
Appendix

Multiplicative rule Here we show how to obtain the multiplicative update rule for the acti-

vation coefficients. We first note that tr(Sw) =
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Let us consider a given sample sl supposed to belong to group Gl. By computing the gradient

of E2
LDA = γtr(Sw)− δtr(Sb) with respect to Asl , we obtain:
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)

Simplifying the terms and grouping them, we obtain:
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Hence, we obtain the multiplicative update rule given in Eq. 9.

  Alternating constrained least-square For the alternating constrained least-square update   

rule, we introduce Lagrange multipliers.

The Lagrangian associated to the problem is defined as follows:

L(W̃ , λ) = tr
(
(M− W̃R)>(M− W̃R)

)
+ λ>(W̃>1T − 1P )

where 1N is a vector of N ones.



Computing the gradient of L with respect to W̃ and λ, we obtain the following system of  

equations:

2W̃RR> +1Pλ
> = 2MR>

W̃>1T = 1P

After vectorization using Kronecker products, this can be rewritten:

 2RR> ⊗ IT IP ⊗ 1T

IP ⊗ 1>T 0


 vec(W̃ )

λ

 =

 vec(2MR>)

1P

 ,
which gives the update rule mentioned in the main text. The procedure is similar to obtain the

update rule of W .




