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The disadvantage of these high-resistant sharp electrodes, how-
ever, is that it is necessary to compensate the non-linear voltage 
drop across the electrode during intracellular current injections. 
The electrode compensation circuits that are implemented in most 
intracellular amplifi ers usually treat the electrode as a simple linear 
RC circuit (resistor and capacitor). This procedure, however, is 
generally inadequate since sharp electrodes are often not simple 
RC elements and show current-dependent non-linear resistance 
changes (Brette et al., 2008) that are diffi cult to describe quantita-
tively and thus impair a reliable use of bridge compensation (BC) 
or discontinuous current clamp (DCC) compensation (Moore 
et al., 1993).

The present study describes a novel frequency-domain  analysis 
of single neurons using offl ine electrode compensation that employs 
a Piece-wise Non-linear Electrode Compensation (PNEC) proce-
dure to remove the separately measured electrode from the com-
bination of both electrode and cell impedance. With this method 
it is possible to compensate for arbitrarily complex electrodes in 
frequency-domain data, which is an improvement to BC and DCC. 
Moreover it is also an improvement to the novel Active Electrode 
Compensation (AEC) method (Brette et al., 2008) since the PNEC 
does not rely on the resistance linearity of the electrode and is inde-
pendent of the ratio of electrode and membrane time constants, 

INTRODUCTION
The standard method for characterizing properties of single 
neurons is the intracellular recording with glass micropipettes. 
Quantitative data on intrinsic and synaptic properties have been 
mainly obtained from recordings of neurons in culture or in slice 
preparations with low-resistant patch pipettes. The use of these 
low-resistant electrodes is required for the voltage clamp con-
trol of the membrane potential, which has been used for detailed 
analyses of ion channel kinetics (Neher and Sakmann, 1976). 
However, a major drawback of these reduced preparations is that 
the surrounding neuronal network and the dendritic structures 
of individual neurons are partially removed, thus making this 
experimental approach less appropriate for an investigation of 
synaptic signal processing in complex circuits with feed-forward 
and feed-back loops, in particular where multiple and longer-
range circuits contribute to this processing. Therefore, spatial and 
temporal aspects of synaptic signal processing in single neurons 
have been frequently studied in vivo or in isolated in vitro ver-
tebrate whole brain preparations (e.g. Llinás and Yarom, 1981; 
Hounsgaard et al., 1988; Babalian et al., 1997). In these prepa-
rations,  intracellular recordings of neurons are most effi ciently 
made with high- resistant (∼50–120 MΩ) sharp glass electrodes 
to maximize the success rate of impaling neurons.
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which do not need to be estimated mathematically from combined 
measurements of electrode and neuron.

The frequency-domain data provide current-dependent transfer 
functions, which can be used for the characterization of intrinsic 
membrane properties or to directly fi t compartmental models with 
a comparable precision and reliability as those obtained from patch-
clamp measurements (Booth et al., 1997; Tennigkeit et al., 1998; 
Roth and Häusser, 2001; Erchova et al., 2004; Taylor and Enoka, 
2004; Idoux et al., 2008). Preliminary results have been published 
in abstract form (Rössert et al., 2008).

MATERIALS AND METHODS
WHOLE BRAIN PREPARATION
In vitro experiments were performed on isolated brains of six adult 
grass frogs (Rana temporaria) and complied with the “Principles of 
animal care”, publication No. 86–23, revised 1985 by the National 
Institute of Health. As described in previous studies (Straka and 
Dieringer, 1993), animals were deeply anesthetized with 0.1% 
3-aminobenzoic acid ethyl ester (MS-222), and perfused transcar-
dially with iced Ringer solution (75 mM NaCl; 25 mM NaHCO

3
; 

2 mM CaCl
2
; 2 mM KCl; 0.5 mM MgCl

2
; 11 mM glucose; pH 7.4). 

Thereafter, the skull and bony labyrinth were opened ventrally. After 
dissecting the three semicircular canals on each side, the brain was 
removed with all labyrinthine end organs attached to the VIIIth 
nerve. Subsequently, the brain was submerged in iced Ringer and 
the dura, the labyrinthine end organs and the choroid plexus cover-
ing the IVth ventricle were removed. In all experiments the fore-
brain was disconnected. Brains were used as long as 4 days after 
their isolation and were stored overnight at 6°C in continuously 
oxygenated Ringer solution (Carbogen: 95% O

2
, 5% CO

2
) with a 

pH of 7.4 ± 0.1. The brains were directly fi xed with insect pins to the 
sylgard fl oor of a chamber (volume 2.4 ml) or glued with cyanoacr-
ylate to a plastic mesh that was fi xed to the fl oor of the recording 
chamber. The chamber was continuously perfused with oxygenated 
Ringer solution at a rate of 1.3–2.1 ml/min. The temperature was 
electronically controlled and maintained at 14 ± 0.1°C.

CLASSIFICATION OF NEURONAL CELL TYPES
External landmarks of the isolated frog whole brain served to 
identify the target sites for the intracellular recordings in the ves-
tibular (Pfanzelt et al., 2008) and the abducens nuclei (Straka and 
Dieringer, 1993). Intracellularly recorded second-order vestibular 
neurons (2°VN) were identifi ed by the activation of monosynap-
tic EPSPs following electrical stimulation of individual ipsilateral 
semicircular canal nerves (Straka et al., 1997) with single constant 
current pulses (duration: 0.2 ms; threshold: ∼1–3 µA). These 
pulses were produced by a stimulus isolation unit (WPI A 360) 
and applied across suction electrodes whose opening diameters 
(120–150 µm) were individually adjusted. All 2°VN were classifi ed 
as phasic or tonic neurons based on their responses to the injec-
tion of long, positive current steps (Straka et al., 2004; Beraneck 
et al., 2007; Pfanzelt et al., 2008). Abducens motoneurons (AbMot) 
were identifi ed by short-latency antidromic action potentials fol-
lowing electrical stimulation of the ipsilateral VIth cranial nerve 
with suction electrodes (diameter 100–150 µm). These neurons 
typically received a disynaptic crossed EPSP and an uncrossed IPSP 
following electrical stimulation of the bilateral horizontal canal 

nerve, compatible with previous results obtained after electrical 
stimulation of the entire VIIIth nerve (Straka and Dieringer, 1993). 
Only 2°VN and AbMot with resting membrane potentials that were 
more negative than −55 mV were included in this study.

COMPLEX ADMITTANCE MEASUREMENTS WITH SHARP 
MICROELECTRODES
Sharp high-resistant glass microelectrodes for intracellular record-
ings were made with a horizontal puller (P-87 Brown/Flaming) 
using fi lament-containing borosilicate glass with pre-fi re-polished 
ends (GB150F-8P, Science Products GmbH, Hofheim, Germany). 
Electrodes were fi lled with a 3-M solution of KCl or a mixture of 3 M 
KCl and 2 M KAc (1:10), which gave fi nal resistances of 70–90 MΩ 
and 80–120 MΩ, respectively. Bath application of the potassium 
channel blocker 4-aminopyridine (4-AP; 20 µM) confi rmed in 
one experiment the putative contribution of voltage-dependent 
potassium conductances (Wu et al., 2001; Beraneck et al., 2007) 
to the non-linear response properties of phasic 2°VN.

Voltage recordings and current injections were performed with a 
single-electrode clamp amplifi er (SEC-05L, NPI Electronic GmbH, 
Tamm, Germany) in the “bridge balance” operation mode with no 
resistance or capacitance compensation. For A/D and D/A conver-
sion a National Instruments acquisition card (PCI-6052E) was used 
with a PC (Intel Pentium 4, 1.9 GHz, Windows XP); the signals were 
sampled at 5 kHz. Recordings were done with a custom Matlab 
(Mathworks Corp.) program.

Responses of 2°VN and AbMot to a multi-sine current-clamp 
were measured at different membrane potentials. The multi-sine 
stimulus I

MS
 was composed of 52–55 discrete frequencies of interest 

with a uniform stimulus amplitude and randomized phase spectra 
over a range of either 0.2–988.8 Hz or 0.2–1935.7 Hz (Idoux et al., 
2008). The constant magnitude was designed to drive the voltage 
responses uniformly at all frequencies of interest and the random 
phase spectrum was chosen to minimize the peak-to-peak dynamic 
amplitude of the stimulus waveform. The maximal half-amplitude 
of the multi-sine stimulus (h

Amp
 = half of peak-to-peak amplitude) 

ranged from 0.4 to 1.2 nA with a duration of 6 or 12 s. In order to 
measure neurons at membrane potentials of interest (just below 
spike threshold), the multi-sine stimulus I

MS
 was superimposed 

on a constant holding current I
hold

, which preceded the multi-sine 
stimulus by 1.5 s. This holding current + multi-sine signal was 
the current clamp command or input current, I

ref
(t), (Figure 1B) 

that led to an output voltage response V(t) (Figure 1C). Each 
measurement consisted of two stimuli, where the second multi-
sine stimulus, I

MS
, was multiplied by −1. A fast Fourier transform 

(FFT) was done on the difference of the two runs providing I
ref

(f ) 
and V(f ), respectively. The FFT, without windowing, has been 
computed on all N data points of I

ref
(f ) and V(f ), but only the 

frequencies present in the stimulus were used for the frequency-
domain analysis.

The sum of the voltage responses V(t), V
AveM

, revealed the mean 
membrane potential and non-linear membrane effects, such as 
subthreshold responses or action potentials, as well as recurrent 
synaptic potentials evoked by the current injection during the two 
runs. Since the polarity of the stimulus alternated, the sum removed 
all coherent linear responses and thus V

AveM
 is an excellent control 

for the quality of the measurement. The corresponding admittance 
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FIGURE 1 | Circuit diagram and multi-sine measurement procedure. 

(A) Equivalent circuit diagram of a sharp electrode inside a neuron. The neuron 
is described as a frequency- and voltage-dependent impedance, Zn(f, V ); the 
electrode is described as a frequency-, depth-, time- and current-dependent 
impedance Zee(f, x, t, Ie) serial to and a depth-dependent capacitance Ce(x ) 
parallel to the neuron; additional constant parallel stray capacitance Cs of 

amplifi er circuit. (B,C) Multi-sine current stimulus with discrete frequencies 
superimposed on a constant holding current, Ihold (B), injected through the 
electrode leading to a voltage response (C). Transformation into the 
frequency-domain by a fast Fourier transform (FFT) and division of the stimulus 
current by the voltage response leads to the admittance transfer 
function, Y(f ).

transfer functions were computed as Y(f ) = I
ref

(f )/V(f ). Admittance 
extends the concept of conductance, taking into account dynamic 
effects by describing not only the relative amplitudes of the voltage 
and current, but also the relative phases. Admittance is expressed as 
a complex number Y(f ) = G + jB with j being the imaginary unit 
and G the real part. It is the inverse of the impedance Z(f ) = 1/Y(f ), 
which is also a complex number, Z = R + jC with resistance R being 
the real part.

All transfer functions are shown as complex admittance or 
impedance Bode plots. In the complex admittance plots, the real 
part is shown on the x-axis, whereas the imaginary part is plotted 
on the y-axis. Each data point in this plot thus expresses a differ-
ent frequency, starting with 0 Hz at the point (x,0). The length of 
a line that can be drawn between each point and (0,0) corresponds 
to the magnitude of the admittance at a given frequency, whereas 
the angle between this line and the horizontal x-axis is the phase 
shift between the response and the stimulation. Therefore the units 
of both axes of complex admittance plots are nano-Siemens (nS). 
All transfer functions after electrode subtraction are shown as the 
more common impedance Bode plots.

Since no electrode resistance or capacitance compensation 
was used, the resulting voltage response (Figure 1C), and therefore 
the admittance transfer function, Y(f ), refers to both the electrode 
and the neuron. In the following all admittance transfer functions 
are written as Y

i
 with i being e, e + n or e + m indicating that the 

electrode was measured alone, within a neuron or with a neuronal 
model, respectively.

During intracellular measurements, the properties of the elec-
trode are best described as a frequency-, depth- (electrode tip 
with respect to the surface of the Ringer solution in the  recording 

 chamber), time- and current-dependent serial impedance, Z
ee

(f, x, 
t, I

e
), and a depth-dependent capacitance, C

e
(x), parallel to the neu-

ron. In addition to this parallel electrode capacitance, a constant 
parallel stray capacitance, C

s
, (Figure 1A) is always present, i.e. 

the capacitance to ground at the input of the buffer operational 
amplifi er (Molecular Devices, 2008). In order to obtain reliable 
data on frequency responses of single neurons recorded with sharp 
electrodes, a procedure called Piece-wise Non-linear Electrode 
Compensation (PNEC) was developed to remove the electrode 
properties from the total response in the frequency-domain. To test 
the PNEC method a passive neuronal circuit model composed of a 
thin fi lm resistance with R

m
 = 10 MΩ (Tolerance: ±0.02%) (Vishay 

Sfernice, Pennsylvania, USA) parallel to a polystyrene capacitor 
with C

m
 = 1 nF (Tolerance: ±1%) was used. For neuronal or model 

measurements the root-mean-square (RMS) error was computed 
separately for impedance magnitude and phase. The degree of 
electrode nonlinearity (λ) was calculated as the slope of the linear 
regression between injected current and the steady state electrode 
resistance (Brette et al., 2008). Matlab (Mathworks Corp.) was 
used for computations. For time-domain simulations Simulink 
was used in combination with the SimPowerSystems Blockset to 
model the electrode and the passive neuron as electrical circuits. For 
AEC compensation the kernel computation and electrode kernel 
extraction was done using the latest Python implementation from 
http://audition.ens.fr/brette/HRCORTEX/AEC/AECcode.html. 
For linear regression calculations the Matlab function “regress” 
was used. A model for the electrode has been created by fi tting two 
distributed capacitances and resistances (RC’s) and a serial resist-
ance and inductance (R–L) to the measured frequency response 
of an electrode using the Matlab function “lsqcurvefi t”. Graphical 
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presentations were made with Corel Draw (Corel Corporation 
Ltd.). Statistica 6.1 was used for the Wilcoxon matched pairs test.

RESULTS
ELECTRODE PROPERTIES
Electrode properties were revealed by using a multi-sine analysis 
of the electrodes in the recording chamber and/or the tissue to 
determine the electrode transfer function, Y

e
. In contrast to a 

simple electrode model (constant parallel capacitance and resist-
ance), which approximates a theoretically expected straight line 
on an admittance plot (red line in Figure 2A1), the glass micro-
electrodes used for the present intracellular recordings show a 
complex frequency-dependent behavior of the real part (green 
and blue lines in Figure 2A1) but an essentially linear behavior 
of the imaginary part, similar to a simple RC electrode model 
(Figure 2A2). This behavior depended on the depth (x) of the 
electrode tip in the tissue and/or bath with respect to the level of 
the Ringer solution; in particular, the capacitance of the electrode 
increased with the depth (Figure 2A2). Even though the resist-
ance of sharp electrodes, fi lled with KCl or KAc, could fl uctuate 
randomly within the range of minutes (Figure 2B1), the shape 
of the admittance measurements and its imaginary component 
(Figure 2B2) did not change over time. This spontaneous imped-
ance change was considerably reduced, yet not absent when the 
electrode tip was inside a neuron. Injections of holding currents 
I

hold
 through the electrode radically changed the real part of the 

admittance measurements, but had little effect on its imaginary 
part (Figures 2C1,C2). This behavior can be best seen in the 
corresponding impedance magnitude plot (Figure 2C1 inset). 
Also, note that some sharp electrodes showed a resonance (* in 
Figure 2C1 inset) at ∼50 Hz that occurred mostly for positive I

hold
 

injections. Considering these results and taking into account the 
additional stray capacitance of the amplifi er, the electrode transfer 
function can be described as

Y
Z f x t I

j f C x Ce

e

e s = ( ) + +[ ]1
2

ee , , ,
( )π

 
(1)

where Z
ee 

is the complex impedance of the electrode without an 
assumed passive capacitance. Thus, real(Y

e
) = real[1/Z

ee
(f, x, t, I

e
)] 

with an essentially frequency-, depth-, time- and current-
dependency and imaginary(Y

e
) = j2πf [C

e
(x) + C

s
] + imagina-

ry[1/Z
ee

(f, x, t, I
e
)], with the latter being dominated by a depth 

(x)-dependent electrode capacitance, C
e
(x), plus C

s
, the amplifi er 

stray capacitance. Figures 2A2,B2,C2 shows that the imaginary 
part of Y

e
 depends linearly on the frequency and is thus almost 

completely described by j2πf [C
e
(x) + C

s
]. Therefore, the parallel 

capacitance, C = C
e
 + C

s
 can be estimated by fi tting the function 

2πfC to imaginary(Y
e
) using a linear regression. For all electrodes 

in the present study, the regression was highly signifi cant (all 
R2 > 0.990).

PIECE-WISE NON-LINEAR ELECTRODE COMPENSATION (PNEC) 
PROCEDURE
Because of the particular complex electrode behavior, no elec-
trode compensation (neither resistance nor capacitance compen-
sation) was used, but a procedure called Piece-wise Non-linear 
Electrode Compensation (PNEC) was developed to subtract the 

electrode from the frequency-domain response offl ine after the 
 measurements. The subtraction procedure involved measuring the 
electrode alone just after removing it from the neuron, but leav-
ing it in the immediate vicinity (5–8 µm) of the cell and applying 
the same holding currents, I

hold
, as used during the intracellular 

recording. The latter procedure was necessary because of the cur-
rent- dependent non-linearities of the electrode. As indicated above, 
changes in the electrode impedance observed either spontaneously 
or after impalement (Brette et al., 2008) are most likely due to par-
tial blocking or unblocking of the micropipette tip as suggested by 
the fi nding that this behavior can be described by translating the 
real part of Y

e
 along the real axis, which is equivalent to adding a 

conductance G
T
 to the admittance Y

e
.

The impedance Z
n 
of a passive neuron (resistance R

n
 and capaci-

tance C
n
) can be expressed by:

Z R j fC
R j fC R

f C R f
Zn n n

n n n

n n

and n= + =
+( ) −− −

→∞
=1 1

2

2 2 2 2
2

2

1 4
0π π

π
lim

 
(2)

with τ
n
 = R

n
C

n

real n
n

n

Z
R

f
( ) =

+1 4 2 2 2π τ  
(3)

Thus at high frequencies, the neuron is shunted by its capaci-
tance such that the electrode + neuron admittance measurement 
Y

e+n
 should overlap with the electrode measurement Y

e
. Therefore, 

in order to compensate for the change in electrode impedance after 
leaving the neuron, Y

e
 was translated along the real axis until it 

superimposed on Y
e + n

 at high frequencies above f
fi t

. For f
fi t

, the fre-
quency was chosen where the resistance of the neuron reaches 1% of 
its baseline resistance. Knowledge of the membrane time constant 
(τ

n
) of a typical recorded neuron, f

fi t
 can thus be calculated by:

ffit
n

= −1
0 01

2 2

1

4
.

π τ
 

(4)

A τ
n
 = 2 ms, as measured in e.g. tonic and phasic 2°VN (Straka 

et al., 2004) gives a f
fi t

 of 792 Hz, which was used in our experi-
ments. With a typical neuronal resistance of 10 MΩ and typical 
electrode resistances of ∼100 MΩ the theoretical error calculated 
for the electrode resistance estimation is thus only ∼0.1% in our 
experiments.

After translating and determining the conductance G
T
, the 

electrode admittance measurements can be used to remove the 
electrode. Thus, this electrode compensation procedure, referred 
to as PNEC, is as follows:

(1) To estimate the conductance G
T
 the error [real(G

T
 + Y

e
) − 

real(Y
e + n

)]2 has to be minimized in the frequency range 
between f

fi t
 and the maximal frequency ( f

max
) measured. Since 

G
T
 is real, the estimation of G

T
 simplifi es to:

G
T
 = mean [real (Y

e + n
) − real (Y

e
)] (5)

(2) Fit 2πfC to imaginary(Y
e
), using linear regression, in order to 

remove the parallel electrode capacitance C
e
(x), and amplifi er 

stray capacitance C
s
:

Y
e + n − c

 = Y
e + n

 − j2πfC (6)
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(3) Remove the serial impedance Z
ee

(f, x, t, I
e
) = (G

T
 + Y

e
 − j2πfC)−1 

of the electrode:

Y Y YG fn e n c eT  2= +⎡⎣ ⎤⎦− −+ −
− − −1 1 1

( )j Cπ
 (7)

The PNEC procedure has been performed with 19 neurons: 
the 19 electrodes showed a mean resistance of 85.5 ± 24.5 MΩ 

(mean ± SD) and a mean capacitance of 8.16 ± 2.01 pF; for G
T
 

an average of 0.76 ± 1.2 nS (mean ± SD) was estimated, which 
resulted in an RMS of 0.0375 ± 0.018 nS (mean ± SD; from f

fi t
 to 

f
max

). The mean degree of nonlinearity (λ) could be evaluated in 
12 electrodes and resulted in −2.56 ± 3.9 MΩ/nA (mean ± SD) 
which is comparable to nonlinearities found previously (Brette 
et al., 2008).

FIGURE 2 | Multi-sine analysis of electrode properties with discrete 

frequencies plotted for the range from 0.2–300 Hz. (A1,A2) Admittance 
plots (A1) of the electrode model circuit with constant parallel capacitance and 
resistance (red line); admittance plots (A1) of KCl (3 M) fi lled electrode with 
the tip at 1.5 mm (green line) and 2 mm below the surface of the Ringer 
solution (blue line) show frequency-dependent changes of electrode properties 
infl uenced by the depth in the Ringer solution; plots of the imaginary 
part (A2) show that the electrode capacitance increases with increasing 
depth of the electrode tip in the bath (*); Ihold = 0 nA. (B1,B2) Admittance 

plots (B1) of three measurements of electrode properties in the recording 
chamber; measurements 1 and 2 were consecutive (green and blue lines), 
whereas the measurement 3 (red line) was taken 1 min later; note that the 
admittance fl uctuates over time while the capacitance (B2) remains stable; 
Ihold = 0 nA. (C1,C2) Admittance plots (C1) of three electrode measurements 
with different holding currents Ihold = 0 nA (black line), −0.5 nA (green line), 
+0.5 nA (red line); injection of a constant current changes the real part of the 
electrode admittance response while the capacitance (C2) remains 
unchanged.
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MODEL TEST OF THE SUBTRACTION PROCEDURE
Measuring a passive neuronal circuit model
The PNEC procedure was tested by measuring a passive neuronal 
circuit model (R

m
 = 10 MΩ, C

m
 = 1 nF), attached to the electrical 

path-to-ground, through a real electrode in the bath (Figure 3A). 
Although this reproduces the serial resistive connection of an 
electrode to a real neuron, the electrode capacitance C

e
 is also 

serial to the neuron. Since the capacitance C
e
 is only parallel to the 

 electrode it shunts only the electrode impedance, comparable to 
the parallel RC of neurons. Accordingly, at high frequencies the two 
measurements of Y

e
 and Y

e + m
 do not overlap and the translation 

conductance G
T
 cannot be estimated. Thus G

T
 was chosen for this 

model test in such a way that the resistance of the model neuron 
(10 MΩ) was correct at the lowest frequency after electrode sub-
traction. Figure 3B shows the admittance plots with I

hold
 = 1 nA of 

electrode + model neuron (Y
e + m

) and the measured, but translated 
electrode (G

T
 + Y

e
). Figures 3C1,C2 illustrates that the impedance 

magnitude obtained after the PNEC procedure (orange lines) is in 
good agreement with the analytical values of the neuronal circuit 
model (green lines) (RMS: 0.22 MΩ), but shows an error for the 
phase at high frequencies (RMS: 21.5°) that will be corrected below 
by taking into account the complete serial connection of the elec-
trode to the test model system. Thus, both the lack of overlapping Y

e
 

and Y
e + m

 at high frequencies and the phase error are due to the serial 
connection of the electrode capacitance to the model. Since only 
the amplifi er stray capacitance C

s
 is in parallel to the neuron model, 

its subtraction must be adapted to the test setup. This involves two 
individual subtractions of C

s
 = 4.4 pF that was estimated before by 

measuring a precision resistance, as follows:

Y
m

 = [(Y
e + m

 − j2πfC
s
)−1 − (G

T
 + Y

e
 − j2πfC

s
)−1]−1 (8)

With this serial-PNEC the phase errors can be eliminated and the 
obtained impedance magnitude and phase plots (Figures 3C1,C2; 
black lines) match well with the analytical values for the neuronal 
circuit model (green lines) (RMS: 0.20 MΩ, 3.7°). This successful 
subtraction of electrode properties in the model test setup confi rms 
that non-linear electrode properties can be appropriately taken into 
account during piece-wise linear measurements.

The critical need for correcting microelectrode measurements 
with measured electrode properties are illustrated by  comparing 
the errors that result from assuming a simple RC electrode (Y

es
 in 

Figure 3B) although it has a resistance identical to the low- frequency 
(0.2 Hz) impedance of the real electrode and an identical capaci-
tance. Figure 3C shows that the serial subtraction, using adapted 
C

s
 subtraction as above, of a simple RC electrode (red lines) results 

in a considerable error and even suggests an incorrect resonance 
behavior because the real electrode has not been correctly taken 
into account (RMS: 3.40 MΩ, 41°). To further quantify the quality 
of fi t, the correlations between the residuals (estimated magnitude 
and phase minus theoretical values) and the frequency have been 
analyzed for all three electrode subtractions. The residual error 
after BC or PNEC still showed a correlation with frequency for 
both magnitude and phase, but there was no signifi cant correlation 
using serial-PNEC.

Similar errors using simple RC electrode compensation can 
also be seen in the data from recorded neurons. Using the PNEC 
procedure for a frog phasic 2°VN (I

hold
 = 0 nA; Figures 3D1,D2) 

the magnitude and phase plots (black lines) suggest rather passive 
membrane properties. However, an incorrect subtraction using a 
simple RC electrode, with a resistance identical to the low-frequency 
impedance and capacitance identical to the real electrode, yields a 
considerable resonance (red lines) that however is an artifact due 
to the incorrect electrode compensation.

Comparison of PNEC, BC and AEC using an electrode model
Using a time-domain simulation in Matlab Simulink the perform-
ance of PNEC was compared to Bridge- (BC) and Active Electrode 
Compensation (AEC, Brette et al., 2008). The frequency-domain 
behavior of a typical electrode (Figure 3E1 gray plot) was modeled 
by using distributed capacitances and resistances (RC’s) refl ecting 
the rightward bend in the electrode admittance plots at high fre-
quencies and a serial resistance and inductance (R–L) in parallel to 
the last distributed RC to account for the resonant behavior at low 
frequencies. Thus the prominent electrode behaviors could be fi tted 
(Y

e
 in Figure 3E1 black line) using two distributed RC’s of 14.5 or 

55.5 MΩ and 4.9 or 2.8 pF, respectively and a R–L with 2.2 GΩ 
and 100 MH (Figure 3E1 inset). To mimic the electrode resistance 
shift for the electrode inside the neuron, the resistance of the last 
RC was reduced from 55.5 MΩ to 53.5 MΩ when a purely passive 
RC-type neuron was added which, together with the electrode, 
produced the admittance response Y

e + m
 as shown exemplarily for 

a low resistance neuron model (low-R: R
n
 = 10 MΩ, C

n
 = 200 pF) 

in Figure 3E1 (green line).
For the simulation of BC, capacitance and resistance compensa-

tion have been directly implemented by simulating standard com-
pensatory circuits (Molecular Devices, 2008) in Simulink: resistance 
compensation has been set to the low-frequency resistance of the 
electrode and capacitance compensation has been used maximally 
just before ringing occurred. For AEC, only capacitance compensa-
tion has been simulated in Simulink and the resistance has been 
subtracted offl ine using the provided AEC procedure (Brette et al., 
2008). Prior to this simulation, the correct implementation of AEC 
could be confi rmed using an electrode and neuron model as used 
in the simulations of Brette et al. (2008; not shown).

The simulation has been realized for two types of neurons 
having a time constant of 2 ms: a low resistance neuron (low-R: 
R

n
 = 10 MΩ, C

n
 = 200 pF, solid lines) and a high resistance neuron 

(high-R: R
n
 = 100 MΩ, C

n
 = 20 pF, dotted lines), mimicking a large 

and small cell, respectively. Application of the PNEC procedure 
(with f

fi t
 = 792 Hz), i.e. shifting G

T
 + Y

e
 (Figure 3E1 dotted line) and 

subtracting the electrode admittance, results in only small errors 
(RMS: low-R: 0.2 MΩ, 3.4°; high-R: 1.6 MΩ, 3.5°) for the imped-
ance magnitude and phase plots (black solid or dotted lines) when 
compared to the expected analytical results of the passive neuron 
(green solid or dotted lines) (Figures 3E2,E3). In contrast, using 
BC (Figures 3E2,E3 red solid or dotted lines) magnitude and phase 
errors (RMS: low-R: 10.5 MΩ, 20.1°; high-R: 7.6 MΩ, 21.0°) occur 
due to incorrect electrode compensation. For AEC (blue solid or 
dotted lines) (RMS: low-R: 0.8 MΩ, 6.7°; high-R: 5.5 MΩ, 7.2°), 
errors already occur at the low-frequency end due to the underes-
timation of the electrode resistance especially with the high resist-
ance neuron, which results from the low ratio of electrode and 
membrane time constants. In addition, the inductive component 
of the electrode further complicates the correct electrode kernel 
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FIGURE 3 | Model test of the Piece-wise Non-linear Electrode 

Compensation (PNEC) method. (A) Equivalent circuit diagram of the test 
setup with the electrode in the Ringer-fi lled recording chamber representing a 
parallel impedance Zee(f, x, t, Ie) and a capacitance, Ce(x), serial to a passive 
neuronal circuit model (Rm = 10 MΩ, Cm = 1 nF) attached to the electrical path-
to-ground and a constant amplifi er stray capacitance, Cs, parallel to the model. 
(B) Admittance plots of the corrected electrode alone GT + Ye (black line) of the 
electrode with an attached neuronal circuit model Ye + m (blue line) and the 
analytical response of a simple RC-type electrode model Yes (red line); 
Ihold = +1 nA, plotted frequency spectrum 0.2–485 Hz. (C1,C2) Bode plots of a 
passive neuronal circuit model using different electrode compensation methods 
on the combined measurement Ye + m: (a) electrode GT + Ye (orange lines) with 
PNEC, (b) electrode GT + Ye using serial-PNEC (black lines), (c) simple theoretical 
RC electrode, Yes, using serial subtraction (red lines) and (d) the analytical 
passive neuronal circuit model (green lines). Note that using the simple RC 
electrode compensation for the passive neuronal model shows a resonance 
that is solely an electrode compensation artifact; trace labels in (C2) also apply 

to (C1). (D1,D2) Results from the subtraction of a simple RC-type electrode 
(red lines) and using PNEC with the actual electrode (black lines) on the 
intracellular records of a phasic 2°VN; note that subtraction of a simple RC-type 
electrode also shows an incorrect resonance for the actual neuron that is caused 
by the above electrode artifact; trace labels in (D1) apply also to (D2). (E1) Time-
domain simulation of PNEC, AEC and BC; admittance plots of an electrode with 
distributed capacities and parallel resistance and inductance (inset) Ye (black line) 
with parameters adjusted to mimic the behavior as measured in real electrodes 
(gray line), with an attached passive RC neuronal circuit model (10 MΩ, 200 pF) 
and reduced overall resistance Ye + m (green line) and shifted electrode GT + Ye + m 
(dotted line) prior to PNEC subtraction; plotted frequency spectrum 0–556.2 Hz. 
(E2,E3) Results after electrode compensation with a low resistance RC cell 
(low-R: 10 MΩ, 200 pF) (solid lines) or a high resistance RC cell (high-R: 100 MΩ, 
20 pF) (dotted lines): simple BC (red) or AEC compensation (blue) causes 
electrode resonance artifacts in the impedance (E2) and phase (E3), while PNEC 
(black) complies well with the expected results (green); change of y-coordinate 
scale at 15 MΩ (dashed line) in (E2); trace labels in (E3) also apply to (E2).

www.frontiersin.org August 2009 | Volume 3 | Article 64 | 7



Rössert et al. Frequency-domain analysis of cellular properties

estimation and results in a resonance that is an artifact due to the 
incorrect electrode compensation, which particularly can be seen 
in the low-R simulation. The simulations further show that the 
electrode compensation error in AEC is not solely dependent on the 
time constant ratio, as stated by Brette et al. (2008) but also increases 
with the resistance of the cell. This is also the case for PNEC, but 
here the error can be further reduced by increasing f

fi t
.

This comparison shows that the PNEC method is well suited to 
compensate for the complicated electrode behavior and yields bet-
ter results compared to BC and even AEC. However, PNEC is also 
not perfect, since minor errors occur for the phase at very high fre-
quencies, likely due to an insuffi cient compensation of distributed 
electrode capacitances. This suggests that PNEC is reliable at least 
up to ∼300 Hz for the estimation of neuronal frequency-domain 
transfer functions.

MEASUREMENT RESULTS
Examples of electrode compensation for three different neuronal 
subtypes recorded with different holding currents (I

hold
) in an iso-

lated adult frog whole brain were used to illustrate the applicabil-
ity of PNEC for typical neuronal recordings. Figure 4A illustrates 
the electrode adjustment procedure for an AbMot at I

hold
 = +1 nA, 

which required a shift in the electrode admittance response, Y
e
, due 

to a difference in the electrode properties when it was removed from 
the neuron. As described above, the abscissa values were shifted 
prior to the subtraction in order for the curves to overlap at high 
frequencies above f

fi t
 indicated as G

T
 + Y

e
. Electrode corrected mag-

nitude and phase plots for this AbMot at other holding currents 
illustrate the marked potential dependence of the neuronal imped-
ance including a pronounced resonance (Figures 4B1,B2). Bode 
plot examples for previously described tonic (Figures 4C1,C2) and 
phasic (Figures 4D1,D2,E1,E2) 2°VN (Beraneck et al., 2007) indi-
cate that the membrane resonance properties reported for phasic 
2°VN (* in Figures 4D1,E1) are not an electrode artifact.

Multi-sine analysis allows direct visualization of the dynamic 
responses of functionally different neuronal phenotypes. For 
instance, the AbMot, which is plotted in Figures 4B1,B2 revealed 
a high degree of resonance during depolarizing currents, most 
likely caused by an interaction of delayed rectifi er potassium and 
sodium channels (Hutcheon and Yarom, 2000). Frog tonic 2°VN 
have no membrane resonance behavior but exhibited an increasing 
impedance with membrane depolarization (Figures 4C1,C2). This 
latter effect is likely caused by non-inactivating calcium or sodium 
inward currents as suggested previously (Beraneck et al., 2007). 
In contrast, frog phasic 2°VN showed decreasing impedance and 
increasing resonance (* in Figures 4D1,E1) with membrane depo-
larization due to the activation of low-threshold voltage-dependent 
I

D
-type potassium channels as reported earlier (Beraneck et al., 

2007). Furthermore, since I
D
-type potassium channels are specifi -

cally blocked by low concentrations of 4-AP (Wu et al., 2001), bath 
application of 20 µM 4-AP during multi-sine measurements of a 
phasic 2°VN (dotted lines in Figures 4D1,D2) leads to an increase 
in impedance magnitude for I

hold
 = 0 and I

hold
 = 0.5 nA.

To demonstrate the errors induced by insuffi cient bridge com-
pensation (BC), another phasic 2°VN (Figures 4E1,E2) has been 
additionally measured during standard BC from the amplifi er (dot-
ted lines). While both compensation types match fairly well at the 

lowest frequencies for I
hold

 = 0 and −0.5 nA, the measurements at 
depolarized membrane potentials show an overcompensation due 
to electrode rectifi cation. Furthermore incorrect compensation of 
the distributed electrode RCs in BC leads to bends in the magnitude 
and large jumps in the phase at higher frequencies (∼200 Hz).

To compare the PNEC method with standard bridge compensa-
tion (BC), both techniques have been applied in a total of 11 neu-
rons at I

hold
 = 0 nA. Since the measurements were made at resting 

membrane potential, these neurons presumably behave like passive 
RC circuits with an impedance of Y

n
 = G

n
 + j2πfC

n
. Thus C

n
 can be 

estimated by fi tting j2πfC
n 
to imaginary(Y) using a linear regression 

and G
n
 = mean[real(Y)], where Y is the measured neuronal admit-

tance after either PNEC or BC compensation. The root-mean-
square error of this fi t is calculated as RMS mean(| | )= −Y Yn

2 . This 
test resulted in a better RMS for PNEC, median of RMS: 0.0458 µS, 
compared to BC, median of RMS: 0.1818 µS (difference highly 
signifi cant with p = 0.0076, Wilcoxon matched pairs test).

TEST OF PIECE-WISE LINEARITY
Control experiments were performed to evaluate the validity of 
the assumption of piece-wise linearity for PNEC. Measurements 
of the electrode alone with different multi-sine half-amplitudes 
(h

Amp
 = half of peak-to-peak amplitude of multi-sine stimu-

lus; h
Amp

 = 1 nA and h
Amp

 = 0.5 nA) showed that, apart from the 
time-dependent translational shift of the electrode, the frequency 
response itself (e.g. I

hold
 = +0.5 nA in Figure 5A) does not change 

with increasing amplitude. Nevertheless, as shown before, frequency 
responses are signifi cantly affected by the holding I

hold
 current level 

(compare with Brette et al., 2008). A further indication of the lin-
earity over the range of multi-sine amplitudes is the successful test 
subtraction procedure (Figures 3A–C2). Thus, this is a piece-wise 
linear analysis of two non-linear elements, the neuron and the 
electrode, both of which show marked non-linearities at differ-
ent holding current levels. The non-linear effects of the neuron 
itself are due to its voltage-dependent ion channels. Measuring 
AbMot with an I

hold
 = 0 nA and multi-sine currents with three dif-

ferent half-amplitudes of h
Amp

 = 0.4 nA, 0.6 nA and 0.8 nA showed 
that, apart from some fl uctuations in the phase using the largest 
multi-sine current (h

Amp
 = 0.8 nA), all measurements yield identical 

results (Figures 5B1,B2). The source of these phase fl uctuations 
using h

Amp
 = 0.8 nA could be pinpointed by the observation of 

V
AveM

, which indicated that the multi-sine current triggered a few 
spikes (not shown). This result illustrates an important restriction 
required for most linearization methods, namely that the multi-
sine amplitude should be chosen such that it is small enough not 
to trigger action potentials, but large enough to have a reasonable 
signal-to-noise ratio.

OUTLOOK: COMPENSATION IN TIME-DOMAIN MEASUREMENTS
Since we are considering piece-wise linear systems, the frequency-
domain data can be translated into the time-domain, and therefore 
it is also possible to use the present PNEC framework to dissociate 
electrode from neuronal responses for arbitrary stimuli, as long as 
the current amplitude of the latter remain in the linear range. In 
the following, a method is presented that allows the determination 
of the electrode kernel for electrode compensation in the time-
domain using the described PNEC framework. For this  purpose, 

Frontiers in Neuroscience | Neuroscience Methods August 2009 | Volume 3 | Article 64 | 8



Rössert et al. Frequency-domain analysis of cellular properties

FIGURE 4 | Electrode fi tting and response dynamics of second-order 

vestibular neurons (2°VN) and abducens motoneuron (AbMot) using 

Piece-wise Non-linear Electrode Compensation (PNEC). (A) Electrode fi tting 
procedure of the responses in an AbMot at Ihold = +1 nA; the electrode 
admittance Ye (solid line) changed after the electrode was removed from the 
neuron and was shifted (GT + Ye) in order to overlap at high frequencies with the 
properties of the electrode + neuron admittance Yn + e; plotted frequency 
spectrum 0.2–980 Hz. (B1,B2–D1,D2) Impedance profi les and corresponding 

phase relations of the responses at several holding currents (Ihold) of an AbMot 
(B1,B2), a tonic (C1,C2) and two different phasic 2°VN (D1,D2,E1,E2) after 
PNEC; responses of the phasic 2°VN shown in (D1,D2) were measured before 
and after bath application of 4-aminopyridine (4AP; 20 µM) [dotted lines in 
(D1,D2)] with PNEC; responses of the phasic 2°VN shown in (E1,E2) were 
measured after PNEC as well as during standard bridge compensation (BC) of 
the amplifi er [dotted lines in (E1,E2)]; legends in (B1–E1) also apply 
to (B2–E2).
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multi-sine measurements of the electrode alone, outside the cell, 
were used to calculate the electrode kernel K

e_outside
 via cross-

 correlation between input current and output voltage (similar to 
Brette et al., 2008). These electrode kernels however differ from the 
real electrode  kernel inside the cell and were thus corrected using 
the  conductance G

T
, estimated via the second measurement inside 

the cell, as described before. For this correction, the kernel K
e_outside

 
was transformed into the frequency domain via FFT, shifted by G

T
, 

which was estimated using the fi rst step of PNEC, and transformed 
back into the time-domain using an inverse FFT:

K
e_inside

 = IFFT{[FFT(K
e_outside

)−1 + G
T
]−1} (9)

FIGURE 5 | Test of piece-wise linearity and offl ine compensation in 

time-domain measurements. (A) Admittance plot of the electrode properties 
at half peak-to-peak multi-sine current amplitudes of hAmp = 0.5 nA (blue line) 
and hAmp = 1 nA (red line); real part is shown as relative conductance to correct 
for the temporal fl uctuation; plotted frequency spectrum 0.2–625 Hz. 
(B1,B2) Bode plots of the impedance profi les of an AbMot at Ihold = 0 nA and 
peak-to-peak multi-sine current half amplitudes of 0.4 nA (blue lines), 0.6 nA 

(green lines) and 0.8 nA (red lines) after using Piece-wise Non-linear Electrode 
Compensation (PNEC). (C1,C2) Time-domain off-line subtraction of electrode 
voltage responses in a phasic (C1) and a tonic 2°VN (C2) during multi-sine 
stimulation (black traces) using the PNEC procedure for kernel determination 
(green traces), simple constant resistance/bridge compensation (red traces) 
and uncorrected electrode kernels Ke_outside, measured outside the cell 
(blue traces).
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separating the effects of the electrode compared to those of the 
neuron, but also the frequent errors caused by improper online 
compensation, which is diffi cult if not almost impossible to cor-
rect afterwards.

In contrast to the Active Electrode Compensation (AEC) method 
described recently (Brette et al., 2008) the electrode properties in 
our PNEC method are not estimated from an electrode + neuron 
measurement, but are measured separately for each injected current 
step and corrected afterwards from the frequency-domain data, thus 
allowing the compensation of slow non-linearities caused by each 
current step. This compensation procedure is thus not only inde-
pendent of electrode- and membrane-time constant ratios but also 
insensitive to resistance non-linearities of the electrode, which is not 
the case with AEC. Furthermore, using a simulation, it appears that 
the AEC electrode kernel estimation procedure is inaccurate espe-
cially when the electrodes show an inductive/ resonating behavior, 
which however is not a problem for our PNEC procedure.

Frequency responses of neurons have been determined with 
low-resistant patch pipettes as well as with high-resistant sharp 
electrodes, but always using standard electrode compensation tech-
niques. While this is not a problem for low-resistant patch pipettes, 
caution is advised when using high-resistant sharp electrodes and 
control experiments with the electrodes should be conducted prior 
to each experiment (see Moore et al., 1993). A previous work using 
high-resistant sharp electrodes (Gutfreund et al., 1995) states that 
their electrode impedance was frequency independent in the range 
of 0–50 Hz, which suggests the following: fi rst, the maximum fre-
quency was suffi ciently low in order not to cause errors due to 
distributed electrode RCs and second, since slices were used, the 
electrode tips were not immersed as deeply into the bath or brain 
tissue compared to whole brain recordings which reduces the low 
frequency inductive/resonating behavior (compare Figure 2A1, 
blue and green lines).

It is important to emphasize that the piece-wise linear electrode 
properties shown here, such as the resonant electrode behavior, 
should not be understood as a general description of all glass micro-
pipettes but should rather be considered as an example showing 
that PNEC is capable of compensating any arbitrarily complex 
electrodes in the frequency-domain response.

It should also be noted that the offl ine PNEC method presented 
here was specifi cally developed for a frequency-domain analysis. 
Nevertheless, we could show that the PNEC framework can be 
used for determination of the electrode kernel and offl ine subtrac-
tion of the electrode voltage in the time-domain. Furthermore this 
kernel estimation procedure can be used with online AEC (Brette 
et al., 2008) as long the electrode is measured before entering a 
cell. The advantage of the combination of the two methods helps 
avoiding errors that result from the standard AEC electrode kernel 
estimation.

PNEC is a piece-wise linear method that requires an ampli-
tude of the injected multi-sine current that does not trigger action 
potentials. Thus, the holding currents I

hold
 have to be selected to 

drive the neuron either to a sub-threshold membrane potential 
or to a membrane potential where spiking does not occur due to 
sodium channel inactivation. As in other compensation methods, 
the present technique relies on combining distributed capacities of 
the electrodes. Based on the simulations, a frequency of ∼300 Hz 

This corrected electrode kernel K
e_inside

 can be further used to 
compute the electrode voltage by convolving it with the injected 
current I

e
:

V
e
 = (K

e_inside
 ∗ I

e
) (10)

However, since no electrode capacitance compensation was used 
in our experiments, the measured electrode + neuronal voltage V

e + n
 

and the computed electrode voltage V
e
 were low-pass fi ltered by 

the electrode, but could be corrected using voltage deconvolution 
(Richardson and Silberberg, 2008) with:

′ = +V
V

t
Vτ d

d  
(11)

Here by τ = RC, with R being the impedance at the lowest fre-
quency and C estimated from imaginary(Y

e
) during the PNEC 

procedure.
After application of this voltage deconvolution to V

e + n
 and 

V
e
, the neuronal voltage response could be computed as V

n
 = 

V
e + n

 − V
e
. The results of this procedure were applied offl ine to the 

responses of a phasic (Figure 5C1, green traces) and a tonic 2°VN 
(Figure 5C2, green traces), measured during multi-sine stimula-
tion (Figures 5C1,C2 black traces) with current amplitudes in 
the linear range, showed that the high-frequency electrode volt-
age had been removed leaving a low-frequency neuronal volt-
age, since the injected current was fi ltered by the neuronal time 
constant. Compensation of electrode voltage under noisy current 
stimulation is a demanding task for each electrode compensation 
mechanism: using a simple constant resistance R for the estimation 
of the electrode voltage and thus subtracting V

e
 = RI

e
, equivalent 

to standard bridge compensation, leads to insuffi cient electrode 
compensation (Figures 5C1,C2 red traces) since small errors in 
the estimation of the electrode voltage result in high-frequency 
electrode artifacts (compare with Brette et al., 2008, supplemental 
data). In addition, using the uncorrected electrode kernels K

e_outside
 

for offl ine compensation (Figures 5C1,C2 blue traces) causes an 
incorrect estimation of V

n
 since the overall electrode resistance is 

overestimated in this case.
In essence, this indicates that the PNEC procedure can be used 

for a direct estimation of the electrode kernel and offl ine subtrac-
tion of the electrode voltage in the time-domain. For some applica-
tions, such as voltage-, or dynamic-clamp experiments, an offl ine 
compensation, however, is not suffi cient. Nevertheless it is clear that 
the PNEC procedure to determine the electrode kernel can also be 
used in combination with online AEC (Brette et al., 2008), as long 
as the electrode is measured twice: before entering a neuron and 
inside a neuron. It should also be noted, that for online AEC using 
the PNEC electrode kernel estimation it is more convenient to use 
capacitance compensation from the amplifi er, as also suggested 
for normal AEC (Brette et al., 2008), which supersedes the voltage 
deconvolution step.

DISCUSSION
The new Piece-wise Non-linear Electrode Compensation (PNEC) 
method provides a way to take into account the non-linear effects of 
arbitrarily complex electrode properties in the frequency-domain, 
without online control or compensatory manipulations during 
the recording. This not only avoids the uncertainties involved in 
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is the upper limit for reliable neuronal impedance measurements 
with sharp, high-resistant electrodes using PNEC, which covers the 
important frequency range for most neuronal transfer functions. 
PNEC is capable of estimating neuronal transfer functions with 
high-resistant sharp electrodes and is thus a reasonable tool to cor-
relate intrinsic membrane properties with synaptic signal process-
ing in functionally intact whole brain preparations. The resulting 
neuronal representation in the frequency-domain can be used to 
analyze membrane properties and the different contributions of 
ion channels (Hutcheon and Yarom, 2000). It even is feasible to use 
these neuronal frequency responses to obtain Hodgkin–Huxley 
type models (Moore et al., 1995; Murphey et al., 1995; Booth et al., 

1997; Tennigkeit et al., 1998; Saint Mleux and Moore, 2000; Roth 
and Häusser, 2001; Erchova et al., 2004; Taylor and Enoka, 2004; 
Idoux et al., 2008). In combination with synaptic activation (e.g. 
Pfanzelt et al., 2008) it is now possible to estimate the synaptic 
signal processing properties and transfer functions of individual 
neurons within an entire network.
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