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and possible underlying mechanisms see (Olson et al., 2006; Fabel 
and Kempermann, 2008). Based on a population genetic study we 
found that most of the net neurogenic regulation is determined 
not by the expansion phase but rather by the control of survival 
(Kempermann et al., 2006), which might indicate that a survival-
promoting effect in response to a cognitive stimulus exerts greater 
defi nite control on adult neurogenesis than the activity-dependent 
expansion of the precursor cell pool. Finally, we found that con-
tinued physical activity counteracted the physiological decrease in 
precursor cell proliferation in the aging dentate gyrus and thereby 
maintained the potential for neurogenesis at a level corresponding 
to a much younger age (Kronenberg et al., 2006). Supposedly in the 
absence of additional cognitive stimuli this potential, however, was 
not translated into a net increase in neurogenesis.

At this point the obvious question seemed, that if precursor cell 
proliferation were enhanced by RUN, would subsequent exposure 
to ENR recruit additional new neurons from the increased pool of 
progenitor cells (RUNENR)? In that case, the increase due to the 
sequential stimulation might theoretically be either proportional or 
over-proportional compared to the effects of enrichment without 
prior priming by physical activity. Alternatively, if the recruitment 
by ENR were independent of the size of the available precursor 

INTRODUCTION
In the adult hippocampus, new granule cell neurons develop from 
a resident population of radial glia-like precursor cells over a series 
of identifi able intermediate steps (Kempermann et al., 2004). In 
the course of neuronal development different stages are differen-
tially regulated and infl uenced by inherited traits and differentially 
sensitive to external stimuli. We are particularly interested in how 
“activity” regulates adult neurogenesis and broadly distinguish 
between the effects of physical exercise and cognitive stimulation. 
Physical exercise, like voluntary running in a running wheel (RUN), 
increases the proliferation of precursor cells in the subgranular zone 
of the dentate gyrus, thereby expanding the pool of progenitor cells 
that are available for further differentiation (van Praag et al., 1999; 
Kronenberg et al., 2003). In contrast, stimuli that are supposedly 
more specifi c to hippocampal function have no or limited effect on 
cell proliferation but recruit new neurons for long-term survival. 
We have used environmental enrichment (ENR) to demonstrate 
this survival-promoting effect (Kempermann et al., 1997, 2002; 
Kempermann and Gage, 1999; Kronenberg et al., 2003); others 
have shown similar results with specifi c stimuli such as learning 
tasks (Gould et al., 1999; Dobrossy et al., 2003; Leuner et al., 2004; 
Hairston et al., 2005). For a more detailed review of this difference 
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cell pool – as long as this pool was large enough to allow adequate 
recruitment – we expect to fi nd net neurogenesis in RUNENR iden-
tical to enrichment alone. In that case, only the functional demand 
would dictate the magnitude of the neurogenic effect.

From our previous experiments we knew that ENR would not 
stimulate proliferation (Steiner et al., 2008) and that upon sustained 
exposure to RUN the acute effects of RUN on precursor cell prolif-
eration would wear off (Kronenberg et al., 2003). The peak of the 
pro-proliferative effect (in terms of the number of precursor cells 
in cell cycle) had been after 10 days, so that we chose 10 days for the 
duration of the RUN phase. We chose the following ENR phase to be 
5 weeks because after such period new granule cells have matured 
and numbers have stabilized (van Praag et al., 2002; Jessberger and 
Kempermann, 2003; Kempermann et al., 2003). Finally, the ENR 
phase began only after the cells had been labeled with bromode-
oxyuridine (BrdU) during the last 3 days of the RUN phase to 
ensure that we would only measure the ENR-induced survival effect 
on a population of cells that had previously responded to the RUN 
stimulus. The experimental design is depicted in Figure 1.

MATERIALS AND METHODS
ANIMALS AND EXPERIMENTAL DESIGN
Forty female C57BL/6 mice, 8-weeks old at the beginning of the 
experiment, were obtained from Charles River (Sulzfeld, Germany). 
The mice were randomly distributed to four experimental groups, 
N = 10 per group (Figure 1). All animals were kept in the same 
room with a constant 12-h-light/dark-cycle and were fed with the 
same food and water ad libitum. All applicable local and federal 
regulations of animal welfare were followed. We used female mice 
because enriched environment experiments with male mice are 
confounded by their territorial behavior and the development of 
a strong and potentially stressful social hierarchy. All of our previ-
ous studies, to which we relate, have been done in female animals 
as well.

The experimental period lasted 45 days, divided into a fi rst phase 
of 10 days and a second phase of 35 days (Figure 1). According to 
our hypothesis the main experimental group consisted of mice 
that lived in a cage equipped with a running wheel during the fi rst 
phase, followed by the exposure to an enriched environment in the 
second (RUNENR). The idea was that in this condition, running 
would prime the hippocampus for the effects of enrichment that 
followed. Consequently, the fi rst control condition consisted of 
mice that were running in the fi rst phase but lived under control 
conditions in the second (RUNSTD). Because all animals were 
analyzed at the end of the 45 days, the measured effects of run-
ning in this condition represented sustained effects after 35 days 
of discontinuation of physical exercise. RUNSTD and RUNENR 
differed in the second phase only, not the fi rst. The effects of ENR 
alone were assessed in a group that lived under control conditions 
in the fi rst period but under enrichment conditions in the second 
(STDENR). In relation to RUNENR, the STDENR thus differed 
only in the fi rst phase, not the second. All three groups were com-
pared to mice living under control conditions (STDSTD). At the 
end of the fi rst period, fi ve mice of each group received single daily 
injections of persistent S-phase label bromodeoxyuridine (BrdU; 
50 µg/g body weight in 0.9% saline; Sigma) for 3 days. The putative 
survival- promoting effect of the ENR stimulus in phase 2 would 

thereby act on a cohort of progenitor cells generated in the last 
3 days of phase 1. The remaining animals were intended for a gene 
expression study, which failed technically.

TISSUE PREPARATION
The fi ve animals from each group that had been injected with BrdU 
were deeply anesthesized with ketamine and xylazine and perfused 
with 0.9% NaCl solution followed by 4% paraformaldehyde in 
0.1 M phosphate buffered saline. The brains were removed and 
fi xed in 4% paraformaldehyde for 24 h and then transferred in 
30% sucrose. For the generation of coronal section series (40 µm), 
brains were mounted on a dry-ice cooled copper block that was 
attached to a sliding microtome (Leica). Sections were stored in 
a cryoprotectant solution (25% ethylene glycol, 25% glycerol and 
50% 0.1 M phosphate buffer; v/v) at –20°C.

The sections were stained using free-fl oating immunohisto-
chemistry and prepared for BrdU detection by incubation in 2 N 
HCl for 30 min at 37°C and subsequent washing in 0.1 M borate 
buffer (pH 8.5) for 10 min.

ANTIBODIES
All antibodies were diluted in Tris-buffered saline (TBS; pH = 8.0) 
containing 0.2% Triton X-100 and 3% donkey serum. We here 
used the following primary antibodies: rat anti-BrdU (Harlan 
Seralab) 1:500, mouse anti-NeuN (Chemicon) 1:100, goat anti-
Dcx (Santa Cruz) 1: 250, rabbit anti-S100β (Swant) 1:2000. 
Secondary antibodies, raised in donkey and conjugated with 
either FITC, RhodamineX, CY-5 or Biotin were purchased from 
Jackson Laboratories (Distributor: Dianova) and diluted 1:500 for 
immunohistochemistry.

IMMUNOHISTOCHEMISTRY AND MICROSCOPY
For quantifi cation of BrdU-immunoreactive cells, every sixth 
section of the coronal section series was subjected to immuno-
histochemistry. Here, primary antibodies were recognized with 
biotinylated secondary antibodies and visualized with the per-
oxidase method (ABC system, Vectastain®, Vector Laboratories) 
and nickel- intensifi ed diaminobenzidine  as chromogen. Using 
conventional light microscopy, BrdU-immunoreactive cells in 
the subgranular zone and granule cell layer of the dentate gyrus 
were counted throughout the entire rostro-caudal extent of the 
hippocampus. The optical dissector method was modifi ed in that 
cells appearing in the uppermost focal plane were excluded from 
analysis, as described previously (Kempermann et al., 2003).

For phenotyping of BrdU-immunoreactive cells, every twelfth 
section of the coronal section series was subjected to triple-
 immunefl uorescence labeling. After pretreatment for BrdU detec-
tion (see above) and a blocking step with Tris-buffered saline-plus 
(TBS-plus, containing 3% donkey serum and 0.2% Triton X-100) 
sections were incubated in the respective primary antibody at 4°C for 
48 h. After washing sections in TBS and TBS-plus, we exposed them 
to the respective fl uorochrome-conjugated secondary antibodies for 
4 h at room temperature. Labeled sections were mounted in polyvi-
nyl alcohol with diazabicyclo-octane as antifading substance.

BrdU-positive cells were phenotypically characterized in triple-
fl uorescent labeled sections using confocal laser scanning micro-
scopy (Leica TCS SP2). All confocal analyses were conducted in 
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sequential scanning mode to avoid cross-bleeding between chan-
nels and series of images along the z-axis (1 optical section/1 µm) 
of BrdU-positive cells were taken to demonstrate colocalization of 
immunoreactivity against BrdU and the respective antigen in the 
same cell. One hundred BrdU-positive cells randomly chosen from 
the subgranular zone and granule cell layer of the dentate gyrus 
were examined for NeuN or S100β immunoreactivity. Percentages 
of immunohistochemical phenotypes were multiplied with the total 
number of BrdU-immunoreactive cells to achieve the absolute 
number of the respective phenotype.

STATISTICAL ANALYSES
All statistical analyses of morphological data were done with Statview 
4.5.1 for Macintosh. Factorial analyses of variance (ANOVA) were 
used, followed by Fisher post hoc test, where appropriate.

RESULTS
In view of previous studies (van Praag et al., 1999; Kronenberg 
et al., 2003), we predicted that both STDENR and RUNSTD would 
increase adult neurogenesis as assessed by the number of BrdU-
labeled cells that expressed neuronal marker NeuN 5 weeks after 
the injection of BrdU. The important difference to the previous 
reports was the temporal separation of the two stimuli, RUN in 
phase 1 and ENR in phase 2 (Figure 1) combined with STD con-
ditions for the remaining time. The pro-proliferative stimulus of 
RUN and the survival-promoting stimulus of ENR (Kronenberg 
et al., 2003) were deliberately directed to the phase of their largest 
presumed effectiveness in relation to the time-point of precursor 
cell division.

All animals were injected with BrdU in the last 3 days of the 
1st phase of the experiment, hence before the 2nd phase of the 
experiment (Figure 1). We fi rst assessed the total number of BrdU-
positive cells per hippocampus (Figures 2A,B,E–H and 3, 1st group 
of bars; ANOVA: F

(3, 16)
 = 9.34, p = 0.0008). The direct comparison 

of RUNSTD against STDSTD revealed that RUNSTD alone had 
an increasing effect on net neurogenesis, although the exercise had 
been discontinued during the postmitotic period, in which any 

survival-promoting effect would have to be expected. This result 
was visible on the level of both the number of BrdU-labeled cells 
(Figures 2E,G and 3, 1st group of bars), refl ecting the survival of 
newborn cells, as well as the number of neurons (BrdU/NeuN) 
among these cells (Figures 2C,D and 3, 2nd group of bars; ANOVA: 
F

(3, 16)
 = 11.49, p = 0.0003). From this fi nding we can conclude that 

RUN seems to induce an intrinsic program of neurogenesis that 
can evolve even in the absence of sustained activity. Consistent with 
previous data STDENR also appeared to increase adult neurogen-
esis compared to STDSTD but the direct comparison here missed 
conventional statistical signifi cance (p = 0.06 for BrdU/NeuN 
and p = 0.08 for total survival). There was no difference between 
RUNSTD and STDENR for either of these parameters.

The sequential combination of RUN and ENR led to sig-
nifi cantly greater BrdU-counts compared to RUNSTD and to 
STDENR (as well as to STDSTD). This was also refl ected in the 
number of BrdU/NeuN-double positive cells (Figures 2D and 3, 
2nd group of bars). STDENR and RUNENR caused an increase in 
astrocytes (as measured by BrdU/S-100ß-positive cells, Figure 3, 
3rd group of bars; ANOVA: F

(3, 16)
 = 3.89, p = 0.03). BrdU-cells 

of an undetermined phenotype were signifi cantly increased in 
STDENR and RUNENR as well (Figure 3, 4th group of bars; 
ANOVA: F

(3, 16)
 = 3.89, p = 0.03).

We calculated the relative effects of enrichment on either naïve 
mice (STDSTD) or mice primed with physical exercise (RUNSTD) 
and found an increase by factor 1.32 for the comparison STDENR 
against STDSTD and 1.38 (based on the means) for the comparison 
RUNENR vs. RUNSTD. We conclude that the effects of enrichment 
on neurogenesis are thus dependent on the potential provided by 
proliferative precursor cells.

DISCUSSION
Here we have shown that, as hypothesized from a previous study 
(Kronenberg et al., 2006), physical activity can “prime” the hip-
pocampal dentate gyrus towards an increased level of neurogenesis 
elicited by ENR. In contrast to previous enrichment experiments 
in our group (Kronenberg et al., 2003), exposure to the enriched 

FIGURE 1 | Experimental design. During phase 1 of the experiment mice were 
either given access to a RUN ad libitum (RUNSTD and RUNENR group) or were 
housed under standard laboratory conditions (STDSTD and STDENR group). 
Dividing hippocampal precursor cells were labeled with BrdU during the last 
3 days of phase 1. Subsequently, in phase 2 (duration: 35 days), animals were 

either exposed to an enriched environment (STDENR and RUNENR groups) or 
housed under standard laboratory conditions (STDSTD and RUNSTD group). 
Animals were killed after phase 2 was completed and brain tissue was prepared 
for immunohistochemistry. For further details see Sections “Introduction and 
Materials and Methods”.
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environment in ENR began only after labeling dividing precursor 
cells with BrdU. Consequently, data for ENR reveal only effects 
of enrichment on cells in a postmitotic stage. The results of an 
increased number of new neurons (BrdU/NeuN positive) confi rm 
that enrichment exerts a survival-promoting effect on the progeny 
of dividing cells.

Taken together these data indicated that our experimental 
paradigm showed the expected effects with regards to both RUN 
and ENR, albeit with an important modifi cation over previous 

 studies. Analysis of the RUNENR condition revealed an even larger 
effect on adult neurogenesis than either stimulus alone (Figure 3). 
This fi nding suggests that effects on precursor cell proliferation 
(as in RUNSTD) and survival of the progeny (as in STDENR) 
are additive.

This fi nding further supports our hypothesis that physical 
exercise might help to maintain a potential for adult neurogenesis 
that goes unused in the absence of appropriate additional (cogni-
tive) stimuli (Kempermann, 2008). Environmental enrichment as 

FIGURE 2 | Activity-induced changes in the number of BrdU-labeled cells and 

new neurons in the dentate gyrus. (A,B) Confocal projections of the dentate 
gyrus (z-stack of 10 optical sections with 1.7-µm thickness). BrdU, Red; DCX, Blue. 
Scale bar, 25 µm in (A–D) Confocal image (optical section of 1-µm thickness) of 

STDSTD in (C) and RUNENR in (D) showing NeuN, Green; BrdU, Red, S100β, Blue; 
Inset: a, NeuN; b, BrdU; c, S100β. (D) Arrowheads in red indicating colocalization of 
BrdU and NeuN. Scale bar, 25 µm in (C,D). (E–H) Brightfi eld images of BrdU-
positive cells in the dentate gyrus. Scale bar (in E for E–H), 100 µm.
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well as (at least in some studies) specifi c learning stimuli exert a 
survival-promoting effect on newborn neurons, whereas physical 
activity acts primarily through the proliferation of precursor cells 
(Kronenberg et al., 2003).

Precursor cells, arguably, represent the cellular potential for neu-
rogenesis. Selection for survival largely occurs on the postmitotic 
stage, when the cells have made fi rst synaptic contacts (Brandt 
et al., 2003; Kempermann et al., 2004). Enrichment during a criti-
cal period in the development of a new cell would serve as an 
appropriate behavioral stimulus to exert this rescuing function. 
The present experiment was designed to maximize this effect. 
With a period of 10 days of exercise we chose a paradigm that 
would lead to a maximum of new dividing cells, as demonstrated 
previously (Kronenberg et al., 2006). With 5 weeks of enrichment 
we safely covered the window of activity-dependent selection 
assumed by most authors (Gould et al., 1999; Greenough et al., 
1999; Dobrossy et al., 2003; Leuner et al., 2004; Hairston et al., 
2005; Ehninger and Kempermann, 2006). It should be noted that 
in long-term experiments, both ENR and voluntary wheel running 
have effects that are not readily visible in acute settings, because an 
additional  survival-promoting effect acts upon the precursor cells 
and not just their progeny in both paradigms (Kempermann and 
Gage, 1999; Kempermann et al., 2002; Kronenberg et al., 2006). 
Long-term wheel running had both pro-proliferative and  survival-
 promoting effects, the latter effect being responsible for the increase 
in “potential” for neurogenesis (Kronenberg et al., 2006). When we 
published our fi rst report on the effects of exposure to an enriched 
environment on adult hippocampal neurogenesis in mice in 1997 
(Kempermann et al., 1997), our enriched  environments contained 

running wheels because we had assumed that physical activity 
would have to be part of any enrichment that deserved this name 
(Rosenzweig and Bennett, 1996). We later found that physical exer-
cise alone had distinct effects on adult hippocampal neurogenesis 
(van Praag et al., 1999). In all our studies after 1998, the enriched 
environments did not contain running wheels. The present mor-
phological and molecular data confi rm that both “activity” para-
digms are substantially different and can be combined to obtain 
specifi c additive regulatory effects.

Our present data also support the idea (at p = 0.06) that ENR 
exerts a survival-promoting neurogenic effect in the absence of 
a preconditioning of the progenitor cell population by a pro-
 proliferative stimulus. In a previous study we had exposed mice 
to ENR immediately after injecting a single dose of BrdU and 
examined the brains 24 h later. In that study we had found that 
ENR had an acute effect on the late, neuronally committed 
intermediate progenitor cells (type-3 cells) and not only on the 
postmitotic progeny (Steiner et al., 2008). In the ENR groups of 
the present study the animals were also placed in the enriched 
environment after BrdU had been injected. The number of cells 
of an undetermined phenotype was signifi cantly increased in 
the STDENR group, consistent with an effect on precursor cells 
and not only net neurogenesis. Long-term stimulation by ENR 
resulted in a lasting increase in proliferating precursor cells 
(Kempermann et al., 2002). A similar increase persisted also after 
withdrawal from ENR for 3 months (Kempermann and Gage, 
1999). A follow-up study will now address the changes at the 
level of the precursor cells in RUNENR compared to STDENR 
and RUNSTD.

It has sometimes been postulated that the particular type of 
physical activity might infl uence the results, because in studies 
on the effects of water maze training on neurogenesis, a yoked 
control that swam for the same time as the groups in the learn-
ing test had no signs of increased neurogenesis (van Praag et al., 
1999; Ehninger and Kempermann, 2006). However, in those studies 
swimming lasted only a few minutes per day, so that from those 
data the conclusion that swimming would be less effi cient than 
running is not justifi ed (Ra et al., 2002). Voluntary wheel running 
and forced exercise in treadmill paradigms thus remain the best-
studied paradigms of physical exercise in rodents with respect to 
their effects on adult neurogenesis (van Praag et al., 1999, 2005; 
Trejo et al., 2001; Ra et al., 2002; Kronenberg et al., 2003, 2006; 
Kim et al., 2004; Naylor et al., 2005; Wolf et al., 2006; Fabel and 
Kempermann, 2008). The focus on running is problematic because 
physical activity is more than those aspects assessable in the wheel 
running paradigm. In addition, other modalities of activity might 
provide equivalent stimulation upon investigation.

In theory, also a completely reverse experiment is imaginable, 
in which the effects of RUN could be investigated in animals that 
had previously experienced an enriched environment. In terms of 
the order, in which stimuli act in the course of neuronal develop-
ment (fi rst stimulation of proliferation than selective induction 
of survival) the focus on the sequence RUNENR (rather than 
ENRRUN) seemed logical. From our previous and the new data 
no simple hypothesis could be derived what to expect under the 
reverse experimental conditions. On the other hand, stress has 
been shown to interfere with the exercise-induced regulation of 

β

FIGURE 3 | The number of BrdU-labeled cells in the dentate gyrus was 

determined along with the cellular phenotypes of BrdU-positive cells 

(NeuN indicating a neuronal, S100β an astroglial fate). We found RUNSTD 
to cause an increased number of BrdU-labeled cells as well as new neurons 
compared to STDSTD. RUNENR resulted in a further increase in the number 
of BrdU-positive cells and newborn neurons. Therefore, the effects of wheel 
running and environmental enrichment on adult hippocampal neurogenesis 
were additive. Fisher post hoc test after ANOVA.
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adult neurogenesis (Stranahan et al., 2006; Kannangara et al., 
2009), so that also benefi cial modulation through ENR is con-
ceivable. In contrast to the relatively acute situation in the present 
study, we know from long-term experiments (over 6 months) that 
ENR can increase the pool of precursor cells (Kempermann and 
Gage, 1999; Kempermann et al., 2002) similar to how does exer-
cise (Kronenberg et al., 2006). A considerably different experi-
mental design than in the present study would be required to 
investigate a potential interaction between RUN and ENR in that 
long-term setting.

A surprising key fi nding of the present study was that the rela-
tive increase in neurogenesis evoked by ENR was the same (about 
plus 30%) in ENR vs. CTR and in RUNENR vs. RUN, suggest-
ing that very limited interaction effects existed. This would imply 
that the size of the population of proliferating precursor cells 
would affect the number of cells that are recruited by enrichment. 
Alternatively one might have expected that, if a given cognitive 
stimulus recruited only exactly the number of neurons that stood 
in some inherent relation to the stimulus itself, further increasing 
the number of proliferating precursor cells would not increase the 
number of new neurons. Thus, although precursor cell prolifera-
tion only determines roughly 20% of the variation found in net 
neurogenesis on a genetic level (Kempermann et al., 2006), the 
number of precursor cells being “activated” by running affected 

the net effect on neurogenesis. It is thus conceivable that physical 
exercise increases neurogenic potential beyond the proliferation 
of precursor cells.

The comparable relative increase in neurogenesis by about 30%, 
independent of previous exposure to the RUN condition does not 
prove that the effect is in fact identical because we do not know 
the baseline values at 10 days. With those data at hand one could 
also ask whether under RUNENR conditions the relative survival-
promoting effect of ENR in relation to the number of (labeled) cells 
available after 10 days might be different after previous “priming” 
with RUN. Future studies will address this possibility.

In summary, our data indicate that physical activity and expo-
sure to an enriched environment act through different mechanisms 
but are additive in their effect on adult hippocampal neurogenesis. 
We propose that physical activity can “prime” the neurogenic region 
of the dentate gyrus for increased neurogenesis, if exposed to an 
identical more cognitive stimulus as presumably represented by 
the enrichment paradigm.
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