Appendix. Estimated asymptotic covariance matrix of $\hat{\rho}^{*}\left(\hat{V}_{\rho^{*}}\right)$
Let z_{a}, z_{b}, z_{d}, and z_{e} be the typical variables. The typical elements of $\hat{V}_{\rho^{*}}$ are of the following three types.

Case 1 - Variances of the odds-ratio approximations: $\operatorname{var}\left(\hat{\rho}_{a b}^{*}\right)$,
Case 2 - Covariances between approximations with one variable in common: $\operatorname{cov}\left(\hat{\rho}_{a b}^{*}, \hat{\rho}_{a d}^{*}\right)$,
Case 3 - Covariances between approximations with no variables in common: $\operatorname{cov}\left(\hat{\rho}_{a b}^{*}, \hat{\rho}_{d e}^{*}\right)$. For Case 2 we require the following $A \times B \times D$ contingency table. Let $p=\left(p_{1}, \ldots, p_{8}\right)^{\prime}$ be the vector of sample cell probabilities from the three-way table, arranged as follows:

We assume multinomial sampling. Let $P=\operatorname{diag}(p)$ and let $k=\left[\begin{array}{llll}1 & -1 & -1 & 1\end{array}\right]^{\prime}$. Let K_{1} be the 4×80 - 1 matrix that collapses the $A \times B \times D$ table into the two-way $A \times B$ table, and let K_{2} be the matrix that collapses the $A \times B \times D$ table into the $A \times D$ table as shown below.

$$
K_{1}=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \quad K_{2}=\left[\begin{array}{llllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right] .
$$

Let $D_{1}=\operatorname{diag}\left(K_{1} p\right), D_{2}=\operatorname{diag}\left(K_{1} p\right)$, and $D_{p}=\operatorname{diag}\left(p_{1}, \ldots, p_{8}\right)$. Then,

$$
\begin{equation*}
\operatorname{cov}\left(\log \hat{w}_{a b}, \log \hat{w}_{a d}\right)=k^{\prime} D_{1}^{-1} K_{1} D_{p} K_{2}^{\prime} D_{2}^{-1} k \tag{1}
\end{equation*}
$$

using results about multinomial distributions (e.g., Agresti, 2013), and var($\log \hat{w}_{a b}$) follows as a special case. Defining

$$
d_{a b}=\frac{c \pi w_{a b}^{c}}{\left(w_{a b}^{c}+1\right)^{2}} \sin \frac{\pi}{w_{a b}^{c}+1}
$$

where c is computed based on the marginal frequency table $A \times B$ (the $a b$ subscript is omitted from c for simplicity), we obtain via the delta method,

$$
\begin{equation*}
\operatorname{cov}\left(\hat{\rho}_{a b}^{*}, \hat{\rho}_{a d}^{*}\right)=\hat{d}_{a b} \hat{d}_{a d} \operatorname{cov}\left(\log \hat{w}_{a b}, \log \hat{w}_{a d}\right) \tag{2}
\end{equation*}
$$

where the expression (1) needs to be substituted. The variance (Case 1) follows as a special case of (A2).

Case 3 is a straight-forward extension, and we omit the details. For this case, we require the four-way $A \times B \times D \times E$ contingency table and redefine $p=\left(p_{1}, \ldots, p_{16}\right)^{\prime}$. The matrices K_{1} and K_{2} are now 4×16, and so on. The covariance of the log-odds ratios is given by (1) with all the matrices appropriately redefined and

$$
\begin{equation*}
\operatorname{cov}\left(\hat{\rho}_{a b}^{*}, \hat{\rho}_{d e}^{*}\right)=\hat{d}_{a b} \hat{d}_{d e} \operatorname{cov}\left(\log \hat{w}_{a b}, \log \hat{w}_{d e}\right) \tag{3}
\end{equation*}
$$

