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1984; Rioux and Joyce, 1993; Betarbet and Greenamyre, 2004). 
Furthermore, intracerebroventricular administration of substance 
P increases dopamine content in 6-hydroxydopamine (6-OHDA) 
lesioned rats (Krasnova et al., 2000), which implicates its potential 
in the treatment of Parkinson’s disease. In addition, substance P 
level in striatum is reduced in Huntington’s disease (Lastres-Becker 
et al., 2002). Extracellular recordings have also shown ventral pal-
lidum neurons are excitable by microiontophoretic application 
of substance P (Napier et al., 1995). In rat striatum, substance P 
has been reported to depolarize cholinergic and somatostatinergic 
interneurons (Aosaki and Kawaguchi, 1996).

Being a critical component in the basal ganglia, the globus pal-
lidus plays a signifi cant role in mediating movement in health and 
disease state. It is well known that dopamine depletion leads to 
hypoactivity and oscillatory activity of globus pallidus neurons 
which are associated with the hypokinetic symptom and tremor 
observed in parkinsonism (Albin et al., 1989; Filion and Tremblay, 
1991; Chesselet and Delfs, 1996; Wichmann and DeLong, 1996; 
Bergman et al., 1998; Plenz and Kital, 1999; Magill et al., 2001). 
Early anatomical studies have demonstrated the presence of both 
substance P and its receptors in globus pallidus (Mantyh et al., 
1984). In normal rat globus pallidus, substance P immunolabeling 
is localized in fi bers without being expressed in the cell bodies. 
However, following nigrostriatal lesion, substance P immunore-
activity can be observed in both fi bers and numerous cell bodies 
of pallidal neurons (Martorana et al., 2003). In contrast to sub-
stance P immunolabeling, a moderate level of substance P receptors 

INTRODUCTION
Substance P, a widely distributed undecapeptide, has been estab-
lished as a neurotransmitter or neuromodulator in central nervous 
system. By acting on neurokinin-1 receptors (substance P recep-
tors), substance P has been demonstrated to modulate neuronal 
activity in a number of brain regions. Experimental and preclinical 
evidence suggested that substance P is involved in several neu-
rological diseases, including degeneration of human motoneu-
rons (Vacca-Galloway and Steinberger, 1986; Tang et al., 1990; 
Yung et al., 1992), depression (Santarelli and Saxe, 2003; Czeh 
et al., 2005), Alzheimer’s disease (Rioux and Joyce, 1993; Rosler 
et al., 2001), Parkinson’s disease (Pezzoli et al., 1984; Rioux and 
Joyce, 1993) and Huntington’s disease (Lastres-Becker et al., 2002). 
In terms of cellular actions, previous electrophysiological studies 
have demonstrated that substance P can enhance fi ring rate and 
depolarized neurons in several brain areas (Stanfi eld et al., 1985; 
Norris et al., 1993; Shirakawa and Moore, 1994; Napier et al., 1995; 
Minabe et al., 1996; Li and Guyenet, 1997; Wang and Robertson, 
1997, 1998; Mitrovic and Napier, 1998; Preston et al., 2000; Bailey 
et al., 2004). It is therefore generally regarded as an excitatory neu-
rotransmitter or neuromodulator.

Anatomical studies have revealed a high expression level of 
substance P and its receptor in the basal ganglia, which is in line 
with its involvement in basal ganglia motor dysfunctions. Indeed, 
previous studies have shown that the concentration of substance 
P in cerebrospinal fl uid and the expression of substance P or its 
receptor in striatum are altered in Parkinson’s disease (Pezzoli et al., 
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is expressed in rat globus pallidus (Mantyh et al., 1984). Similarly, 
numerous substance P receptors are observed in human external 
globus pallidus which exhibits a marked decreasing rostrocaudal 
gradient (Mounir and Parent, 2002). In Parkinson’s disease, there is 
a reduction in the density of substance P receptors in lateral globus 
pallidus (Fernandez et al., 1994). Therefore, to fully understand the 
role of substance P in basal ganglia under normal and pathological 
conditions, it is important to determine the actions of substance P 
in the globus pallidus. Recently, our previous in vivo extracellular 
recording and behavioral experiments revealed that substance P can 
excite globus pallidus neuron (Cui et al., 2007). To further iden-
tify the cellular mechanisms of substance P-induced excitation in 
globus pallidus, whole-cell patch-clamp recording was employed 
in the present experiment to address this question.

MATERIALS AND METHODS
ELECTROPHYSIOLOGICAL RECORDINGS
In vitro slice preparation
Sprague-Dawley rats aged 12–14 days were used for the prepara-
tion of acute brain slices. The animals were sacrifi ced by decapita-
tion. The brains were immediately removed and placed in ice-cold 
artifi cial cerebrospinal fl uid (ACSF) of the following composition 
(in mM): NaCl 125, KCl 4.0, MgSO

4
 1.2, CaCl

2
 2.5, KH

2
PO

4
 1.2, 

glucose 11 and NaHCO
3
 26, which was continuously bubbled with 

95% O
2
 and 5% CO

2
. Hemi-coronal slices (250 µm) containing the 

globus pallidus were cut using a vibrating microtome (Campden 
Instruments). After equilibration in ACSF for at least 30 min, the 
slices were transferred to a small volume chamber mounted on an 
upright microscope (Zeiss Axioskop), and superfused with ACSF at 
a rate of 1.5–2.0 ml/min maintained at a temperature of 34 ± 1°C. 
Neuronal soma and proximal dendrites of neurons were directly 
visualized by a combination of differential interference contrast 
optics and contrast-enhanced video microscopy. All procedures 
were approved by the Animal Research Ethics Committee, the 
Chinese University of Hong Kong.

Whole-cell patch-clamp recordings
Whole-cell patch-clamp recordings from globus pallidus neu-
rons were obtained using a patch-clamp amplifi er (LM/PCA, List 
Medical). Whole-cell pipettes (P-97, Sutter Instrument) typically 
had a resistance of 3–4 MΩ. For current-clamp recording and some 
voltage-clamp experiments, the pipettes were fi lled with an inter-
nal solution of the following composition (in mM): KMeSO

4
 130, 

KCl 10, HEPES 10, EGTA 1, MgCl
2
 2, Mg-ATP 2, Na

3
-GTP 0.4 and 

the pH was adjusted to 7.25–7.30 with 1 M KOH. MeSO
4
, rather 

than gluconate, was used to substitute Cl− because gluconate had 
been reported to inhibit hyperpolarization-activated non-selective 
current and calcium activated potassium current (Velumian et al., 
1997) that may alter the electrophysiological properties and the 
action of substance P in globus pallidus. In order to observe the 
GABA

A
 receptor-mediated synaptic current, the internal solution 

containing (in mM): KCl 140, HEPES 10, EGTA 1, MgCl
2
 2, Na

2
ATP 

2 and Tris GTP 0.4 was used. The inclusion of 140 mM of KCl in the 
recording pipettes reversed the polarity of the currents from out-
ward to inward and enhanced their detection. Monitoring through 
a television connected to the camera, a pipette was placed on the 
soma of a pallidal neuron and conventional whole-cell recording 

was made. Normally no series resistance compensation was applied 
but the cell was rejected if the series resistance increased signifi -
cantly (>20%) during recording. The current signals were fi ltered 
at 3 kHz. On- or off-line digitization (10 kHz) was made via the 
Digidata-pClamp system (Axon Instruments).

ANALYSIS OF CURRENT- AND VOLTAGE DATA
Membrane potential and current data measurements and analysis 
were performed with Clampfi t 8.1. Computer fi les containing infor-
mation of synaptic currents were analyzed by Minianalysis program 
(Synaptosoft, version 6), which automatically generates various 
parameters including the time of occurrence, peak amplitude and 
kinetics. Statistical comparison of two cumulative probabilities was 
based on the Kolmogorov–Smirnov test.

IMMUNOHISTOCHEMISTRY
Sprague–Dawley rats aged 12–14 days were deeply anesthetized 
with urethane and perfused transcardially with normal saline fol-
lowed by 4% paraformaldehyde in 0.1 M phosphate buffer (PB, 
pH 7.4). Then the brains were removed and postfi xed with 4% 
paraformaldehyde for 6 h, after which they were transferred into 
30% sucrose in 0.1 M PBS (4°C) until they sank. Coronal cryo-
tome sections (18 µm) were cut through the globus pallidus and 
collected on poly-l-lysine-coated slides. After overnight drying at 
room temperature, the sections were treated with 0.3% H

2
O

2
 in 

methanol for 15 min to inactivate non-specifi c peroxidase reac-
tions. After rinsing in PBS three times for 15 min, the sections 
were blocked in 5% normal goat serum at room temperature for 
half an hour. The primary antibody against substance P receptor 
(1:100; a gift from Shigemoto Ryuichi) diluted in antibody dilu-
ent (Maixin-Bio, China) was then applied and incubated at 4°C 
overnight. After repeated washing, the sections were incubated in 
Post-blocking (Maixin-Bio, China) for 20 min at room tempera-
ture, rinsed again and incubated for a further 30 min in poly-HRP 
Anti-Ms/Rb IgG (Maixin-Bio, China) at room temperature. After 
washing, the immunoreactive sites were visualized by incubation 
in 0.05% 3,3′-diaminobenzidine tetrahydrochloride in 0.1 M Tris 
buffer. The reaction was stopped after 3–4 min by several washes in 
Tris buffer. Afterwards, the sections were rinsed, dehydrated, cleared 
in xylene and coverslipped. The specifi city of immunolabelling was 
demonstrated by the absence of labelling for substance P receptor 
when the primary antibody was omitted.

DRUGS AND STATISTICS
[Sar9, Met(O

2
)11] substance P (SM-SP), (2S)-3-[[(1S)-

1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxylpropyl] 
(phenylmethyl)phosphinic acid (CGP55845) and (RS)-α-ethyl-4-
carboxyphenylglycine (E4CPG) were obtained from Tocris. ±-2-
Amino-5- phosphonopentanoic acid (AP5), 6-cyano-7- nitroquino 
xaline-2,3-dione (CNQX), bicuculline, tetrodotoxin (TTX), 
4- aminopyridine (4-AP), tetraethylammonium (TEA) and barium 
chloride dihydrate were obtained from Sigma/RBI. SR140333B was 
kindly provided by Sanofi -Aventis-Chilly-Mazarin.

The data are expressed as means ± SEM. Paired t-test was used to 
compare the difference before and after drug application, Un-paired 
t-test was used to compare the difference between different treat-
ment groups. The level of signifi cance was set at a P value of 0.05.
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RESULTS
SM-SP DEPOLARIZED AND EXCITED GLOBUS PALLIDUS NEURONS
Under current-clamp recordings, application of 1 µM SM-SP 
to the superfusion medium signifi cantly increased the fi ring 
rate of spontaneously active globus pallidus neurons (con-
trol 10.9 ± 2.1 Hz, SM-SP 16.3 ± 2.6 Hz, wash 11.3 ± 2.0 Hz, 
n = 7, P < 0.01; Figure 1A). In some cells in which the fi ring 
was  suppressed by injecting a hyperpolarizing current, SM-SP 
could induce fi ring in a reversible manner. There was clear 
 desensitization of the response to SM-SP. In six cells exam-
ined, a second application of SM-SP with an interval of 10 min 

 generated a response which was 62.7 ± 8.3% of the fi rst response. 
Therefore, in subsequent experiments, only one dose of SM-SP 
was used in one cell per slice. To determine whether SM-SP-
induced excitation is independent of presynaptic fi ring, TTX 
was used to block action potential generation in the neurons. In 
the presence of 0.5 µM TTX, SM-SP induced a signifi cant mem-
brane depolarization (7.8 ± 1.8 mV, n = 12, P < 0.01; Figure 1B). 
Consistent with the current-clamp observation, when the cells 
were voltage-clamped at −70 mV, 1 µM SM-SP induced a small 
inward current of 34.2 ± 1.9 pA in the presence of 0.5 µM TTX 
(n = 12; Figure 1C).

FIGURE 1 | Effects of SM-SP on globus pallidus neurons. (A) Application of 1 µM SM-SP increased spontaneous fi ring rate of globus pallidus neuron. (B) In 
the presence of 0.5 µM TTX, 1 µM SM-SP depolarized globus pallidus neuron. (C) Inward current induced by 1 µM SM-SP in the presence of TTX under voltage-
clamp recordings. (D) The presence of neurokinin-1 receptor antagonist, SR140333B, blocked SM-SP-induced depolarization.
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SYNAPTIC TRANSMISSION WAS NOT INVOLVED IN SM-SP-INDUCED 
DEPOLARIZATION
It has been reported that substance P could affect the release of 
glutamate and GABA from nerve terminals. To eliminate the possible 
involvement of glutamate or GABA release at a presynaptic site, in 
addition to TTX, ionotropic glutamate receptor antagonists CNQX 
(20 µM) and AP5 (50 µM), group I and group II metabotropic 
glutamate receptor antagonist E4CPG (300 µM), GABA

A
 receptor 

antagonist bicuculline (10 µM) and GABA
B
 receptor antagonist 

CGP55845 (2 µM) were applied to the perfusion medium. In these 
cases, SM-SP still depolarized globus pallidus neurons (6.2 ± 1.4 mV, 
n = 5, P > 0.05 compared to SM-SP with TTX alone), suggesting that 
the depolarization was induced by a direct postsynaptic action.

DEPOLARIZATION INDUCED BY SM-SP WAS MEDIATED BY 
NEUROKININ-1 RECEPTORS
We used a selective neurokinin-1 receptor antagonist, SR140333B 
to verify the type of neurokinin receptors mediating SM-SP-
induced depolarization. In the presence of TTX, pretreatment 
of 2 µM SR140333B could block the depolarization induced by 
SM-SP (0.6 ± 0.3 mV, n = 8, P < 0.01 compared with SM-SP with 
TTX alone; Figure 1D). The antagonist itself had no effect on the 
membrane potential.

DOSE-DEPENDENT EFFECT OF SM-SP
The dose-dependency of the effect of SM-SP was examined. Only 
one dose per cell was examined to avoid the complication of recep-
tor desensitization. As can be seen in Figure 2, the does-response 
curve was bell-shaped, with the biggest effect observed at an SM-SP 
concentration of 0.3 and 1.0 µM.

IONIC MECHANISMS OF ACTION OF SM-SP
To determine the ionic mechanisms of SM-SP-induced depolariza-
tion, we monitored the conductance change of pallidal neurons by 
delivering negative current pulses (100 pA, 100 ms) to the  neurons 

at 0.5 Hz. In 12 neurons recorded, SM-SP-induced membrane 
depolarization (8.0 ± 1.1 mV) was associated with a small but clear 
increase in membrane resistance (17.1 ± 3.3%, n = 12; Figure 3A). 
To confi rm the involvement of potassium conductance in mediat-
ing the actions of SM-SP in globus pallidus, the effects of potassium 
channel blockers were studied. In the presence of 1 mM barium, 
30 mM TEA and 5 mM 4-AP, SM-SP-induced inward current was 
attenuated signifi cantly (1.9 ± 1.3 pA, n = 9, P < 0.001 compared 
to SM-SP with TTX alone; Figure 3B). To evaluate the reversal 
potentials of SM-SP-induced conductance, the current-voltage rela-
tionship in the presence of TTX was determined. The mean value 
of reversal potential was −95.0 ± 2.6 mV in the six cells studied, 
which is reasonably close to the potassium equilibrium potential. 
A typical I-V plot is shown in Figure 3C.

EFFECTS OF SM-SP ON SYNAPTIC CURRENTS
SM-SP enhanced spontaneous inhibitory postsynaptic currents
To observe the effects of substance P on spontaneous inhibitory 
postsynaptic currents (sIPSCs), the cells were held at −70 mV. 
20 µM CNQX and 50 µM AP5 were used in the superfusion solu-
tion to block ionotropic glutamate receptor-mediated synaptic 
currents. The remaining currents were sensitive to 10 µM bicuc-
ulline confi rming their GABAergic nature. When 1 µM SM-SP was 
applied to the superfusion medium, the frequency of sIPSCs was 
increased signifi cantly (control 5.6 ± 1.0 Hz, SM-SP 10.0 ± 1.6 Hz, 
n = 8, P < 0.01). This effect was partially reversible when SM-SP 
was removed (wash: 6.9 ± 1.1 Hz). In addition to its effect on the 
frequency, SM-SP increased the amplitude of sIPSCs in some of 
the cells tested although there was no signifi cant difference when 
the data were pooled from all cells (control 86.9 ± 9.9 pA, SM-SP 
102.5 ± 8.9 pA, n = 8, P > 0.05; Figure 4). SM-SP had no signifi cant 
effect on the decay time and rise time of sIPSCs.

The effects of SM-SP on miniature inhibitory postsynaptic cur-
rents (mIPSCs) were examined in the presence of 0.5 µM TTX. As 
shown in Figure 5, 1 µM SM-SP induced a transient bursting-like 
increase of mIPSCs in 8 out of 12 cells recorded. The properties 
of the bursting-like increase were variable, which appeared from 
1–4 min after SM-SP application and repeated two to four times. 
Usually each bursting-like increase lasted less than 30 s. However, 
if the data were analyzed by excluding the bursts, SM-SP did not 
alter both the frequency (control 3.1 ± 0.6 Hz, SM-SP 3.0 ± 0.6 Hz, 
n = 12, P > 0.05) and amplitude (control 86.4 ± 6.2 pA, SM-SP 
82.1 ± 6.3 pA, n = 12, P > 0.05) of mIPSCs.

Lack of effect of SM-SP on excitatory postsynaptic currents
To observe the effects of substance P on spontaneous excitatory 
postsynaptic currents (sEPSCs), parasagittal slices containing both 
globus pallidus and subthalamic nucleus were cut. Bicuculline 
of 10 µM was used to block GABA

A
 receptor-mediated inhibi-

tory synaptic currents. The remaining currents were sensitive to 
20 µM CNQX and 50 µM AP5, confi rming their glutamatergic 
nature. In contrast to its action on sIPSCs, 1 µM SM-SP did not 
induce any change in the frequency (control 0.83 ± 0.29 Hz, SM-
SP 0.76 ± 0.15 Hz, n = 5, P > 0.05) and the amplitude (control 
23.8 ± 1.6 pA, SM-SP 23.6 ± 2.1 pA, P > 0.05) of the sEPSCs. We 
further isolated miniature EPSCs (mEPSCs) by including 0.5 µM 
TTX. Similar to its effects on sEPSCs, SM-SP did not alter the 

FIGURE 2 | Dose-dependent effects of SM-SP. The magnitude of membrane 
depolarization of globus pallidus neurons was dependent of the concentration 
of SM-SP. n indicates the number of cells studied. Only one dose of SM-SP 
was tested on one cell.
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frequency (control 0.50 ± 0.07 Hz, SM-SP 0.49 ± 0.07 Hz, n = 5, 
P > 0.05) and the amplitude (control 23.3 ± 2.4 pA, SM-SP 
24.0 ± 5.4 pA, P > 0.05) of mEPSCs.

LOCALIZATION OF SUBSTANCE P RECEPTOR IN RAT GLOBUS PALLIDUS
The existence of substance P receptor in globus pallidus in our 
test animals was confi rmed by immunohistochemistry. As shown 
in Figure 6A, in rats aged 14 days, a large number of substance 
P receptor immunoreactive neurons were found in globus pal-
lidus. Most of these neurons were multipolar or fusiform in 

shape, and both the soma and dendrites were positively stained. 
Immunoreactive punctates were found predominately along the 
membrane (Figure 6B).

DISCUSSION
The aim of this study was to determine the cellular action of sub-
stance P in the globus pallidus. We found that the neurokinin-1 
receptor agonist, SM-SP, depolarized globus pallidus neurons. This 
excitatory action was a direct postsynaptic effect because it per-
sisted in the presence of TTX. Previous studies in other brain areas 
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FIGURE 3 | Inhibition of potassium conductance in SM-SP-induced 

depolarization. (A) Depolarization induced by 1 µM SM-SP was 
associated with an increase in input resistance. Voltage defl ections 
were responses to periodic current injections of 100 pA for 100 ms 

at 0.5 Hz. (B) SM-SP-induced inward current was blocked by potassium 
channel blockers. (C) A typical current-voltage relationship revealed the 
decrease in membrane conductance induced by SM-SP with a reversal 
potential at −96 mV.
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mechanism of substance P-induced depolarization, which can be 
found in nucleus tractus solitarius (Bailey et al., 2004), hypoglos-
sal motoneuron (Yasuda et al., 2001), phrenic motoneuron (Ptak 
et al., 2000). In other regions, an additional increase of a cation 
conductance has been reported (Shen and North, 1992; Wang and 
Robertson, 1998). However, the enhancement of a cation current 
accounted for substance P-induced depolarization in neostriatal 
cholinergic neurons (Aosaki and Kawaguchi, 1996; Bell et al., 1998). 
The present studies on membrane conductance and reversal poten-
tial revealed that neurokinin-1 receptor activation induced depo-
larization was mediated by the closing of potassium channels which 
were active around resting membrane potential. Further experi-
ment using potassium channel blockers confi rmed the involvement 
of potassium channel.

Although most substance P receptors are localized at postsy-
naptic cell bodies and dendrites, immunocytochemical labeling 
at subcellular level also revealed the localization of substance P 
receptors at presynaptic terminals in several brain regions (Jakab 
and Goldman-Rakic, 1996; Barbaresi, 1998). In striatum, sub-
stance P receptor localized at presynaptic elements forming both 
asymmetric and symmetric synapses, which indicated that sub-
stance P may modulate excitatory and inhibitory neurotransmis-
sion acting presynaptically (Jakab and Goldman-Rakic, 1996). 
Electrophysiological studies have shown that activation of neu-
rokinin-1 receptors increased mIPSCs in nucleus tractus solitarius, 
amygdala and some lamina II neurons, suggesting the functional 

have revealed that substance P administration affected the release 
of other neurotransmitters, including glutamate and GABA (Stacey 
et al., 2002a,b; Bailey et al., 2004; Vergnano et al., 2004). However, 
the SM-SP-induced depolarization we observed was insensitive to 
the ionotropic and metabotropic glutamate and GABA receptor 
antagonists, suggesting the presence of functional postsynaptic neu-
rokinin-1 receptor on pallidal neurons. The present study showed 
that pretreatment with a selective neurokinin-1 receptor antagonist, 
SR140333B, can block SM-SP-induced depolarization. Our previous 
in vivo extracellular recordings showed that SR140333B decreased 
the spontaneous fi ring rate in some pallidal neurons, indicating 
an involvement of endogenous substance P system in modulating 
electrical activity of pallidal neurons (Cui et al., 2007). However, the 
data reported here revealed that, under the present in vitro condition, 
neurokinin-1 receptor antagonist had no effect on the membrane 
properties, suggesting that there was no tonic action of neurokinin-1 
receptor on pallidal neurons. The dose-response relationship of the 
effect of SM-SP is bell-shaped, with a maximum response observed 
at 0.3 and 1 µM of the agonist. Interestingly, such a bell-shaped dose-
response relationship has also been found in our previous in vivo 
study (Cui et al., 2007) and other studies (e.g. Khan et al., 1996; de 
Araujo et al., 1998). It is possible that a rapid desensitization of the 
receptor underlie the reduced responses at high doses.

Previous studies revealed two major ionic mechanisms under-
lying substance P-induced depolarization. In most neurons, 
inhibition of potassium conductance was the predominant ionic 

FIGURE 4 | Enhancement of sIPSCs by SM-SP. (A) The uppermost trace showed that application of 1 µM SM-SP signifi cantly increased the frequency but not the 
amplitude of sIPSCs recorded from a globus pallidus neuron. (B) The cumulative probability distributions of the inter-event intervals and amplitudes of the sIPSCs 
from the experiment shown in (A). Signifi cant differences were found in the distributions of inter-event intervals. ***P < 0.001.
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FIGURE 5 | Transient presynaptic facilitation of GABA release by 1 µM SM-SP. Typical traces showing that 1 µM SM-SP induced a transient increase in the 
frequency of mIPSCs. a and b indicated the time from which the traces plotted on a fast time-base were taken.

presynaptic  neurokinin-1 receptors on GABAergic  terminals 
(Maubach et al., 2001; Bailey et al., 2004; Vergnano et al., 2004). 
The present experiments revealed that SM-SP induced a tran-
sient increase in mIPSCs frequency, which suggested that there 
exist functional presynaptic neurokinin-1 receptors at GABAergic 
terminals. Previous studies in various brain regions suggest that 
activation of glutamate release is a common mechanism of neu-
rokinin-1 receptor activation (e.g. Liu et al., 2002; Stacey et al., 
2002b; Bailey et al., 2004). But we did not observe a similar effect 
in our preparation. However, the developmental stage of the ani-
mals tested may underlie the lack of response, which may be more 
apparent in more mature animals.

The present experiments showing that SM-SP strongly facili-
tated sIPSCs revealed that SM-SP increased GABA release either 
at the level of the presynaptic neuronal soma or at the terminal. 
Because SM-SP only induced a weak and transient increase in action 
potential independent GABA release, we hypothesize that the exci-
tation of presynaptic neuronal soma is the principal factor. As most 
striatal neurons are quiescent (Chevalier and Deniau, 1990), the 
facilitation on sIPSCs observed in the present studies is consist-
ent with the scenario that excitation of pallidal neurons resulted 
in action potential dependent GABA release from their collater-
als. However, since substance P also exerted both excitatory and 
inhibitory actions on striatal projection neurons (Galarraga et al., 
1999), we cannot rule out the possibility of increased GABA release 
from striatum. Morphological and electrophysiological studies have 

revealed that subthalamic nucleus is the major glutamatergic input 
onto the globus pallidus. Although parasagittal slices were used 
to keep the subthalamic-pallidal innervation as intact as possible, 
SM-SP had no signifi cant effect on sEPSCs which suggested that 
neurokinin-1 receptor activation may not change the excitability 
of subthalamic nucleus. In addition, the lack of effect of SM-SP on 
mEPSCs indicated no functional presynaptic neurokinin-1 receptor 
at glutamatergic terminals. However, up to now, no morphological 
studies have provided any information about the expression of 
substance P receptor in subthalamic nucleus as well as subthalamic-
pallidal pathway.

Previous studies have demonstrated that substance P in basal gan-
glia plays an important role in the pathophysiology of Parkinson’s 
disease. In parkinsonian patient and 6-OHDA or MPTP treated 
animal model, substance P mRNA and immunoreactivity in caud-
atoputamen and substantia nigra was reduced  signifi cantly (Taylor 
et al., 1992; Jenner, 1995; Perez-Otano et al., 1995; Fernandez et al., 
1996; Salin et al., 1996; De Ceballos and Lopez-Lozano, 1999). A 
reduction of substance P receptors in the putamen and lateral globus 
pallidus has also been observed in Parkinson’s disease (Fernandez 
et al., 1994). These results indicated that the reduction of substance 
P-ergic system in basal ganglia may be involved in the etiology of 
Parkinson’s disease. Therefore, it has been hypothesized that manip-
ulation of substance P-ergic system may have therapeutic effects in 
the treatment of Parkinson’s disease. Indeed, in animal model of 
Parkinson’s disease, it has been shown that pre- or post- treatment 
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with substance P or its C-terminal can promote  functional recov-
ery in partial nigrostriatal dopamine lesions (Mattioli et al., 1992; 
Nikolaus et al., 1997, 1999). However, up to now, the reasons for 
substance P-induced neuroprotection for Parkinson’s disease are 
unclear. Substance P has been shown to enhance neural growth 
(Iwasaki et al., 1989) and protect striatal neuron via its counteraction 
to glutamate-excitotoxicity (Sanberg et al., 1993). Consistently, both 
peripheral and central administration of substance P can increase 
dopamine levels in striatum and nucleus accumbens (Barnes et al., 
1990; Reid et al., 1990; Boix et al., 1992; Krasnova et al., 2000). It 
is well known that the hypoactivity of globus pallidus leads to aki-
nesia observed in Parkinson’s disease. Therefore, excitation induced 
by activation of neurokinin receptor in globus pallidus could be 
benefi cial to Parkinson’s disease symptoms. Consistent with this 
idea, morphological studies indicated that lesion of the nigrostriatal 
pathway increased the expression of substance P immunoreactivity 
in numerous pallidal cell bodies (Martorana et al., 2003), which 
may refl ect a compensatory mechanism. However, since other basal 
ganglia nuclei (including striatum, entopeduncular nucleus) also 
express substance P receptors (Arai and Emson, 1986; Jakab and 
Goldman-Rakic, 1996; Mounir and Parent, 2002; Chen et al., 2003), 
and show electrophysiological response to substance P (Aosaki and 
Kawaguchi, 1996; Galarraga et al., 1999; Kombian et al., 2003a,b), 
the therapeutic effects of substance P administration would depend 
on the interaction of its actions on these nuclei. Thus, more experi-
ments and evidence are needed before we could fully understand the 
functions of substance P in the whole basal ganglia circuit in nor-
mal conditions and movement disorders. In conclusion, the present 
study demonstrated a direct excitatory effect of neurokinin-1 recep-
tor activation on pallidal neurons, which implicates a possible role 
of substance P in the treatment of Parkinson’s disease.
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FIGURE 6 | Expression of substance P receptors in globus pallidus of rat 

aged 14 days. (A) Substance P receptors were moderately expressed by rat 
globus pallidus neurons. (B) High-magnifi cation photomicrograph shows that 
substance P receptor immunoreactive neurons were either multipolar or 
fusiform in shape, and that immunoreactivity was observed predominately 
along the membrane of both the soma (arrows) and dendrites (arrowheads) of 
rat globus pallidus neurons. Scale bars: 100 µm (A); 25 µm (B).
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