003. Remote computa-
tion was conducted on a cluster of VMware ESX server 3.0-based
VMs hosted on several dual 3.2 GHz Xeon servers. Each VM has
1 GB RAM and runs Ubuntu Linux 7.04. The experiment was sub-
mitted, controlled, and monitored locally via the Web portal.

EVALUATION
Real-time operation that scale with biological responses (<100 ms)
In an online RLBMI experiment with 8151 time steps (13 m 22 s),
99% of closed-loop control cycles were completed in less than
10 ms; 100% completed within 100 ms (Zhao et al., 2008). This
demonstrates the CW provides a high-performance computing
environment capable of real-time experiments including BMI
adaptation. Table 1 reports timing results in more detail, includ-
ing the statistics of the entire cycle time as well as individual phase
latency (see Figure 2D for labels).

The data acquisition phase is responsible for a majority of overall
variability in closed-loop operation time. Aquiring neural ensem-
ble fi ring rates from neurophysiology hardware requires 256 bytes

(8 bytes per electrode), which is trivial to transfer. However, prob-
lems arise because Windows Server 2003 is not a real-time operat-
ing system. Although we assign both real-time priority and stop
unnecessary services, the Windows Scheduler did not always allow
acquisition (or robot control) to start immediately.

The relatively large variance in model computation is related to
the specifi c algorithm used in this example. In Q(λ) learning, error
is back propagated through the MLP at each time step (similar to
other neural networks). However, this error includes an approxima-
tion of return (Eq. 1), which is not completely available at time t + 1
(details in Sutton and Barto, 1998). Instead the MLP was adapted
multiple times; increasingly often as trial length increased. For
example, a four-step trial has an average of 1.5 weight updates per
time step [(3 + 2 + 1)/4]. If the rat used the maximum trial length
(43 steps) then there were 21 average weight updates per time step.
Since the rat is free to maneuver the robot along any path (and trials
may not be successful), trial length and computation complexity
were variable.

Parallel processing capability for multi-input, multi-output models
In addition to closed-loop (online) mode, the CW excels in
offl ine BMI training. A modest example is shown in Figure 5
for the real world problem of RLBMI initialization (also com-
mon to other BMI). Specifi cally, value function estimation (see
Value Function Estimation) is not guaranteed to converge to a
global optimum, so multiple MLPs (planes in Figure 2) are ini-
tialized and trained to fi nd the best performer. The CW allocates
VMs to initialize and train each MLP. The CW outperforms local
computation if at least 2 VM (each training 18 MLPs) are used.
If 18 VM (each training 2 MLPs) are used, initialization time is
reduced by nearly a factor of 5. This creates the opportunity to
fully initialize (or re-initialize) the BMI with the CW between

0 5 10 15 20 25 30 35
400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

Number of Virtual Machines

C
o

m
p

u
ta

ti
o

n
 t

im
e

[s
]

RLBMI initialization time for Rat #3

CyberWorkstation
Local Processing

FIGURE 5 | Cyberworkstation performance as a function of number of

virtual machines used. The time required (error bars are standard deviation in
10 trials) to initialize a RLBMI using rat data from (DiGiovanna et al., 2009). The
CW is faster (mean) than the local computer (AMD Turion 64 X2 [1.8 GHz dual
core], 4 Gb RAM) when more than one VM is used (single VM time was
4883 ± 33 s). Additionally, the local computer is free for other processing tasks.

Table 1 | Timing statistics of an online RLBMI experiment.

Latency Average (ms) Stdev (ms)

Entire closed loop 12.58 12.77

Data acquisition 8.09 10.18

Network transfer 1.42 1.10

Model computation 0.37 2.60

Robot control 2.54 6.58

Frontiers in Neuroengineering www.frontiersin.org January 2010 | Volume 2 | Article 17 | 9

DiGiovanna et al. Cyber-workstation for computational neuroscience

normal trials3. This contrasts sharply with our prior solution of
offl ine batch training in (DiGiovanna et al., 2009) or the com-
mon practice of disjoint train and testing phases (Hatsopoulos
and Donoghue, 2009).

The CW provides the necessary computational performance
in experiments where scalability and code reusability are criti-
cal. A remote, resource-rich computing center makes it possi-
ble to provision the CW with large numbers of virtual/physical
machines. This removes resource impediments to the scaling
of models and data sets leaving only algorithm parallelization
constraints. Two interesting aspects of Figure 5 are that the CW
is slower than local processing when a single VM is used and
computation time increases from 18 to 36 VMs. Overheads in
virtualization, communication, resource sharing, parallelization
and middleware execution that are not present in a local compu-
ter cause the fi rst issue. Using only a single remote VM creates this
overhead without any of the benefi ts; hence, the local workstation
is faster. Using additional VM creates speed increases up to a
certain point (here >18) when the number of VMs becomes suf-
fi ciently large such that the communication and sharing behavior
(all VMs write to the same set of fi les) between VMs exceed
the computational savings gained from parallel computation of
RLBMI networks.

Large memory for neurophysiological data streams and model
parameterization
Brain-machine interfaces can present variable challenges to a cyber
workstation depending which models (or model sets) are being
employed. For example, a linear regression from neural signals
to hand position using least mean squares (common in BMI) has
complexity O(N) (where N is the number of neural inputs) for
each output dimension, D. If a designer wanted to use Gaussian
Processes to transform the neural data before fi ltering, they could
add another model but this would have complexity O(M3) where
M is the number of training samples. Neurophysiological data
often is repeatedly processed in a BMI; hence it may require large,
 dynamically allocated memory blocks that must scale with N and
time of control. Admittedly, RLBMI is parsimonious in parameters

relative to other BMI; we expect CW strengths will be better
 showcased by other BMI – some of which scale exponentially with
N or D.

Customizable signal processing models
The aspect of the CW with the greatest research potential is its
inherent fl exibility. Both data fl ow and signal processing are totally
customizable, e.g. in Figure 2B the CW user is presented with a
fully interconnected set of three processing models between the
input and output. Figure 2C shows how the user could confi gure
the data fl ow. Specifi cally, the input goes directly to Model A. Model
A has reciprocal connections with B and an outgoing connection
to C. Model C has outgoing connections to B and the BMI output.
The remaining gray arrows were not utilized. Additionally, the user
has selected multiple parallel BMI implementations that may or
may not have the same data fl ow as described above (the user can
customize each parallel implementation). The models (i.e. A, B, C)
in Figures 2B,C are customizable. Users can either select models
from an established model toolbox (e.g. least-squares, RLS) or create
their own models in C++ and upload them to the CW.

Model topology and confi guration will depend on the particular
task attempted. One interesting combination that could be applied
to a state-based controller (e.g. RLBMI) involves Gaussian Process
models (Deisenroth et al., 2009) to segment neural state, linear
fi lters to calculate state value, state/reward transition models to
estimate the future, models that aggregate learning from experience
and prediction, and fi nally inverse kinematics optimization models
to fi nd robot actuations that achieve selected actions. It may also be
useful to have a mixture of experts, which is parallel implementa-
tion of some of these models such that there is an expert (e.g. value
function estimator) for different areas of the state space. We are
actively pursuing this topic using the CW.

Integrated analysis platform for visualization of modeling and
physiological parameters
The CW also facilitates integrated analysis both for the local
(neurophysiology) lab and collaborators elsewhere. A conceptual
overview of this integration is shown in Figure 6 where local CW
users are running a standard experiment with a single visualization.
Additionally, collaborators are simultaneously analyzing (process-
ing represented by dashed lines) the same experiment. The remote
lab can perform additional analysis and communicate with the local
lab through an instant messaging client. This is advantageous for the

3For typical experiments, the minimum (average) inter-trial time was 1:06 [m:ss]
(2:12). Using 18 VMs (smaller network than Figure 5; local computation time was
15:33), the entire initialization time was 1:26. Given data, we could theoretically
train the networks quickly enough that the user may not notice the delay before
they were able to control the prosthetic.

:- $(1.-;15-)7$

!171/%8%75
9)7$).%

0!1$2!, 34.*'()(,-./ "7$5175<!%$$1/-7/
NRG: What is
 neuron 33 doing?
CNEL: High
sensitivity in
 all model s
NRG: fantastic!

FIGURE 6 | Integrated analysis platform for real-time modeling and collaboration.

Frontiers in Neuroengineering www.frontiersin.org January 2010 | Volume 2 | Article 17 | 10

DiGiovanna et al. Cyber-workstation for computational neuroscience

It is often the case that data from BMI or general neuroscience
experiments are used for follow-up studies which require access to
the experimental data according to specifi c formats and execution
of processing tasks to analyze, mine, or identify patterns of interest
in the data. One hour of experiments can easily generate gigabytes
of data. The CW securely preserves this data in persistent storage,
yet keeps it easily available for online processing and visualiza-
tion. Additionally, analysis code can be centrally stored to ensure
reported results are reproducible.

The CW provides the necessary resources for future studies
including models to estimate future neural states, environmental
rewards, and user’s internal reward (Mahmoudi et al., 2009). This
modifi cation would allow a BMI to learn from both experience
(DiGiovanna et al., 2009) and model prediction of possible environ-
mental interactions; thus facilitating faster learning. Additionally,
fi nding explicit functional relationships between brain states,
prosthetic actions, and rewards could provide insight into how
the different brain areas process and share information. Even bio-
logically reduced models (reductionist approach) can be analyzed
to reveal features (e.g. parameter sensitivity, hidden states) which
correspond to neural or behavioral decision variables (Corrado
and Doya, 2007).

The capability to include extra models is also useful for prosthetic
control, specifi cally for fi nding differential commands for each
robot joint based on predicted endpoint positions. Determining
appropriate commands requires inverse kinematics, but this calcu-
lation for a redundant four degree-of-freedom robot (non-unique
endpoint to joint angles mapping) does not have a closed form solu-
tion (Craig, 1989). Joint angles can be found via optimization, but
it is not guaranteed to fi nd a feasible solution. Error checking and
repeated optimizations consume the computing budget. Parallel
computation increases the probability of at least one feasible solu-
tion in minimal time.

The CW does face a number of possible limitations. The major
impediment is that researchers have developed their own mod-
els and are not able to devote resources to convert them to C++
compatible with the CW’s API. This could limit both the number
of available models in the toolbox and number of CW users (to
refi ne said models). Future CW development may expand sup-
port for models written in other languages (e.g. Matlab, Python);
however, CW adoption may be too time consuming for some
labs. Modeling fl exibility could be helpful for users who do use
the CW; however, middleware is only responsible for checking
that users’ code includes a set of data structures for communica-
tion – there is no check whether the code works. Users will need
to validate models on similar processing architectures before
uploading them to the CW. Additionally, transmitting neuro-
physiological data from animals or humans across the Internet
could raise privacy and security concerns [e.g. compliance with
Health Insurance Portability and Accountability Act (HIPAA)
laws]. Finally, real-time communication cannot be guaranteed
for arbitrary Internet connections whose communication laten-
cies are excessive.

Overall, this solution for distributed BMIs could lay the ground
for scalable middleware techniques that, in the long run, can sup-
port increasingly elaborate neurophysiologic research test beds in
which subjects can carry out more complex tasks. These advanced

local lab because they get feedback and assistance from the remote
lab. The remote lab can implement advanced analysis metrics and
even alternative models without causing the local lab to divert their
own attention from ensuring the BMI user’s safety, the prosthetic
function, and their own analysis. If the remote lab develops a model
that exhibits better performance (prosthetic control), then ideally
their model could be selected and put online locally. The remote
lab also benefi ts because they are given access to a closed-loop
experiment without having to invest in access to BMI users and
neurophysiology hardware.

Data warehousing
The CW also provides vast data warehousing capability. Before
the CW, computational neuroscience experiments at the NRG lab
generated 1–2 Gb of data per hour. Storage was scaled via external
hard drives; however, drive failures could be catastrophic, switching
between users required switching drives, and these drives were not
easily incorporated into a data back-up system. The CW simplifi es
and centralizes this storage to a Redundant Array of Inexpensive
Disks (RAID) high-capacity storage server in the ACIS lab.

Simple user interfaces
As previously described in the section ‘Architecture’, the CW was
designed with a focus on creating a simple and user-friendly inter-
face to allow BMI developers to focus on research instead of low-
level technical details. In order to use available models in the CW,
the user does not need to know the specifi c details of the models;
he or she only needs to understand the concepts. Help is provided
via in-line mouse-over tips to be able to work with the models in
short amount of time. The user interface also integrates multiple
terminals (portlets) while conducting online experiments to give
users a unifi ed control interface.

CONCLUSION
We have developed here a new framework to seamlessly bridge com-
putational resources with in vivo experiments to better study the func-
tional aspects of brain systems operating in dynamic environments.
Online and offl ine BMI experiments execute in a closed-loop man-
ner that includes in vivo (for online experiments) data acquisition,
reliable network transfer, parallel model computation, and real-time
robot control. Scientists can conveniently deploy their algorithms and
control structures on the cyber-infrastructure and conduct research
through its Web portal. We have shown proof of concept that BMI
control schemes (specifi cally RLS and RLBMI) could be implemented
and tested on the CW. Additionally; we demonstrated that the CW
met each requirement on the BMI designer’s wish list.

This CW potentially dissolves analysis barriers in neurophysiol-
ogy laboratories while further systematizing both experimental and
computational neurophysiological investigations. The CW achieves
this functionality by linking available hardware with user-friendly
software architecture via a powerful middleware layer that man-
ages their interaction. This novel integration approach makes the
CW powerful and customizable but also hides complexity with
easy-to-use interfaces for users to conduct research. This simple
interface makes the CW accessible to a variety of users, e.g. scien-
tists, engineers, and clinicians. We hope this accessibility catalyzes
collaborative research.

Frontiers in Neuroengineering www.frontiersin.org January 2010 | Volume 2 | Article 17 | 11

DiGiovanna et al. Cyber-workstation for computational neuroscience

processing unit for real-time brain-
computer interface feature extrac-
tion. Front. Neuroeng. 2:11, doi: 10.
3389/neuro.16.011.2009.

Zhao, M., Rattanatamrong, P. ,
DiGiovanna, J., Mahmoudi, B.,
Figueiredo, R., Sanchez, J. C., Principe,
J. C., and Fortes, J. (2008). BMI
Cyberworkstation: enabling dynamic
data-driven brain-machine interface
research through cyberinfrastructure.
IEEE Eng. Med. Biol. Vancouver.

Conflict of Interest Statement: The
authors declare that the research was con-
ducted in the absence of any commercial or
fi nancial relationships that could be con-
strued as a potential confl ict of interest.

Received: 29 September 2009; paper pend-
ing published: 27 October 2009; accepted:
07 December 2009; published online: 20
January 2010.
Citation: DiGiovanna J, Rattanatamrong P,
Zhao M, Mahmoudi B, Hermer L, Figueiredo
R, Principe JC, Fortes J and Sanchez JC
(2010) Cyber-workstation for computa-
tional neuroscience. Front. Neuroeng. 2:17.
doi: 10.3389/neuro.16.017.2009
Copyr ight © 2010 DiGiovanna,
Rattanatamrong, Zhao, Mahmoudi,
Hermer, Figueiredo, Principe, Fortes and
Sanchez. This is an open-access article
subject to an exclusive license agreement
between the authors and the Frontiers
Research Foundation, which permits unre-
stricted use, distribution, and reproduc-
tion in any medium, provided the original
authors and source are credited.

Figueiredo, R., Hermer-Vazquez,
L., and Fortes, J. (2009). Design
and Implementation of a Cyber-
Workstation for Computational
Neuroscience (No. TR-ACIS-09-003).
Gainesville, University of Florida.

Sakai, H., Aoyama, T., Yamaji, K., and Usui,
S. (2007). Concierge: personal database
software for managing digital research
resources. Front. Neuroinformatics 1, 5.
doi: 10.3389/neuro.11.005.2007.

Sanchez, J. C., and Principe, J. C. (2007).
Brain Machine Interface Engineering:
Morgan and Claypool.

Schalk, G., McFarland, D. J., Hinterberger,
T., Birbaumer, N., and Wolpaw, J. R.
(2004). BCI2000: a general-purpose
brain-computer interface (BCI) sys-
tem. IEEE Trans. Biomed. Eng. 51,
1034–1043.

Schwartz, A., Cui, X. T., Weber, D. J., and
Moran, D. W. (2006). Brain- controlled
interfaces: movement restoration
with neural prosthetics. Neuron 52,
205–220.

Snir, M., Otto, S., Huss-Lederman, S.,
Walker, D., and Dongarra, J. (1995).
MPI: The Complete Reference.
Cambridge, MA, MIT Press.

Sutton, R. S., and Barto, A. G. (1998).
Reinforcement Learning: An
Introduction. Cambridge, MIT
Press.

Trappenberg, T. P. (2002). Fundamentals
of Computational Neuroscience. New
York, Oxford University Press.

Wilson, J. A., and Williams, J. C.
(2009). Massively parallel sig-
nal processing using the graphics

activity. Front. Integr. Neurosci. 3.
doi:10.3389/neuro.07.003.2009.

Hatsopoulos, N. G., and Donoghue, J. P.
(2009). The science of neural interface
systems. Annu. Rev. Neurosci. 32,
249–266.

Laubach, M., Arieh, Y., Luczak, A., Oh,
J., and Xu, Y. (2003). A cluster of
workstations for on-line analyses
of neurophysiological data. IEEE
Bioengineering Conference.

Leuthardt, E. C., Schalk, G., Moran,
D., and Ojemann, J. G. (2006). The
emerging world of motor neuropros-
thetics: a neurosurgical perspective.
Neurosurgery 59, 1–13.

Mahmoudi, B., Principe, J. C., and
Sanchez, J. C. (2009). An actor-critic
architecture and simulator for goal-
directed brain-machine interfaces.
IEEE Eng. Med. Biol. Conference (pp.
3365–3368), Minneapolis.

Markram, H. (2006). The blue brain
project. Nat. Rev. Neurosci. 7,
153–160.

Nicolelis, M. A. L., and Lebedev, M. A.
(2009). Principles of neural ensemble
physiology underlying the operation
of brain-machine interfaces. Nat. Rev.
Neurosci. 10, 530–540.

Purves, D., Augustine, G. J., Fitzpatrick,
D., Hall, W. C., LaMantia, A.-S.,
McNamara, J. O., and Williams, S. M.
(eds). (2004). Neuroscience, 3rd Edn.
Sunderland, MA, Sinauer Associates,
Inc.

Rattanatamrong, P. , Zhao, M.,
DiGiovanna, J., Mahmoudi, B.,
Principe, J. C., Sanchez, J. C.,

test beds will be essential for the development and optimization
of the computational components that can be implemented on
future workstations with multiple multi-core processors which, col-
lectively, will be able to provide the necessary resources for deeper
study of neural coding and function. This new computational plat-
form is transformative by providing: (1) access to user friendly
interfaces to dynamically manage and analyze experiments, (2)
unrestricted computer power for simulation, signal processing of

brain signals and experimental control, (3) huge storage for data
and (4) real-time and closed-loop subject feedback, 24/7, anywhere
in the world.

ACKNOWLEDGMENTS
This work was funded by the NSF under Grant #CNS-0540304.
We thank Loris Marchal for his development of RLS algorithms
for pilot testing of the CW.

REFERENCES
Abeles, M. (1991). Corticonics: Neural

Circuits of the Cerebral Cortex. New
York, Cambridge University Press.

Asai, Y., Suzuki, Y., Kido, Y., Oka, H.,
Heien, E., Nakanishi, M., Urai,
T., Hagihara, K., Kurachi, Y., and
Nomura, T. (2008). Specifi cations of
insilicoML 1.0: a multilevel biophysi-
cal model description language. J.
Physiol. Sci. 58, 447–458.

Corrado, G., and Doya, K. (2007).
Understanding neural coding through
the model-based analysis of decision
making. J. Neurosci. 27, 8178–8180.

Craig, J. J. (1989). Introduction to
Robotics: Mechanics and Control,
2nd Edn. Reading, Addison-Wesley
Publishing Co., Inc.

Deisenroth, M. P., Rassmussen, C.
E., and Peters, J. (2009). Gaussian
process dynamic programming.
Neurocomputing 72, 1508–1524.

DiGiovanna, J., Mahmoudi, B., Fortes,
J., Principe, J. C., and Sanchez, J. C.
(2009). Co-adaptive brain-machine
interface via reinforcement learning.
IEEE Trans. Biomed. Eng. 56, 54–64.

DiGiovanna, J., Mahmoudi, B., Mitzelfelt,
J., Sanchez, J. C., and Principe, J. C.
(2007). Brain-machine interface con-
trol via reinforcement learning. In
IEEE EMBS Conference on Neural
Engineering. Kohala Coast.

Fitzsimmons, N. A., Lebedev, M. A.,
Peikon, I. D., and Nicolelis, M. A. L.
(2009). Extracting kinematic param-
eters for monkey bipedal walking
from cortical neuronal ensemble

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

