Appendix. Estimated asymptotic covariance matrix of $\hat{\rho}^*(\hat{V}_{\rho^*})$

Let z_a , z_b , z_d , and z_e be the typical variables. The typical elements of \hat{V}_{ρ^*} are of the following three types.

Case 1 - Variances of the odds-ratio approximations: $var(\hat{\rho}_{ab}^{*})$,

Case 2 - Covariances between approximations with one variable in common: $\operatorname{cov}(\hat{\rho}_{ab}^*, \hat{\rho}_{ad}^*)$,

Case 3 - Covariances between approximations with no variables in common: $\operatorname{cov}(\hat{\rho}_{ab}^*, \hat{\rho}_{de}^*)$.

For Case 2 we require the following $A \times B \times D$ contingency table. Let $p = (p_1, ..., p_8)'$ be the

vector of sample cell probabilities from the three-way table, arranged as follows:

	D=	=0		D=	:1
	B=0	<i>B</i> =1		B=0	B=1
A=0	p_1	p_2	A=0	p_5	p_6
A=1	p_3	p_4	A=1	p_7	p_8

We assume multinomial sampling. Let P = diag(p) and let $k = \begin{bmatrix} 1 & -1 & -1 & 1 \end{bmatrix}'$. Let K_1 be the 4×8 0-1 matrix that collapses the $A \times B \times D$ table into the two-way $A \times B$ table, and let K_2 be the matrix that collapses the $A \times B \times D$ table into the $A \times D$ table as shown below.

	[1	0	0	0	1	0	0	0	Γ	1	1	0	0	0	0	0	0]	
$K_1 =$	0	1	0	0	0	1	0	0	V	0	0	0	0	1	1	0	0).
	0	0	1	0	0	0	1	0	$\mathbf{K}_2 =$	0	0	1	1	0	0	0	0	
	0	0	0	1	0	0	0	1		0	0	0	0	0	0	1	1	

Let $D_1 = diag(K_1p)$, $D_2 = diag(K_1p)$, and $D_p = diag(p_1, ..., p_8)$. Then,

$$\operatorname{cov}(\log \hat{w}_{ab}, \log \hat{w}_{ad}) = k' D_1^{-1} K_1 D_p K_2' D_2^{-1} k$$
(1)

using results about multinomial distributions (e.g., Agresti, 2013), and var(log \hat{w}_{ab}) follows as a special case. Defining

$$d_{ab} = \frac{c\pi w_{ab}^{c}}{\left(w_{ab}^{c}+1\right)^{2}} \sin \frac{\pi}{w_{ab}^{c}+1}$$

. .

where *c* is computed based on the marginal frequency table $A \times B$ (the *ab* subscript is omitted from *c* for simplicity), we obtain via the delta method,

$$\operatorname{cov}(\hat{\rho}_{ab}^{*}, \hat{\rho}_{ad}^{*}) = \hat{d}_{ab}\hat{d}_{ad}\operatorname{cov}(\log\hat{w}_{ab}, \log\hat{w}_{ad})$$
(2)

where the expression (1) needs to be substituted. The variance (Case 1) follows as a special case of (A2).

Case 3 is a straight-forward extension, and we omit the details. For this case, we require the four-way $A \times B \times D \times E$ contingency table and redefine $p = (p_1, ..., p_{16})'$. The matrices K_1 and K_2 are now 4×16, and so on. The covariance of the log-odds ratios is given by (1) with all the matrices appropriately redefined and

$$\operatorname{cov}(\hat{\rho}_{ab}^{*}, \hat{\rho}_{de}^{*}) = \hat{d}_{ab}\hat{d}_{de}\operatorname{cov}(\log\hat{w}_{ab}, \log\hat{w}_{de}).$$
(3)