Supplementary Material

Genome-wide association study for crown rust and powdery mildew resistance in an oat collection of commercial varieties and landraces

Gracia Montilla-Bascón^{1#}, Nicolas Rispail^{1#}, Javier Sánchez-Martín¹, Diego Rubiales¹, Luis AJ Mur², Tim Langdon², Catherine Howarth² and Elena Prats^{1*}

¹Institute for Sustainable Agriculture-CSIC, Córdoba, Spain.
²Institute of Biological, Environmental and Rural Sciences, University of Aberystwyth, UK

* **Correspondence:** Dr. Elena Prats, Institute for Sustainable Agriculture, CSIC, Apdo. 4084, E-14080 Córdoba, Spain. <u>elena.prats@ias.csic.es</u>

Supplementary Table 1

Marker	Accession N°	Sequence
oPt-11795	FI157472	CTGGATTTGTTGTAAACTGATCATCAGTTGGCCGAGTTGA TGTTGGGCAGTTGCTGTCAAAGGAGAGACAGAAGCTTGAGC ACCTAGTTCCCATCTTCTCGTTGGGATTCTACCGTGCATTG TGGGTCTTCAGCAAAGGAGTATAGTAT
oPt-15665	FI158620	CAGGCTAGTAACAAGCAACAAGGGAATATGAAGAAGGGA AAAGTTGTGGTGATTGAAGATCAAAACTCAGGGAGAGAG AATCAGTTAAGGTCAAAAGATAGTTACCTGGATGTGGTCT ACTTTACCTGTGGGGAACCTGGCCATAACAAGTCTCAGTT CCCCTCTGCTCCTTTTTTTCATATGCAAGATGGTAAACCA CAAGGAAGACAAGTGTCCAGTGAGGAAGCTAGCTTTGCC TGCTGCCAAGCTTTATGGAAAAGCTGCTCAAGGGCTGGAA TTCTTCCATGTGGAGGTTCCTGAAAGCTACAACAATGATA TGGGAGCAAAAAATGTGGGGGATTGTGTTCATTGAGGCTG GTGAAATCAACAAAGAGGAGCTGGCTCAGGAGTTTGTAG TTATCTACAAAAACTACTTGGCCTTGGCAGATTAGGCAGCT AGATGATTGGTCCTTTCTTGTCAAGTTCCCTCCCCACCTCC CAGTAGAAGATGTAGTTGGTTATCCATGCTTGGCCTAGT GAAAGATGGGGTTACTGTAAATGTGGAAGTCTAGGATGG GGAA
oPt-14317	FI159214	TGCAGGCAGAGGCAGTGTTTATCCTTGAGGGAGTCCATCC CGAGCAGCGGCATGGCAGCCTGGCCGTTCTGTCCCACTGC CACTGGTATTTCAGCTAGCATCCACAGGCGGCTGGTGTGG GGAGTGCTGGAAATACTAGTCATGTCACCGTCCAGTGTTA GTAGCATTTCTTGAAAGGGAAAAGTCAGCACACACACAC TCTTGGCGCCAGCTCCAGGATCCTCGCTTCTCCACAGGGG GGATGCTGTCGCCAGCTACTAGCTGTAGCCCAGCACTCAC TCACCACTACCCGGGAGTAGGAGTGCGTGATGTTTGCGGC GTGGTGAAAGGTCACATGGAATTTGCCCGATTTGGAGCCT GCATGCCATGC

GWAS for disease resistance in oat

		GTCTAGGGGTTAGCGGCTGCAAAGGTACTTACGTCCAAAT
oPt-5014	FI159708	CCTTCAGTATGCAGTCGCTAAAGAGCTCAATGCACGCAAC
		GTGGAATCCAGCAAGGGAAATCTCGTTCACTGCTGCGGA
		AGAAAATCTGTTCGTACTACAAGCCCAATGTCTAGGGGAC
		TAGAACTGTATGATGCTGGAGGGCACTTGGCTCTTTAGGG
		AATGTGCTCTGATGGTTGAACCTTTTGATGGGGCAACAAC
		GGTGCAGTCATACAGAGAGGGTTCCCAAGCATGGGTTCAA
		ATCCACAAATTACCATCACTATTTTGCAAGAAGCAGGTTC
		TTGATCAATTGGCAAGCAGAGTGGGAGAACTGATATCTAC
		TGATTTGACCCCTGTTCAGATGCGTACAGGTGTGTTTCATC
		GGGTACGCGTGAAGCTTAACTCTGCAAAACTGCTTATGCG
		CTTTGTGTCACTAGCTATTGAAGGAAGCCCGAGGATGTTT

GWAS for disease resistance in oat

Supplementary Figures

Supplementary Figure 1. A. Adult Plant resistance, measured as percentage of the seedling resistance in a subset of 54 oat accessions. B. Scatterplot of Principal Component Analysis scores of components 1 and 2 based on 1587 DArT and SSR markers used in this study in the oat subset. Represented are the genotypes belonging to cluster 1(red), cluster 2 (green), cluster 3 (violet) and cluster 4 (blue). C. Linkage disequilibrium matrix in the oat subset. Pair-wise LD values of polymorphic sites displaying r^2 above the diagonal and the corresponding *p*-values from rapid 1000 shuffle permutation test below the diagonal. Each cell represent the comparison of two pairs of marker sites with the color codes for the presence of significant LD. Colored bar code for the significance threshold levels in both diagonals is shown.

GWAS for disease resistance in oat

Supplementary Figure 2. Distribution of p values for the different models used in this study for the association between markers and rust resistance. Axes represented the expected p values versus the observed p values in the negative log10 scale where the solid line represent the null expectation (absence of type I error).

Expected -Log (P Value)

Supplementary Figure 3. Distribution of p values for the different models used in this study for the association between markers and powdery mildew resistance at seedling stage. Axes represented the expected p values versus the observed p values in the negative \log_{10} scale where the solid line represent the null expectation (absence of type I error).

Supplementary Figure 4. Distribution of p values for the different models used in this study for the association between markers and powdery mildew resistance at adult plant stage. Axes represented the expected p values versus the observed p values in the negative \log_{10} scale where the solid line represent the null expectation (absence of type I error).

GWAS for disease resistance in oat

Marker oPt-11795

32 Equivalent to chromosome 4C (Oliver et al. 2013)

Marker MAMA5

From Wight et al., 2004

Supplementary Figure 5. Chromosomal organization of the different markers highlighted in this study according to localisations of previously reported markers. Cont.

Marker AME176

Chr_15A

[0] rk2083 [7] opt-0975 [10] opt-12049 — AME176 within this framework [19] ame91 [27] opt-7084

From He et al., 2013

Marker oPt-14317

GWAS for disease resistance in oat

Supplementary Figure 5. Cont

GWAS for disease resistance in oat

Marker oPt-5014

Chr_21D

From He et al., 2013

Supplementary Figure 5. Cont