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cognition are sought to broaden the spectrum of pharmacologi-
cally addressable targets and hypotheses. The KIBRA-pathway 
appears to present a novel promising inroad for this, since KIBRA 
has been both linked to normal cognitive performance and to 
Alzheimer’s disease.

Here, we highlight the most important functional aspects of 
KIBRA, and connect genetic and biochemical data to aid in the 
formation of hypotheses related to KIBRA’s cellular and molecular 
function.

THE KIBRA GENE AND PROTEIN
KIBRA was fi rst cloned and initially characterized by Kremerskothen 
et al. (2003) as a molecule that interacts with the postsynaptic 
protein dendrin. Human KIBRA, encoded by the WWC1 gene, is 
located on chromosome 5q35.1, and contains 1113 amino acids and 
has a predicted size or 125.3 kDa. From N- to C-terminus a number 
of known protein domains have been identifi ed which are depicted 
in Figure 1. The WW-domains (aa 6–86), which cover a stretch of 
35–40 amino acids contain two conserved tryptophan residues. 
These domains are responsible for the interaction with various pro-
teins containing proline-rich sequences (PPxY). A putative nuclear 
localization signal was identifi ed between amino acids 361–376 
(Rayala et al., 2006). A C2 domain composed of two four-stranded 
β-sheets is located between amino acid 655 and 783. The 130 resi-
dues of the C2 domain are involved in binding phospholipids in a 
calcium-dependent manner. C2 domains are found in proteins with 
functions ranging from signal transduction to vesicular traffi cking 
(Rizo and Sudhof, 1998). Calcium binding induces a change in 
the electrostatic potential, which enhances phospholipid binding. 
A glutamic acid-rich region is located between amino acids 845 and 

INTRODUCTION
To fully understand how the acquisition, maintenance and recall 
of memories is achieved is one of the holy grails of neuroscience. 
Since the defi nition of the g-factor for “general cognitive ability” 
over a century ago (Spearman, 1904) and the characterization of 
the landmark patient H.M. in 1957 (Scoville and Milner, 1957), 
the fi eld of cognitive neuropsychology has been attempting to 
elucidate the brain structures and molecular players involved in 
these processes. However, most of this progress has been reached 
stepwise, working forward from brain structure to structure and 
molecule to molecule in a hypothesis-driven fashion (Lee and 
Silva, 2009). Recently, the advent of high-throughput genomic 
polymorphism scanning technologies has revolutionized our abil-
ity to search for the common genetic drivers of memory and other 
cognitive domains in a hypothesis-free manner (Goldberg and 
Weinberger, 2004; Fisher, 2006; Payton, 2006, 2009; Potkin et al., 
2009). In the case of KIBRA (also known as WWC1 for WW and C2 
domain containing 1), the topic of this review, evidence for a link 
to cognition occurred independently both from genetic associa-
tion studies (Papassotiropoulos et al., 2006) and from biochemical 
work (Büther et al., 2004).

Beyond understanding the way memory works, one practical 
goal of studying genes with relation to cognitive performance is 
to identify new treatment strategies that cope with the various 
cognitive disabilities for which treatment options are urgently 
needed. The population aging in industrialized countries is 
expected to result in a strong increase in cognitive health prob-
lems in the next decades, both as a result of aging- associated cog-
nitive decline, as well as increased prevalence of neuropsychiatric 
diseases such as Alzheimer’s disease. Here, novel discoveries in 
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873 (Kremerskothen et al., 2003; Rayala et al., 2006). Lastly, a puta-
tive class III PDZ-binding sequence has been identifi ed between 
amino acids 1110 and 1113 (Duning et al., 2008).

HUMAN GENETIC EVIDENCE FOR KIBRA’S ROLE IN COGNITION
KIBRA has come into the focus of the neurogenetics fi eld fol-
lowing the publication of human evidence pointing to an 
involvement of the gene in memory performance and cognition 
(Papassotiropoulos et al., 2006). In that publication, the authors 
report that carriers of the KIBRA/ WWC1 (rs17070145) T allele 
or, to a lesser extent, the calsyntenin 2 (CLSTN2) rs6439886 T 
allele performed signifi cantly better on multiple episodic mem-
ory tasks than those homozygous for the C allele at either poly-
morphism. Furthermore, using functional magnetic resonance 
imaging (fMRI), they observed that brain activation (measured 
as oxygen extraction from blood) in key areas associated with 
memory retrieval was signifi cantly greater in a selection of 15 
WWC1 (rs17070145) T-allele-noncarriers than in 15 T-allele-
 carriers during an episodic memory task. After this initial fi nding, 
a considerable number of studies examined the WWC1 polymor-
phism in different contexts of cognition and in different popula-
tions (summarized in Table 1 and reviewed below).

A number of studies have examined the role of the rs17070145 
polymorphism on the cognitive performance of non-demented 
individuals. The original fi nding was fi rst confi rmed in a small 
German cohort (n = 64) of healthy elderly individuals with a 
mean age of approximately 67 (Schaper et al., 2008). A second 
study also confi rmed the infl uence of the T-allele on memory 
performance in a cohort of 312 elderly individuals between the 
ages of 50–89 (Almeida et al., 2008). Of note, 136 individuals 
in their study met diagnostic criteria for mild cognitive impair-
ment (MCI) and they were able to identify an excess risk for MCI 
among non-T-allele-carriers, although it failed to reach statisti-
cal signifi cance. A study on individuals with subjective memory 

complaints found that family history of dementia was signifi cantly 
elevated in KIBRA non-T-allele-carriers while these same indi-
viduals exhibited better performance on verbal episodic memory 
tests (Nacmias et al., 2008).

In mid-2008 a report of non-replication of the infl uence of 
rs17070145 on episodic memory was published (Need et al., 2008). 
In this study the authors utilized two cohorts of European genetic 
origin. The fi rst cohort (n = 300) was examined using a verbal recall 
memory test and the second cohort (n = 365) was phenotyped with 
the exact same auditory verbal learning test (AVLT) that was used 
in the original publication (Papassotiropoulos et al., 2006). The 
authors failed to see any association of rs17070145 with memory 
performance in either cohort although they reported to be well 
powered to do so. Additionally, some tagging SNPs within the 
KIBRA genetic locus were tested and no signifi cant association 
signals could be identifi ed following multiple testing corrections. 
In the concluding paragraph of this work the authors indicate that 
their non-replication fi ndings are likely a good indicator of the 
challenges facing the study of the genetics of human memory and 
specifi cally point to the need for consistency in phenotyping across 
any replication efforts.

Finally, the largest replication effort was published in 2009 
(Bates et al., 2009). In two cohorts numbering over 2,500 indi-
viduals combined, association between rs17070145 and memory 
performance was confi rmed. Using the AVLT and the Wechsler 
Logical Memory Test, it was possible to demonstrate an association 
between rs17070145 T-allele-carrier status and item-distinctiveness 
storage and/or recollection. The authors suggest that KIBRA action 
is involved primarily in the conscious recall of item-based informa-
tion and underscore the importance of attention to phenotyping 
when attempting to replicate a genetic association. The most recent 
study in healthy individuals replicated the positive effects of the 
KIBRA T-allele on episodic memory in a cohort of 383 individuals 
and showed that the effect size of the KIBRA polymorphism was 

FIGURE 1 | Structural features of the human KIBRA protein. Shown are 
the identifi ed domains in the KIBRA protein. WW domains are located 
between position 6 and 86, and cover about 40 amino acids containing two 
conserved tryptophan residues. WW domains are generally thought to be 
responsible for the interaction with various proteins that contain proline-rich 
sequences such as PPxY. The C2 domain is located between amino acids 

655 and 783. This is a conserved membrane targeting motif composed 
of β-sheets. The 130 residues of C2 are involved in binding phospholipids 
in a calcium-dependent manner. The PKCζ binding region is located at 
amino acids 953–996 and contains two serine residues that can be 
phosphorylated by the kinase. The last four amino acids contain a PDZ 
binding motif.
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Table 1 | Summary of the genetic association data available on the KIBRA polymorphism and memory and Alzheimer’s disease. Twelve studies that 

examine the KIBRA polymorphism in different populations are listed that were published before December 2009. Summarized are the citation and publication 

year, the population(s) examined, the study size, the effect(s) observed, and fi nally whether the study confi rmed the association of the rs17070145 SNP with 

memory performance.

Study Population n Effect Hypothesis 

confi rmed

HEALTHY SUBJECTS

Papassotiropoulos 

et al. (2006)

Healthy young adults and elderly 

subjects

3 Cohorts: 351, 424, 

256

T-allele carriers perform better in free recall 

performance; functional magnetic resonance 

imaging (fMRI) shows higher activity in C-allele 

carriers

Yes

Schaper et al. (2008) Healthy elderly subjects 64 T-allele carriers perform better in free recall 

performance

Yes

Need et al. (2008) Duke “Genetics of Memory” 

cohort, and a German cohort

2 Cohorts: 319, 365 No association with SNP or a set of tagging SNPs 

in KIBRA with multiple verbal memory tasks

No

Preuschhof et al. 

(2009)

Healthy young volunteers of 

Caucasian descent, mean age 25.7 

years

383 KIBRA T-allele effects on episodic memory were 

increased and boosted by CLSTN2 C allele

Yes

Bates et al. (2009) 2 Cohorts; healthy elderly subjects 

(Scotland) selected from the 

Aspirin for Asymptomatic 

Atherosclerosis (AAA) trial 

population representative for the 

general population aged 55–82 

years; members of the Lothian 

Birth Cohort (LBC) 1921 aged 79 

years

2 Cohorts 2091 (AAA 

cohort), 542 (LBC 

cohort)

AAA-cohort: T-allele carriers perform better in 

delayed recall of item-based material (hippocampal 

processing) LBC-cohort: no association

Yes

Almeida et al. (2008) Elderly healthy subjects, and 

probands with signs of mild 

cognitive impairment (no 

dementia)

312 Total, 133 were 

classifi ed as MCI 

(mild cognitive 

impairment) cases

CC-allele recall scores were signifi cantly lower than 

the scores of T-carriers but KIBRA genotype was 

not correlated with mild cognitive impairment

Yes

MILD COGNITIVE IMPAIRMENT (MCI)

Nacmias et al. (2008) Older adults reporting problems 

with everyday memory

70 CT/TT genotype performed more poorly than those 

with the CC in various neuropsychological 

measures

Inconclusive

ALZHEIMER’S DISEASE (AD)

Corneveaux et al. 

(2008)

AD patients (US-American) and 

controls

595 Cases AD 

patients; 320 

controls (all 

neuropathologically 

examined)

Non-T-allele had increased risk of late-onset AD; 

KIBRA was overexpressed in laser-capture 

microdissected neurons of AD pat.; KIBRA T non-

carriers exhibited lower glucose metabolism in PET 

screen of healthy subjects

Yes

Rodriguez-Rodriguez 

et al. (2009)

Sporadic Alzheimer’s disease (AD) 

patients

391 AD patients, 428 

healthy controls

T-allele is associated with an increased risk (odds 

ratio of T/CC 2.89; p = 0.03) for very-late-onset AD

Yes for KIBRA 

in AD, but 

allele 

association 

reversed

Beecham et al. (2009) Late-onset Alzheimer disease 

(LOAD) cases, 71.7 years at onset, 

and controls, average age 74.4 

years at exam; LOAD cases met 

the NINCDS-ADRDA criteria for 

probable or defi nite AD

529 LOAD cases, 

557 controls

Association of LOAD with a SNP (rs12514426) 

located within KIBRA, but approximately 50 kb 

upstream from rs17070145

Yes (for KIBRA 

gene in AD)

(Continued)



Frontiers in Aging Neuroscience www.frontiersin.org February 2010 | Volume 2 | Article 4 | 4

Schneider et al. KIBRA in learning and memory

DEVELOPMENTAL/CURRENT EXPOSURE TO TOBACCO

Jacobsen et al. (2009) Adolescents with prenatal or 

current exposure to tobacco 

smoke

101 (different 

combinations of 

prenatal or current 

exposure to tobacco)

KIBRA polymorphism had no interacting effects 

with prenatal or adolescent exposure to tobacco 

smoke. CLSTN2 C allele showed benefi cial effect 

on verbal recall, but contradictory effect was found 

in subjects exposed to tobacco during development

No

Zhang et al. (2009) African Americans (AA) and 

European Americans (EA) 

separated by current smoking 

status

AA674, EA419 KIBRA non-T allele carriers of European American 

origin showed more cognitive fl exibility. Current 

smokers of European origin with the T-allele 

performed signifi cantly better than past smokers 

with the T allele, while there was no difference for 

C-allele carriers

Inconclusive

Study Population n Effect Hypothesis 

confi rmed

Table 1 | (Continued)

modulated by the associative components of the task (Preuschhof 
et al., 2009). Additionally, this work suggests an interaction between 
KIBRA and CLSTN2 in episodic memory as the effect of carrying 
the rs17070145 T-allele was enhanced in carriers of the CLSTN2 
rs6439886 C-allele.

Recently, KIBRA was also examined in the context of develop-
mental or current exposure to nicotine (Jacobsen et al., 2009; Zhang 
et al., 2009). One study assessed association of SNP rs17070145 with 
verbal and visuospatial memory and fMRI changes in adolescents 
and could not fi nd any signifi cant infl uence of the polymorphisms 
either alone or in interaction with smoking habits or smoking 
 exposure (Jacobsen et al., 2009). However, this study only examined 
101 subjects with various combinations of prenatal and current 
nicotine exposure. The most recent study analyzed cognitive fl ex-
ibility measures with the Wisconsin Card Sorting Test, ethnicity, 
and smoking habits in relation to the rs17070145 polymorphism 
(Zhang et al., 2009). In European Americans homozygous for the 
C-allele, an association with better cognitive fl exibility was found. 
Curiously, current smokers of European origin with the T-allele 
performed signifi cantly better than past smokers with the T-allele 
while there was no difference for C-allele carriers. There was no 
difference in performance in subjects of African American ethnic-
ity. Association of the C instead of the T allele with better cogni-
tive performance in different studies may be caused by differential 
effects of the polymorphism itself or yet unknown functional poly-
morphisms in the KIBRA gene in linkage disequilibrium with SNP 
rs17070145 on different domains of cognitive performance (e.g., 
more frontally located functions versus hippocampal functions).

KIBRA AND ALZHEIMER’S DISEASE: CLUES FROM THE 
GENOME AND TRANSCRIPTOME
Based on the associations with memory performance in healthy 
subjects, the link between KIBRA and Alzheimer’s disease was also 
examined. One study demonstrated that the rs17070145 C-allele was 
signifi cantly associated with increased risk for developing late-onset 
AD (Corneveaux et al., 2008). However, another study showed that 
the T-allele was associated with an increased risk for very-late-onset 
AD (Rodriguez-Rodriguez et al., 2009). These differential fi ndings 
may be refl ective of differences in the genetic background of the 

studied samples, in the case/control selection criteria, or simply 
in the statistical power differences between the studies. A study in 
early 2009 also noted an association between KIBRA and late-onset 
AD risk (Beecham et al., 2009). Utilizing imputation to compare 
their data set generated on the Illumina HumanHap beadchip with 
data generated on a similar density Affymetrix array in a large AD 
study of 1,411 cases and controls (Reiman et al., 2007), the authors 
reported on a SNP located within KIBRA (rs12514426) that was 
associated [joint analysis p-value (uncorrected) = 0.000928] with 
late-onset AD. This SNP is in very low hypothetical linkage dis-
equilibrium with rs17070145, but nonetheless represents a third 
independently reported genetic association between KIBRA and 
late-onset AD. Of note, the same analysis also yielded several hits 
in the SORL1 locus, a gene with strong biological and genetic links 
to Alzheimer’s disease (Andersen et al., 2005; Rogaeva et al., 2007; 
Dodson et al., 2008; Mayeux and Hyslop, 2008; Ma et al., 2009).

Two additional pieces of experimental evidence link KIBRA 
to AD (Corneveaux et al., 2008). First, the expression of KIBRA 
itself and the genes encoding several of its direct binding part-
ners (DYNLL1, PRKCZ, SNX4, and KIAA0513) are signifi cantly 
altered in non-tangle bearing neurons in key brain regions in AD 
patients versus matched controls. In neurons laser-dissected from 
the hippocampus, middle temporal gyrus, and posterior cingulate, 
KIBRA mRNA was found to be signifi cantly increased between 2.4- 
and 3.0-fold, while in those same brain regions PKCζ mRNA was 
decreased by 2.3- to 3.3-fold. No signifi cant changes were observed 
in the primary visual cortex, a region that is largely spared by AD 
pathology. Interestingly, only signifi cant changes in PKCζ mRNA 
were detected in the hippocampus and middle temporal gyrus from 
patients with MCI (Huentelman lab communication, unpublished 
results), suggesting that perhaps the transcriptional alteration of 
these molecular species may follow a temporal pattern that could 
be related to dementia progression. Secondly, a link between 
rs17070145 T-allele carrier status and brain hypometabolism of 
fl uorodeoxyglucose (FDG) as measured using positron emission 
tomography was described. It was shown that signifi cant decreases 
in FDG uptake were noted in the precuneus and posterior/mid 
cingulate regions of neurologically normal individuals who were at 
elevated risk for developing AD. Some of these regions overlapped 
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with previously identifi ed hypometabolic changes in individuals 
stratifi ed by APOE E4 carrier status (Reiman et al., 2004; Buckner 
et al., 2005; Reiman et al., 2005).

In conclusion, several pieces of evidence point to a link between 
KIBRA and Alzheimer’s disease. At present, the genetic link appears 
not as clear-cut as with memory performance in healthy individuals 
and therefore requires further replication. An interesting question 
is whether this link represents an extension or consequence of the 
involvement of KIBRA in episodic memory performance or pos-
sibly that it represents an independent function of KIBRA in the 
pathophysiology of Alzheimer’s disease.

EXPRESSION PATTERNS OF KIBRA mRNA AND PROTEIN
KIBRA is predominately expressed in the kidney and brain in the 
adult organism. In the rodent and human brain, KIBRA is expressed 
in memory-related structures (including the hippocampus and cor-
tex), the cerebellum, and in the hypothalamus (Johannsen et al., 
2008). During brain development, expression has been shown 
to decrease from juvenile postnatal stages to the adult animal 
(Johannsen et al., 2008). On a subcellular level within neurons, 
KIBRA shows a somatodendritic staining pattern with enrichment 
in the perinuclear region and in postsynaptic structures. In subcel-
lular fractionation experiments, KIBRA was heavily enriched in 
the postsynaptic density (PSD) fraction (Johannsen et al., 2008). 
However, nuclear localization has also been noted (Rayala et al., 

2006). So far, it is unclear if different localizations are due to the type 
of cells investigated, experimental conditions, or possible modifi ed 
variants of KIBRA.

INTERACTING PARTNERS OF KIBRA
KIBRA has been shown to participate in a number of cellular func-
tions such as cell polarity and migration, vesicle transport, tran-
scriptional regulation and synaptogenesis. Most hints to its function 
have come from the study of interaction partners identifi ed in yeast 
two hybrid screens. To date, 10 direct interaction partners have 
been described (Figure 2). The two WW-domains, which cover a 
stretch of 35–40 amino acids containing two conserved tryptophan 
residues, appear responsible for many of the interactions with the 
identifi ed proteins. The fi rst interaction partner of KIBRA, iden-
tifi ed by a yeast two hybrid screen, was the postsynaptic protein 
dendrin (KIAA0749) (Kremerskothen et al., 2003). Dendrin was 
fi rst characterized as a dendritic protein whose expression is altered 
by sleep deprivation in the forebrain of rats (Neuner-Jehle et al., 
1996). Dendrin is translated from a dendritically localized mRNA 
and interacts with alpha-actinin and the synaptic scaffolding mol-
ecule S-SCAM (Kremerskothen et al., 2006).

The proposal that KIBRA is involved in processes in the PSD 
was strengthened by the identifi cation of two other postsynap-
tic binding proteins as KIBRA partners: synaptopodin (Duning 
et al., 2008) and PKCζ (Büther et al., 2004). Similar to dendrin, 

FIGURE 2 | Known interactors of KIBRA. Depicted are interaction partners of KIBRA identifi ed by a number of laboratories with the respective citations given. Solid 
dotted lines: direct interactions that have been mapped to specifi c segments of the KIBRA protein; hatched broad lines: direct interactions where the location of 
binding is not known.
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regulation is further supported in a study showing that KIBRA 
is upregulated through the application of progesterone and that 
KIBRA binds to discoidin domain receptor 1 (DDR1), a tyrosine 
kinase important for the development of the mammary glands 
(Hilton et al., 2008). KIBRA and DDR1 both interact with PKCζ 
in a molecular complex involved in the collagen-regulated stimula-
tion of the MAPK cascade.

KIBRA INTERACTS WITH PKC/ PKMζ

The strongest indication of an involvement of KIBRA in cognition 
comes from the fi nding that KIBRA interacts with protein kinase 
C ζ (Büther et al., 2004), a molecule crucially involved in neuronal 
plasticity (Sacktor, 2008). This atypical PKC comprises four func-
tional motifs, a PB1 domain at the N-terminus, a pseudosubstrate 
sequence, a C1 domain and the enzymatic active domain in the 
C-terminal end of the protein. PKCζ was originally identifi ed by 
Nishizuka and coworkers in 1987 through homology screening 
(Ono et al., 1987, 1988, 1989; Nishizuka, 1988). Sacktor, Osten, 
and colleagues fi rst described the presence of the constitutively 
active form, known as PKMζ, in the hippocampus and suggested 
a role for PKCζ/PKMζ in the maintenance of LTP (Sacktor et al., 
1993). Importantly, PKMζ is the only PKM-form of all the PKCs 
expressed in the brain that is expressed in the hippocampus 
(Sacktor et al., 1993). The constitutive nature of PKMζ made it 
immediately attractive as being involved in the “synaptic tagging” 
machinery. Levels of PKMζ increase during LTP likely due to an 
increase in PKMζ synthesis (Osten et al., 1996; Hernandez et al., 
2003). PKMζ can be generated by an independent promoter in 
the PKCζ gene, and one hypothesis is that PKMζ mRNA is locally 
translated in dendrites (Muslimov et al., 2004). PKMζ increases 
the LTP response (Ling et al., 2002) and blocking PKMζ abolishes 
LTP maintenance (Serrano et al., 2005). This occurs through the 
increase in the number of active AMPA receptors in the post-
 synaptic membrane (Ling et al., 2006) likely by infl uencing the traf-
fi cking of the receptors (Yao et al., 2008). A series of elegant papers 
fi nally demonstrated that PKMζ had an overwhelming infl uence 
on long-term memory maintenance in the hippocampus (Drier 
et al., 2002; Pastalkova et al., 2006; Serrano et al., 2008) and in the 
cortex (Shema et al., 2007, 2009). It remains to be demonstrated 
how PKMζ is able to maintain memory for months with a protein 
half-life that is likely much shorter.

PKCζ interacts with a short stretch of amino acids near the 
carboxyterminal end of KIBRA (positions 953–996), and phospho-
rylates two serines at positions 975 and 978 (Büther et al., 2004). 
This observation was confi rmed and extended, demonstrating that 
KIBRA co-localizes and interacts with PKMζ (Yoshihama et al., 
2009). Both proteins were found to be co-localized in the hippoc-
ampus and dentate gyrus regions of fundamental importance for 
learning and memory processes (Büther et al., 2004; Yoshihama 
et al., 2009).

The signifi cance of the interaction between KIBRA and PKMζ 
and the phosphorylation of KIBRA is unclear at this point. The 
overwhelming evidence for an indispensable functioning of PKMζ 
in the maintenance of long-term memory and the interaction with 
other postsynaptic proteins supports the notion that KIBRA serves 
a critical role in postsynaptic processes that might be regulated by 
phosphorylation.

synaptopodin was also found to interact through the PPxY motif 
with the WW-domains of KIBRA. Both proteins are localized in 
dendrites and play a role in the organization of the cytoskeleton 
(Kremerskothen et al., 2005; Duning et al., 2008). The role of syn-
aptopodin in dendritic spines has been demonstrated in knock-out 
mice where the animals suffer from impaired long-term synaptic 
plasticity and lack the dendritic spine apparatus (Deller et al., 2003; 
Asanuma et al., 2005).

Another interaction partner with a potential link to cognitive 
processing is KIAA0513. KIAA0513 expression is upregulated 
in the brain of schizophrenia patients, but the cellular function 
of the encoded protein is unknown (Lauriat et al., 2006). It is 
tempting to speculate that this could be an additional link to the 
 cognitive defi cits associated with the disease, a prominent aspect 
of the negative symptoms of schizophrenia. The identifi cation of 
the protein PATJ (PALS1-associated tight junction protein) as an 
interaction partner of KIBRA suggests that it may play a role in 
cell polarity (Duning et al., 2008). PATJ interacts with the putative 
class III PDZ-binding site of KIBRA (ADDV). PATJ is a compo-
nent of an evolutionarily conserved multiprotein complex, which 
regulates cell polarity in podocytes and neurons. Both cell types 
develop prominent cell processes and show highly dynamic actin 
fi lament generation. Intriguingly, PATJ regulates the subcellular 
localization of atypical PKC and Par3 during migration of epithelia 
(Shin et al., 2005, 2007). Taken together, these similarities suggest 
overlapping functions of KIBRA and PATJ in the modulation of 
cell polarity and migration in cells, which are derived from the 
ectoderm. The identifi cation of KIBRA in the PSD, the interaction 
with cell polarity proteins and its functional role in migration 
points toward a central role of KIBRA in rearrangements of the 
cellular cytoskeleton.

Another link of KIBRA to the cytoskeleton comes from a study 
providing evidence that KIBRA binds to the dynein-complex (Traer 
et al., 2007). The authors show that the sorting nexin 4 (SNX4) 
interacts with a complex of the microtubule motor dynein and 
KIBRA and that the complex regulates the sorting of transferrin 
receptor (TfnR) away from degradation and towards a recycling 
pathway (Traer et al., 2007). Downregulation of SNX4, KIBRA, or 
dynein proteins disrupts the traffi cking of TfnR from the endosomes 
and into juxtanuclear endocytic recycling compartments thereby 
increasing the lysosomal-mediated degradation of the receptor. The 
role of KIBRA in vesicle-based transport processes was underlined 
by recent fi ndings that KIBRA binds to sec3, a component of the 
exocyst complex (Rosse et al., 2009). The exocyst/KIBRA complex 
enables intracellular targeting of PKCζ, thus regulating localized 
signal cascades necessary for cell migration.

The interaction of KIBRA with the dynein complex was con-
fi rmed in a study describing the simultaneous interaction of 
KIBRA with histone H3 and dynein light chain 1 (DLC1) (Rayala 
et al., 2006). The binding of KIBRA to histone H3 appears to be 
mediated through the glutamic acid rich region of KIBRA near the 
C- terminus. Deletion of the histone-binding region in KIBRA 
resulted in the inhibition of transactivation of the estrogen recep-
tor-alpha in human breast cancer cells. Although KIBRA binds 
to histone and partially resides in the nucleus, the underlying 
mechanism of how KIBRA mediates ER transactivation remains 
unclear. The notion that KIBRA is also involved in transcriptional 
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KIBRA IN KIDNEY AND BRAIN: PARALLELS?
The name of the protein in question, KIBRA, also refl ects the areas 
where work has been done on possible functions, the central nerv-
ous system and the kidney. Astonishingly, recent work suggests 
that kidney and brain might have more in common than previ-
ously thought. In both organs key physiological functions (synaptic 
transmission and urine fi ltration) are fulfi lled by highly polarized 
cell types. It has been shown that KIBRA knock-down in podo-
cytes impairs directed cell migration (Duning et al., 2008). The 
authors postulated that the motility of foot processes and fl ex-
ibility of synaptic contacts could be regulated by an analogous 
set of proteins including KIBRA. The establishment of polarity in 
these cells is achieved by directed, vesicle-based transport of multi-
protein complexes composed of proteins such as PATJ, Par3/Par6, 
PKC/Mζ and KIBRA (Barnes and Polleux, 2009; Weide and Huber, 
2009). Furthermore, signal transmission in the brain and in the 
kidney are thought to be controlled by similar mechanisms includ-
ing receptor clustering, vesicle exocytosis, and dynamic formation 
of cell–cell contacts (Rastaldi et al., 2006; Weide and Huber, 2009). 
Interestingly, a dense protein network at the cell periphery, the 
PSD in neurons and the slit membrane in podocytes, is crucial for 
memory formation in the brain and urine fi ltration in the kidney. 
KIBRA might control the composition and architecture of these 
protein networks through regulating the association, intracellular 
targeting, and posttranslational modifi cation of key molecules such 
as Dendrin, Synaptopodin, and PKCζ.

OPEN QUESTIONS
We see a number of key areas where answers will likely lead to the 
fastest advancement of understanding KIBRA’s functions and their 
possible pharmacological exploitation. On the genetic side, we need 
more data on the association of KIBRA and Alzheimer’s disease 
or other states of cognitive impairment to clarify the role that the 
polymorphism may play. This includes further sequencing work 
within the associated haplotype to identify the likely biological 

functional variant(s). On the biochemical side, we need to under-
stand the signifi cance of the PKC/Mζ interaction with KIBRA. It 
will also be crucial to determine whether KIBRA plays a role in fast 
synaptic transmission or in long-term potentiation. Specifi cally, 
we need to test the hypothesis that KIBRA is involved in aspects 
of the maintenance of synaptic memory through constitutively 
active PKMζ. On the systems level, we need data from animals 
where KIBRA has been deleted, or its expression enhanced, and 
fi nd out whether these animals show altered cognitive behavior. 
Finally, it will be necessary to establish or rule out whether there 
is another polymorphism in the KIBRA locus that would result in 
a clear alteration on the transcriptional or translational level. If it 
turns out that the rs17070145 polymorphism is specifi c to memory 
performance, it will be necessary to investigate the consequences of 
the C/T-Allele in detail. This should cover multiple parameters of 
gene function, including expression, transcript stability, or alterna-
tive splicing events.

CONCLUSIONS
A new player has entered the stage in the fi eld of cognition and 
memory: KIBRA. In contrast to many other genes identifi ed to 
play a role in cognition, KIBRA was identifi ed in a hypothesis-free 
fashion by human genetic studies that have been largely replicated. 
From those studies, KIBRA appears to be involved in the ability to 
store episodic memory for at least 24 h but not in the acquisition 
of memory traces. Biochemistry and expression of KIBRA place it 
into a context highly compatible with a role in memory storage. Of 
special importance appears to be the link to PKC/Mζ a uniquely 
powerful player in maintaining long-term memory. The genetic 
link to KIBRA certainly gives credibility to relevance of this player 
in human memory performance. Moreover, KIBRA represents a 
new example of a cognition associated gene with a connection to 
Alzheimer’s disease. KIBRA therefore appears as a highly attrac-
tive novel target for pharmacological approaches to cognition and 
possibly dementia.
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