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5. Appendix

5.1. Full-capture modelling, recruitment ratio, and conditioning on �rst-capture

In this appendix, we suggest three di�erent ways of modelling the �recruit-

ment ratio� λ, which is necessary for modelling individuals' full-capture histories

in the Bayesian PCRD. We also discuss how to condition on �rst-capture, which

is an alternative to full-capture history modelling and is most common in Max-

imum Likelihood estimation of PCRD models. The recruitment ratio can be

interpreted in a couple of ways. For example, in Wen et al. (2011), λ is the

proportion of new recruits who are born on the study area, whereas 1 − λ are

the proportion of recruits who enter from o�site (permanent immigrants). In

our study, we interpret λ as the proportion of newly-marked individuals who

start onsite (and therefore available for capture), while 1− λ is the proportion

who recruit o�site. The distinction is that our newly-marked individuals are

not necessarily recruits in the biological sense; thus, we can assume they have

the same behaviour as already-marked individuals.
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One possibility for modelling λ, is to add T new random variables, λ∗t , one per

primary period. Such parameters cannot be reliably estimated for conclusions

about the recruitment processes. However, using Bayesian priors and MCMC,

we can add a weakly-informative prior based on our understanding of the eco-

logical system, and thereby make the model internally-coherent and workable.

For example, we may guess that there is a 50% chance of a recruit being either

a migrant or in-situ recruit, and use a weak prior, such as λt ∼ Beta(4, 4). If

one uses JAGS, then the posterior density of λt will be almost exactly the same

as its prior density, meaning that there is no evidence in the data to resolve a

particular value. Fortunately, the process of MCMC and Gibbs sampling means

that all our other parameters have posterior densities which have integrated

over the entire range of values of λ. As we demonstrated, this doesn't seem to

add any extra uncertainty in the posterior intervals of other parameters.

A slight modi�cation, which we call λrandom, is to use some of the migration

information from the marked population to in�uence the recruitment process,

by assuming that recruits are recruited into the population instantaneously after

time t−1 and sort immediately into either onsite or o�site with probability λ∗t ,

then temporary migrate out of the study area, or remain inside, according to

γ′t and γ
′′
t , just like the rest of the marked population. Therefore, the realized

probability of a new recruit being inside the study area for time t is:

P(z
(recruit)
t = 4) = λ∗t (1− γ′′t ) + (1− λ∗t )(1− γ′t) (1)

In other words, there are two paths for a new recruit to be onsite for their

�rst primary period: they arrive and stay onsite, or they recruit as a migrant

and move onsite some time before t. This latter modi�cation makes sense when

we believe that new recruits should behave similarly to the already marked

population.

A second possibility, which we call λone-step-back, does not treat λ as a ran-

dom variable. Instead, we assume that recruits will sort into onsite vs. o�site

with probability equal to the proportion of marked-animals who are onsite vs.
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o�site, i.e., λ∗t = #{individuals onsitet}
#{individuals alivet} . The quantities #{individuals onsitet} and

#{individuals alivet} can be directly estimated internally per MCMC step using

the imputted values of the latent states of all individuals: we merely count the

pertinent entries in the latent state matrix Z. For example, in our speci�cation:

#{individuals onsitet} =

M∑
i

I[zt,i = 4] = Nt

#{individuals alivet} =

M∑
i

I[zt,i = 3 ∪ zt,i = 4].

(2)

Once again, we assume that new recruits enter immediately after t− 1 and

then move onsite or o�site with probabilities equal to those of the marked

population: P(z
(recruit)
t = 4) = λ∗t (1− γ′′t ) + (1− λ∗t )(1− γ′t).

A third option is to exclusively use information about the migration pa-

rameters to calculate λ, which we call the eigenvector decomposition method or

λeigenvector. Like the one-step-back method, it is appropriate when the recruits

can be expected to recruit into the onsite vs. o�site states in a manner con-

sistent with the temporary migration process of the marked population. This

method is the fastest and incurs no additional random variables, and merely

calculates λt directly from the migration parameters γ:

λt =
1− γ′t

γ′′t − γ′t + 1
(3)

We motivate this formula: consider if we thought an unmarked �recruit� had

a 50/50 probability of being either onsite or o�site during the previous primary

period (P(zt−1 = 4) = ut−1 = 0.5), then a reasonable expectation for λt would

be λt = ut−1(1− γ′′) + (1− ut−1)(1− γ′) = 0.5(1− γ′′) + 0.5(1− γ′). I.e. she

was either physically onsite and then stayed onsite with probability (1 − γ′′),

or she was physically o�site and migrated into the study area with probability

(1 − γ′). We can continue backwards, substituting in ut−1 = ut−2(1 − γ′′t ) +

(1 − ut−2)(1 − γ′t). If we do the recursion in�nitely, the probabilities converge

to the unconditional probability of being onsite. This recursion can be written
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in matrix notation:

onsite λ

o�site 1− λ

 =


onsite o�site

1− γ′′ 1− γ′

γ′′ γ′

 λ

1− λ

 (4)

This notation makes it clear that the λ vector is just the eigenvector of

the two-state transition matrix with the migration parameters γ. While this

method is easy, it has the advantage of connecting the ratio of recruits onsite

and o�site with the dynamics implied by the temporary migration parameters of

the marked population. To demonstrate the elegance of the idea, consider four

scenarios. One scenario is that the probability of going from onsite to o�site is

equal to the probability of going from o�site to onsite i.e., γ′′ = 1− γ′: in such

cases, the individuals' movements are random with no particular preference for

either location; here, the calculated ratio λ is 0.5, which matches our intuition.

A second scenario is if both γ′ and γ′′ are low and below 0.5, which means

that individuals preferentially enter and stay onsite; here, λ will be high (λ >

0.5) which matches our intuition that individuals prefer being onsite. A third

scenario is the opposite of the second, where both γ′ and γ′′ are high (> 0.5),

such that individuals prefer to migrate outside the study area and stay outside;

here, λ will be low (< 0.5) to match this intuition. Lastly, consider some other

arbitrary scenario, such as γ′′ = 0.1 (individuals are highly unlikely to migrant

o�site once onsite) and γ′ = 0.7 (individuals are moderately likely to stay

o�site once o�site); here, we expect individuals to have a stronger preference

to be inside the study area, and λ = 0.75, which matches our intuition.

Finally, we remind the reader of the option to condition on the �rst-capture,

as is assumed for the PCRD model in Program MARK. In this case, no recruit-

ment or assortment process is necessary: we merely accept as a given the �rst

capture event of each individual and do not try to model it. Such a model may

be appropriate for situations when a researcher is not interested in recruitment

processes or individual heterogeneity, or cannot accept the assumptions of the

above full-capture speci�cations. Conditioning on the �rst-capture can mean
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slightly di�erent things in the case the PCRD as compared to other capture-

recapture models. Here, we interpret �conditioning on �rst capture� to mean

that we condition on an individual having been seen in at least one secondary

period during the primary period t∗ in which they were �rst encountered. This

simpli�es the latent-state transitions, because we only include three latent states

(dead, o�site and onsite) and no longer need the not-yet-entered dummy state

that we required for the full-capture models. Also, all individuals are, by de�ni-

tion, initialized in state onsite at time t∗, meaning we can drop the parameters

ψ and λ altogether.

Conditioning on �rst-capture (during primary period t∗) changes the likeli-

hood of secondary-period observations during t∗. The �rst capture history ω(t∗)

must necessarily arise from a set of conditional capture-histories, which exclude

the possibility of an all-zero capture history during t∗. We denote the all-zero

capture history ω∅, and its compliment set Ωc which includes all possible cap-

ture histories in a secondary period, excluding ω∅. The conditional probability

of a capture history ω(t∗) arising from Ωc is

P(ω
(t∗)
i |seen at least once during t∗) =

P(ω
(t∗)
i )∑

ω∈Ωc P(ω)
=

P(ω
(t∗)
i )

1− P(ω∅)

=

∏St∗
s

(
p

(yt∗,s,i)
t∗,s (1− pt∗,s)(1−yt∗,s,i)

)
1−

∏St∗
s (1− pt∗,s)

(5)

This conditional multinomial distribution is not available in JAGS. There-

fore, the likelihood must be evaluated explicitly in a peculiar way, using the

�zero's trick� which was popular in early releases of WinBUGS. This technical

obscurity makes the �rst-capture model a surprisingly more daunting challenge

for the JAGS language than full-capture models, and may dissuade non-expert

users. There is a further technical challenge that may confuse JAGS users when

conditioning on �rst-capture: the handling of Markovian state transitions entails

slightly di�erent procedures for di�erent primary periods t∗i = T vs. t∗i = (T−1)

vs. t∗i < (T − 1), which makes the JAGS code much more convoluted than for
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full-capture modelling.

Other possibilities exist for λt, and the decision about which speci�cation to

use should be rooted in ecology and the particulars of the focal population. For

example, in the case of bottlenose dolphins, we have two considerations: �rst,

coastal populations are generally faithful to one geographic location throughout

their adult lifetimes; second, the recruitment process is mostly due to the mark-

accumulation process, meaning that recruits are actually onsite adults who just

recently became photo-identi�able. Therefore, we expect that �recruits� will

have the same migration dynamics and the same ratio of being onsite/o�site as

the marked population; we say approximately because immigrants and newly-

marked juveniles may not exactly have the same dynamics as the onsite marked

population. This means that the one-step-back or eigenvector decomposition

formulation for λt is most appropriate. For other situations, this may not make

sense, especially for highly migratory taxa, such as migratory birds or baleen

whales, or other situations where the captureability of an animal is uniform for

all animals (like placing a band at �rst-capture), in which case recruits may

literally be recruits in the biological sense. New births and immigrants are

likely to have di�erent preferences for onsite vs o�site than other adults who

constitute the marked population. In such situations, it is better to default

to the λrandom speci�cation which makes fewer assumptions; or use external

information, if available (Wen et al., 2011).

We suggest that for long capture series with many primary periods, the

speci�cation of the initial states will be less in�uential on parameter estimation.

We explore these di�erent speci�cations in the reanalysis of the western gulf

Shark Bay bottlenose dolphins, which has T = 5 primary periods (Section 2.7).

5.2. Posterior predictive checks

Our Posterior Predictive Check (Gelman et al., 1996) is based on two dis-

crepancy statistics, χ2
within and χ2

between. A discrepancy statistic compares an

observed quantity vs. its expectation conditional on model parameters. For

the within- and between-period discrepancy statistics, we compare the discrep-
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ancies evaluated on real data (χ2) vs. the same discrepancy (χ′2) evaluated

on idealized simulated data, conditional on model parameters and the original

data. Over the entire joint posterior distribution of model parameters, the sim-

ulated data approximate the posterior predictive distribution of the response

variable π(Y′|θ,Y). A useful statistic is the posterior p-value pppc, which is

p(χ2 > χ′2), the probability that the observed data di�ers more from model

expectations than the posterior predictive distribution. The posterior p-value is

evaluated pppc =
∫
θ∗

I[χ2
θ∗ > χ′2θ∗ ]π(θ∗|Y)dθ, where π(θ|Y) is the joint posterior

of model parameters. If the data conforms to the model expectations, then we

expect that χ2 is not systematically di�erent from χ′2, and values of pppc ≈ 0.5.

Values of pppc close to 0 or 1 suggest poor model �t. Unfortunately, posterior

p-values are generally not uniform on 0 to 1, and one cannot meaningfully com-

pare pppc to a predetermined rejection region like (pppc < 0.025|pppc > 0.975).

There are other unfortunate de�ciencies in interpreting posterior p-values (Gel-

man, 2013), especially when imputing large amounts of missing data or latent

variables, which is why we restrict the check only to the processes that can be

conditioned on the �rst capture, rather than the full generative model.

We make use of MCMC to calculate pppc as follows. For each k
th posterior

sample of model parameters θ(k): i) we calculate the χ
2(k)
within, χ

2(k)
between and χ

2(k)
total

using the observed data Y; ii) we predict new data Y′(k) conditional on θ(k) and

�rst-capture; iii) we calculate the χ
′2(k)
within, χ

′2(k)
between and χ

′2(k)
total using the Y′(k);

iv) we score whether or not the discrepancy evaluated on the observed data is

greater than the discrepancy evaluated on the simulated data, Iθ(k) = I[χ2
θ(k) >

χ′2
θ(k) ]; v) we calculate pppc as the mean of I over all draws from the posterior

of θ; pppc =
∫
θ∗

I[χ2
θ∗ > χ′2θ∗ ]π(θ∗|Y)dθ ≈ 1

NMCMC

∑NMCMC
k=1 Iθ(k) .

The within-period discrepancy statistic is based on the su�ciency statistics

for closed-population capture (Darroch, 1958): rt,s the vector of number of

encounters per secondary period, and Rt the total number of uniquely captured

individuals over all secondary periods within a focal primary period t. These

quantities are evaluated once for the observed data in the case of the observed

χ2
within, and once per k posterior draw of Y′(k) in the case of χ′2within. The
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expected number of encounters per secondary period, conditional on θ(k), is

r
(k)
t,s = p

(k)
t,s ×N

(k)
t , where N

(k)
t is the total number of animals alive and onsite

at primary period t, and p
(k)
t,s is the detection probability per secondary period.

There are a number of ways one can estimate Nt. Fortunately, the Bayesian

HMM directly imputes the latent states z
(k)
t,i ∈ {1, 2, 3, 4} and to calculate N

(k)
t

we simply count the number of individuals (both observed and augmented)

whose latent state is z
(k)
t,i = 4 for alive and onsite at time t.

r(k)
st = p(k)

st

N∑
i

I[z(k)
t,i = 4]

R
(k)
t =

(
1−

St∏
st

(1− p(k)
st )
)( N∑

i

I[z(k)
t,i = 4]

)
χ

2(k)
within =

T∑
t

( St∑
st

(rt,s − r(k)
t,s )2

r
(k)
t,s

+
(Rt −R(k)

t )2

R
(k)
t

)
(6)

We remind readers that {r(k)
st }St

st=1, {R
(k)
t }Tt=1, χ

2(k)
within and χ

′2(k)
within are evalu-

ated per kth draw from the joint posterior π(Nt, pt,1, ..., pt,St
|Y). The between-

period discrepancy statistic is based on the observed and expected m-array of

primary periods: Rt1:t2 , the total number of recaptures �rst seen at primary

period t1 and not seen again until t2, conditional on Rt1 the total number of en-

counters at time t1. The m-array also includes Rt1:T+ the number of encounters

seen at time t1 and never seen again.

The m-array constitutes a su�cient statistic for the simple Cormack-Jolly-

Seber (CJS) open population model. The expected values of R
(k)
t1:t2 and R

(k)
t1:T+

need to be calculated over all permissible pathways among hidden states, and

is more complicated to calculate than the m-arrays of the CJS model. There-

fore, we used the matrix-multiplication algorithm of Fujiwara & Caswell (2002)

to simplify such calculations, but we illustrate the calculations of individual

m-array elements below. pt refers to the e�ective primary period detection
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probability:

χ
2(k)
between =

( T−1∑
t1=1

T∑
t2>t1

(Rt1:t2 −R
(k)
t1:t2)2

R
(k)
t1:t2

)
+
( T−1∑
t=1

(Rt:T+ −R(k)
t:T+)2

R
(k)
t:T+

)
(7)

R
(k)
1:2 = R1φ

(k)
2 (1− γ′′(k)

2 )p
(k)
2

R
(k)
1:3 = R1

(
φ

(k)
2 (1− γ′′(k)

2 )(1− p(k)
2 )φ

(k)
3 (1− γ′′(k)

3 )p
(k)
3 + φ

(k)
2 γ

′′(k)
2 φ

(k)
3 (1− γ′(k)

3 )p
(k)
3

)
R

(k)
1:4 = R1

(
φ

(k)
2 (1− γ′′(k)

2 )(1− p(k)
2 )φ

(k)
3 (1− γ′′(k)

3 )(1− p(k)
3 )φ

(k)
4 (1− γ′′(k)

4 )p
(k)
4

+ φ
(k)
2 (1− γ′′(k)

2 )(1− p(k)
2 )φ

(k)
3 γ

′′(k)
3 φ

(k)
4 (1− γ′(k)

4 )p
(k)
4

+ φ
(k)
2 γ

′′(k)
2 φ

(k)
3 γ

′(k)
3 φ

(k)
4 (1− γ′(k)

4 )p
(k)
4

+ φ
(k)
2 γ

′′(k)
2 φ

(k)
3 (1− γ′(k)

3 )φ
(k)
4 (1− γ′′(k)

4 )p
(k)
4

)
R

(k)
1:5 = ...

(8)

Likewise, the calculations of the expected number of animals never seen again

involves explicit inclusion of all permissible pathways (dead, outside study area,

within study area but not detected) that results in a sequence of no detections;

it is likewise best calculated using matrix multiplication.

Evidence for lack of �t in pppc-values, or high residuals, can help diagnose

violation of model assumptions. Problematic pwithin values may result from

violations of population closure during primary periods (e.g., secondary peri-

ods are too spread out, or non-random temporary immigration) or strongly

heterogeneous detection probabilities. Problematic pbetween could arise from in-

dividual heterogeneity in transition parameters (survival, temporary migration),

or non-Markovian migration processes, for example, if an animal has a greater

probability of leaving the study area after two years of being inside vs. after

just one year.

5.3. Hyperpriors for Hierarchical Bayesian PCRD

We now describe the hierarchical model for the western gulf Shark Bay

bottlenose dolphins, followed by the details of our choice of hyperparameters.
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� Scaled half Student-t hyperpriors T (σθ; s, ν)I(σθ > 0) on random-e�ects'

dispersion parameters σθ, with hyperparameter scale s and degrees-of-

freedom ν,

π(σγ′) ∝ T (σγ′ ; 0.175, 4)I(σγ′ > 0)

π(σγ′′) ∝ T (σγ′′ ; 0.3, 2)I(σγ′′ > 0)

π(σφ) ∝ T (σφ; 0.2, 13)I(σφ > 0)

π(σp(t)) ∝ T (σp(t); 0.3, 2)I(σp(t) > 0)

π(σp(s)) ∝ T (σp(s); 0.11, 2)I(σp(s) > 0)

π(σp(i)) ∝ T (σp(i); 0.11, 2)I(σp(i) > 0)

(9)

� Normal hyperpriors on the mean location of state parameters (µθ):

π(µγ′) = N (µγ′ ; 0, 1.12)

π(µγ′′) = N (µγ′′ ; 0, 1.552)

π(µφ) = Unif(µφ; 0.8, 1)

(10)

We used a di�erent prior for µφ because small deviations in φ can result

in large di�erences in expected lifespan. We used a Uniform hyperprior

from 0.8 to 1, which is �informative� in a naive sense, but actually results

in a highly di�used prior in a biological sense. I.e., it allows dolphins'

expected lifespan to vary from from 4.98 to > 99 years, the lower bound

being approximately half the age-of-�rst-parturition.

� time-varying state parameters with logit-Normal priors, conditional on µθ

and σθ

logit(γ′t) ∼ N (µγ′ , σ
2
γ′) for t = 1, ..., T

logit(γ′′t ) ∼ N (µγ′′ , σ
2
γ′′) for t = 1, ..., T

logit(φt) ∼ N (logit−1(µφ), σ2
φ) for t = 1, ..., T − 1

(11)

� multilevel hierarchical relationship of detection probabilities, across pri-

10



mary periods, within primary periods, and among individuals:

π(µp) = N (µp; 0, 1.552)

µp(t) ∼ N (µp, σ
2
p(t)) for t = 1, ..., T

µp(s) ∼ N (µp(t), σ
2
p(s)) for st = 1, ..., St; t = 1, ..., T

εi ∼ N (0, σ2
p(i)) for i = 1, ...,M

logit(pt,s,i) = µp(s) + εi for i = 1, ...,M ; s = 1, ..., St; t = 1, ..., T

(12)

� recruitment parameters

ψt ∼ Unif(0, 1)

λt = f(γ′t, γ
′′
t )

(13)

� latent state transitions and the likelihood (see matrix 15).

initialize: z0,i = 1 for i = 1, ...,m

p(zt,i|zt−1,i,At) = Cat(At[·, zt−1,i]) for i = 1, ...,m; t = 1, ..., T

p(yt,s,i|zt,i, pt,s,i) = Bern(p
I[zt,i=4]
t,s,i ) for i = 1, ...,m; st = 1, ..., St; t = 1, ..., T

(14)

The transition matrix At is parametrized with the demographic parame-

ters from the PCRD:

At =



not yet entered dead o�site onsite

not yet entered 1− ψt 0 0 0

dead 0 1 1− φt 1− φt
o�site ψt(1− λt) 0 φtγ

′
t φtγ

′′
t

onsite ψtλt 0 φt(1− γ′t) φt(1− γ′′t )


(15)

We now explain our choice of hyperpriors which govern the distributions

logit(θ) ∼ N (µθ, σ
2
θ), beginning with the hyperprior on the location parame-

ters µθ, the �default� and least-informative which is π(µθ) = N (µθ; 0, 1.552).

The dispersion hyperparameter 1.55 ensures that our prior on π(µθ) is approx-

imately uniform on the probability scale, conveying no prior knowledge. We

use this hyperparameter on the π(µγ′′) (mean out-migration) and for π(µp(t))
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(mean detection probability). A tighter dispersion of 1.12 for π(µγ′) serves to

remove some density from the boundaries 0 and 1 on the probability scale but

remains largely uninformative. For φ, we use our ecological intuition about

the long-lived, high-survival life-history of marine mammals (Silva et al., 2009;

Nicholson et al., 2012), creating a moderately informative distribution uniform

on 0.8 to 1.

For the dispersion parameters σθ, we use the scaled half Student-t distribu-

tion, parametrized with scale s and degrees-of-freedom ν. The half-t distribution

is recommended by Gelman (2006), in situations when: i) shrinkage to zero is

preferred, and ii) there are few (< 5) groups. In such situations, Uniform or

Inverse-Gamma hyperpriors can lead to in�ated variance of the random vari-

ables. The decisions to parametrized s and ν can be challenging, especially

because it is the σθ's which are instrumental in promoting shrinkage, or, if

mis-speci�ed, can in�ate the variance of the time-varying state parameters θt.

Generally, s is (approximately) our prior expectation for σθ, such that low values

s << 0.5 can help ��x� the state parameters to be constant over all primary pe-

riods. Recognizing the logit-to-probability transformation, values of σθ > 1.55

are undesirable, in that they allow the state-parameters to have a bimodal dis-

tribution peaked at 0 and 1 on the probability space, which is nonsensical for our

purposes. Rather, we desire a high probability density at zero, and very small

density for values of σθ beyond 1.55. ν governs the tail of the distribution of σθ,

and generally controls the degree to which strong evidence and a high value of

σMLE is permissible under the prior. Particular cases are: ν = 1, the standard

half-Cauchy with in�nite variance, which makes the MLE estimates much more

likely to drive the posterior and de�ates the in�uence of our prior expectation

s; and ν > 5 which makes the T distribution look increasingly half-Normal,

thereby driving the posterior expectation of σθ towards the hyperparameter s.

Our hyperparameters of s = 0.3 and ν = 2 merely encode the belief that

σθ has a mode at 0 and low probability beyond σθ > 1.55. We used these

hyperparameters for σp(t) and σγ′′ , which, based on our simulations, should be

easily estimated by the data. The value of ν = 2 yields a long-tailed distribution
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which allows potentially higher σMLE values to overwhelm the prior and drive

the posterior distribution. For other parameters which su�er greater correlations

in parameter estimates (γ′, φ) and are more di�cult to estimate, we employ

stronger hyperparameters (lower s and larger ν) to shrink σγ′ and σφ towards

zero; or, equivalently, shrink the time-varying values towards their means, µγ′

and µφ.

For our hyperprior on σγ′ , we used distributions which best conformed to the

following beliefs, stated as speci�c probability statements about the likely range

of values of γ′t (expressed as the inter-quantile range between 68% and 95%

intervals ): P[range68%CI(γ
′
t) < 0.1] = 0.76; P[range68%CI(γ

′
t) < 0.3] = 0.98;

P[range95%CI(γ
′
t) < 0.2] = 0.82; P[range95%CI(γ

′
t) > 0.5] = 0.014. In plain

speak, the �rst statement merely states that the majority of values of γ′t should

be within 0.1 of each other; whereas the �nal statement expresses the belief that

there is a tiny probability that any two values of γ′t are more than 0.5 probability

units apart. A value ν = 4 ensures that even in the face of strong evidence in

the data, the posterior of σγ′ will still not be able to take on high values.

A similar exercise was performed for φt, with even more extreme �x-

ing of the variance to promote a near constant φ. We used the follow-

ing beliefs: P[range68%CI(φt) < 0.02] = 0.64; P[range68%CI(φt) < 0.1] =

0.997; P[range95%CI(φt) < 0.02] = 0.42; P[range95%CI(φt) < 0.04] = 0.71;

P[range95%CI(φt) > 0.1] = 0.035. In other words, there is a 2/3 chance that

the majority of φt values are within 0.02 units of each other, and the chance

that any two values are greater than 0.1 probability units from each other is very

small. A value of ν = 13 makes the posterior of σφ insensitive to potentially

higher values of σMLE.

5.4. JAGS code: PCRD full-capture ��xed-e�ect� model

The following is JAGS code for the simple ��xed-e�ect� version of the

Bayesian HMM PCRD. For the variant that conditions on the �rst-capture,

see Appendix section 5.5; for the Hierarchical Bayesian PCRD, see the Ap-

pendix section 5.6. For an online demonstration with real data, see the R code
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at: https://github.com/faraway1nspace/PCRD_JAGS_demo.

Users should tweak which parameters they want to be time-variant or time-

invariant (in the following example gamma1 and phi survival are time-invariant,

whereas gamma2 varies per primary period, and detection probabilities pd vary

per secondary periods). The necessary input data (in R or Matlab) is: T is

the number of primary periods; T2 is a vector of the number of secondary

periods per primary period, of length T; M is the total number of individuals,

including both observed individuals and pseudo individuals; Y is a 3D array

where rows are M individuals, columns are the secondary periods, and the 3rd

dimension represents T primary periods, where every cell is either 1 for observed,

0 for unobserved, and NA for missing. Note, if there are a di�erent number

of secondary periods per primary period, then the number of columns of Y

will be the maximum number of secondary periods, and the extra entries for

those primary periods with fewer secondary periods should be padded with NA,

keeping in mind that the vector T2 (see above) sets the upper-bound for the

number of secondary periods per primary period for JAGS to evaluate. Users

must augment their observed capture history matrix with �all-zero� capture

histories, for a total of M observed and pseudo-individuals.

A special challenge for the JAGS version of the PCRD is initializing the

latent states' matrix z in a manner consistent with the observed data. See

section 5.7 for example R-code.

model{

# priors

phi ~ dbeta(1,1) # apparent survival probability (adjust for ecological

gamma1 ~ dbeta(1.2,1,2) # temp migration: probabilty stays out conditional on being out

# loop through primary periods: parameters for detection probability pd_t, and gamma2_t

for(t_ in 1:T){ # T primary periods...

pd_a[t_] ~ dgamma(3,2) # hyperprior on detect probs

pd_b[t_] ~ dgamma(3,2) # hyperprior on detect probs

for(tt_ in 1:T2[t_]){ # loop through secondary periods...

pd[t_,tt_] ~ dbeta(pd_a[t_],pd_b[t_]) # secondard-period-level detection probs

}

gamma2[t_] ~ dbeta(1,1) # temp migration: prob migrates outside conditional on being inside

# recruitment process from 'eigenvector decomposition'

lambda[1,t_] <- (1-gamma1)/(gamma2[t_]-gamma1+1) # recruitment ratio, or long-term prob of being inside

lambda[2,t_] <- 1-lambda[1,t_] #
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psi[t_] ~ dunif(0,1) # inclusion probability

# trmat: transition matrix for Markovian latent-states

# 1 =not yet in population;2=dead;3=offsite;4=onsite (only observable state)

# transition are from the column --> rows

# trmat[row,column,time] = [state at time=t_; state at time t_-1; time=t_]

trmat[1,1,t_] <- 1-psi[t_] # excluded from pop

trmat[2,1,t_] <- 0 # dead

trmat[3,1,t_] <- psi[t_]*lambda[2,t_] # inclusion into pop, outside study are

trmat[4,1,t_] <- psi[t_]*lambda[1,t_] # inclusion into pop, inside study area

trmat[1,2,t_]<- 0

trmat[2,2,t_]<- 1 # stay dead

trmat[3,2,t_]<- 0

trmat[4,2,t_]<- 0

trmat[1,3,t_]<- 0

trmat[2,3,t_]<- 1-phi # dies outside

trmat[3,3,t_]<- gamma1*phi # stays outside | outside

trmat[4,3,t_]<- (1-gamma1)*phi # reenters study area | outside

trmat[1,4,t_]<- 0 #

trmat[2,4,t_]<- 1-phi # dies inside

trmat[3,4,t_]<- gamma2[t_]*phi # leaves study area | inside

trmat[4,4,t_]<- (1-gamma2[t_])*phi # stays inside | inside

} # t_

# likelihood: loop through M individuals, both real and pseudo-individuals

for (i in 1:M){

#draw latent state at primary period 1:

# ... by definition, everyone starts in z=1 (not-in-population) at time=0

z[i,1]~ dcat(trmat[1:4,1,1]) # first z strictly excluded from pop

# likelihood for first primary period

for(tt_ in 1:T2[1]){ # loop through secondary periods

# Bernouilli process, conditional on z=4, otherwise no observation

y[i,tt_,1] ~ dbern(pd[1,tt_]*equals(z[i,1],4))

}

alive_i[i,1] <- step(z[i,1]-3) # count if i is alive or not

Nin_i[i,1] <- equals(z[i,1],4) # count if i is within study area

# loop through primary periods after 1st primary periods

for(t_ in 2:T){

# state process: draw z(t_) conditional on z(t_-1)

z[i,t_] ~ dcat(trmat[1:4, z[i,t_-1] , t_])

# likelihood: loop through secondary period observations

for(tt_ in 1:T2[t_]){

# Bernouilli observation error, conditional on z=4

y[i,tt_,t_] ~ dbern(pd[t_,tt_]*equals(z[i,t_],4))

}

# tally population size

alive_i[i,t_] <- step(z[i,t_]-3) # check alive or not

Nin_i[i,t_] <- equals(z[i,t_],4) # count if i is within study area

} # t_

} # i

# estimate population size per primary periods

for(t_ in 1:T){
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alive[t_] <- sum(alive_i[,t_]) # number alive

Nin[t_] <- sum(Nin_i[,t_]) # number in study area

} # t_

}

5.5. JAGS code: PCRD �rst-capture ��xed-e�ect� model

The following is JAGS code for the ��xed-e�ects� version of the PCRD which

conditions on an animal's �rst-capture. For the �xed-e�ect model that uses the

full-capture histories, see Appendix section 5.4; for the Hierarchical Bayesian

PCRD, see Appendix section 5.6. For an online demonstration with real data,

see the R code at: https://github.com/faraway1nspace/PCRD_JAGS_demo.

Users should tweak which parameters they want to be time-variant or time-

invariant (in the following example gamma1 and phi survival are time-invariant,

whereas gamma2 varies per primary period, and detection probabilities pd vary

per secondary periods). The necessary input data (in R or Matlab) are: T is the

number of primary periods; T2 is a vector of the number of secondary periods per

primary period, of length T; N is a integer on the number of observed individuals;

Y is a 3D array where rows are N individuals, columns are the secondary periods,

and the 3rd dimension represents T primary periods, where every cell is either

1 for observed, 0 for unobserved, and NA for missing. zeros is a vector of

length N �lled with zero, and is used for the WinBUGS �zeros trick� to manually

calculate likelihood of observations during secondary period in which we know

there was at least one observation during the entire primary period; first is

a vector of length N which lists which primary period each ith individual was

�rst encountered; N.ix2 is a vector of indices pointing to those individuals who

were potentially available for 2 or more primary periods, i.e., their �rst primary

period was at least T − 1 or earlier. N.ix3 is a vector of indices pointing to

those individuals who were potentially available for 3 or more primary periods,

i.e., their �rst primary period was at least T − 2 or earlier, which may include

some of the same individuals in N.ix2. Note, if there are a di�erent number

of secondary periods per primary period, then the number of columns of Y

will be the maximum number of secondary periods, and the extra entries for
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those primary periods with fewer secondary periods should be padded with NA,

keeping in mind that the vector T2 (see above) sets the upper-bound for the

number of secondary periods per primary period for JAGS to evaluate.

A special challenge for the JAGS version of the PCRD is initializing the

latent states' matrix z in a manner consistent with the observed data. See

Appendix section 5.7 for example R-code.

model{

# priors

phi ~ dbeta(1,1) #apparent survival probability

gamma1 ~ dbeta(1.2,1,2) #temporary migration: probabilty stays out conditional on being out

for(t_ in 1:T){ #T primary periods...

pd_a[t_] ~ dgamma(3,2) #hyperprior on detect probs

pd_b[t_] ~ dgamma(3,2) #hyperprior on detect probs

for(tt_ in 1:T2[t_]){ #loop through secondary periods...

pd[t_,tt_] ~ dbeta(pd_a[t_],pd_b[t_]) #secondard-period-level detection probs

}

p.eff[t_] <- 1-prod(1-pd[t_,1:T2[t_]]) #effective detection prob per primary period

}

#loop through (T-1) primary periods

#NOTE: trmat's are offset -1 in time, eg. t_=1 implies a transition between period 1 to period 2.

for(t_ in 1:(T-1)){

gamma2[t_] ~ dbeta(1,1) #temp migration: prob migrate out conditional on being inside

#trmat: transition matrix for Markovian latent-states

#1=dead;2=offsite;3=onsite

#transition are from the column --> rows

#trmat[row,column,time] = [state at time=t_; state at time t_-1; time=t_]

trmat[1,1,t_]<- 1 #stay dead

trmat[2,1,t_]<- 0

trmat[3,1,t_]<- 0

trmat[1,2,t_]<- 1-phi #dies outside

trmat[2,2,t_]<- gamma1*phi #stays outside | outside

trmat[3,2,t_]<- (1-gamma1)*phi #reenters study area | outside

trmat[1,3,t_]<- 1-phi #dies inside

trmat[2,3,t_]<- gamma2[t_]*phi #leaves study area | inside

trmat[3,3,t_]<- (1-gamma2[t_])*phi #stays inside | inside

} #t_ state process

#PART1: likelihood for first-capture (all individuals)

for(i in 1:N){

#Observation error during 1st capture: condition on at least one capture:

#the following formula is the (conditional) multinomial log-likelihood of

#...the sequence of observations in a primary period, conditional on that we

#...know they were seen at least once

LL[i]<-sum(y[i,1:T2[first[i]],first[i]]*log(pd[first[i],1:T2[first[i]]])+

(1-y[i,1:T2[first[i]],first[i]])*log(1-pd[first[i],1:T2[first[i]]])) -

log(p.eff[first[i]]) #multinomial log-likelihood

zeros[i] ~ dpois(-1*LL[i]+C) #Winbugs zeros trick, likelihood passed to JAGS as ZIP
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} #i

mintrick <- max(LL[1:N]) #strictly for monitoring the first-capture likelihood trick

#PART2: loop through individuals potentially available for 2 or more primary periods

for(i in 1:length(N.ix2)){

#state process for latent state after their first primary period

#draw z conditional on being seen during previous primary period

z[N.ix2[i],first[N.ix2[i]]+1]~ dcat(trmat[1:3,3,first[N.ix2[i]]])

#loop through secondary periods

for(tt_ in 1:T2[first[N.ix2[i]]+1]){

#likelihood of secondary periods observation, conditional on z=3

y[N.ix2[i],tt_,first[N.ix2[i]]+1] ~ dbern(pd[first[N.ix2[i]]+1,tt_] *

equals(z[N.ix2[i],first[N.ix2[i]]+1],3))

} #t_

} #N.ix2

#PART3: loop through individuals potentially available for 3 or more primary periods

for(i in 1:length(N.ix3)){

#loop through remain primary periods after first and second primary periods

for(t_ in (first[N.ix3[i]]+2):T){

#state process: draw z(t_) conditional on z(t_-1)

z[N.ix3[i],t_]~ dcat(trmat[1:3, z[N.ix3[i],t_-1], t_-1]) #

#Observation error: Bernoulli

for(tt_ in 1:T2[t_]){

#likelihood of secondary periods observation, conditional on z=3

y[N.ix3[i],tt_,t_] ~ dbern(pd[t_,tt_]*equals(z[N.ix3[i],t_],3))

} #tt_

} #t_

} #N.ix3

# estimate number of individuals available for capture (inside) per primary period

for(t_ in 1:T){

Nin[t_] <- n.vector[t_]/p.eff[t_]

} #t_

}

5.6. JAGS code: PCRD Hierarchical Bayes

The following shows JAGS code for the Hierarchical Bayesian version of the

PCRD. For the ��xed-e�ects� version that conditions on the �rst-capture, see

Appendix section 5.5; for the full-capture ��xed-e�ects� version, see Appendix

section 5.4. For an online demonstration with real data, see the R code at:

https://github.com/faraway1nspace/PCRD_JAGS_demo.

The necessary input data (in R or Matlab) are: T is the number of primary

periods; T2 is a vector of the number of secondary periods per primary period,

of length T; M is the total number of individuals, including both observed indi-

viduals and pseudo-individuals; Y is a 3D array where rows are M individuals,
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columns are the secondary periods, and the 3rd dimension represents T primary

periods, where every cell is either 1 for observed, 0 for unobserved, or NA for

missing. Note, if there are a di�erent number of secondary periods per pri-

mary period, then the number of columns of Y will be the maximum number

of secondary periods, and the extra cell entries for primary periods with fewer

secondary periods should be padded with NA (recall that the vector T2 instructs

JAGS about the number of secondary periods per primary period). Users must

augment their observed capture histories with �all-zero� capture histories, for a

total of M observed individuals and pseudo-individuals.

In addition, users must input the hyperparameters governing the time-

varying state parameters; see the variables with the pr. su�x. pr.phiunif

is the min and max for the hyperprior controlling the mean survival proba-

bility. pr.g1mu, pr.g2mu, pr.pdmu are the precision parameters for the logit-

Normal hyperprior governing the values of µγ′ , µγ′′ , and µp(t), respectively, and

should be approximately 0.4 to ensure a uniform and uninformative distribu-

tion on the probability scale. pr.tauphi, pr.taug1, pr.taug2, pr.taupdmu,

pr.taupd2nd and pr.taueps are the hyperparameters controlling the disper-

sion of time-varying parameters, respectively, σφ, σγ′ , σγ′′ , σγ′ , σp(t), σp(t,s),

σp(i). Each is a vector of two elements, the �rst being the inverse-scale param-

eter s and the second being the degrees-of-freedom ν (or shape parameter) of

the scaled half Student-t distribution.

A special challenge for the JAGS version of the PCRD is initializing the

latent states' matrix z in a manner consistent with the observed data. See

Appendix section 5.7 for example R code.

model{

#hyperpriors: logit(theta_mu)~Normal and theta_sd ~ half-t

phi.mu ~ dunif(pr.phiunif[1],pr.phiunif[2]) #mean survival with a Uniform prior

sigma.phi ~ dt(0,pr.tauphi[1],pr.tauphi[2]) T(0,) #mean survival dispersion, half-t hyperprior

g1.mu ~ dnorm(0,pr.g1mu) #mean gamma1, temp migration out | out

sigma.g1~dt(0,pr.taug1[1],pr.taug1[2]) T(0,) #mean gamma1 dispersion, half-t hyperprior

g2.mu ~ dnorm(0,pr.g2mu) #mean gamma2, temp migration out | in

sigma.g2~dt(0,pr.taug2[1],pr.taug2[2]) T(0,) #mean gamma2 dispersion, half-t hyperprior

pd.mu ~ dnorm(0,pr.pdmu) #mean detection prob, overall

sigma.pdmu~dt(0,pr.taupdmu[1],pr.taupdmu[2]) T(0,) #primary period detection prob dispersion
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sigma.pd2nd~dt(0,pr.taupd2nd[1],pr.taupd2nd[2]) T(0,) #secondary periods detection prob dispersion

sigma.eps ~ dt(0,pr.taueps[1],pr.taueps[2]) T(0,) #individual detection prob dispersion

#time-variant parameters

for(t_ in 1:T){ #loop through primary periods

pd_mu[t_]~dnorm(pd.mu,pow(sigma.pdmu,-2)) #primary period mean detaction prob (logit)

lgamma1[t_]~dnorm(g1.mu,pow(sigma.g1,-2)) #prob migrate out|out (logit)

gamma1[t_] <- ilogit(lgamma1[t_]) #prob migrate out|out (probability)

lgamma2[t_]~dnorm(g2.mu,pow(sigma.g2,-2)) #prob migrate out|in (logit)

gamma2[t_] <- ilogit(lgamma2[t_]) #prob migrate out|in (probability)

#RECRUITMENT: psi is the 'inclusion probability' and lambda is the 'recruitment ratio'

psi[t_]~dunif(0,1) #inclusion probability

lambda[t_] <- (1-gamma1[t_])/(gamma2[t_]-gamma1[t_]+1) #long-term probability inside study area

#NOTE, lambda could also be a random variable with a beta prior

#secondary-period detection probabilities

for(tt_ in 1:T2[t_]){ #loop through secondary periods

pd[t_,tt_] ~ dnorm(pd_mu[t_],pow(sigma.pd2nd,-2))

} #tt_

} #tt

#first state transition (pure nusance; strictly from outside-pop to part of marked-pop)

trmat0[1] <- (1-psi[1]) #remains not-yet-in-pop

trmat0[2] <- 0

trmat0[3] <- psi[1]*(1-lambda[1]) #inclusion into pop, goes outside study are

trmat0[4] <- psi[1]*lambda[1] #inclusion into pop, goes inside study

#state transitions (2:T)

for(t_ in 1:(T-1)){

lphi[t_]~dnorm(log(phi.mu/(1-phi.mu)), pow(sigma.phi,-2)) #survival prob (logit)

phi[t_]<-ilogit(lphi[t_])

#state transitions

#trmat: transition matrix for Markovian latent-states

#1 =not yet in population; 2=dead;3=offsite;4=onsite (only observable state)

#transition are from the column --> rows

#trmat[row,column,time] = [state at time=t_; state at time t_-1; time=t_]

#notice that the primary periods are offset by 1 (because we already dealt with T=1)

trmat[1,1,t_]<- 1-psi[t_+1] #excluded from pop

trmat[2,1,t_] <- 0 #dead

trmat[3,1,t_] <- psi[t_+1]*(1-lambda[t_+1]) #inclusion into pop,outside study

trmat[4,1,t_] <- psi[t_+1]*lambda[t_+1] #inclusion into pop,inside study

trmat[1,2,t_]<- 0

trmat[2,2,t_]<- 1 #stay dead

trmat[3,2,t_]<- 0

trmat[4,2,t_]<- 0

trmat[1,3,t_]<- 0

trmat[2,3,t_]<- 1-phi[t_] #dies outside

trmat[3,3,t_]<- gamma1[t_+1]*phi[t_] #stays outside | outside

trmat[4,3,t_]<- (1-gamma1[t_+1])*phi[t_] #reenters study area | outside

trmat[1,4,t_]<- 0 #

trmat[2,4,t_]<- 1-phi[t_] #dies inside

trmat[3,4,t_]<- gamma2[t_+1]*phi[t_] #leaves study area | inside

trmat[4,4,t_]<- (1-gamma2[t_+1])*phi[t_] #stays inside | inside

} #t_
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#loop through M individuals

for (i in 1:M){

#state transitions and likelihood for the first primary period

z[i,1]~ dcat(trmat0) #z at time 0 is strictly 'not-yet-in-pop'

alive_i[i,1] <- step(z[i,1]-3) #count if i is alive or not

Nin_i[i,1] <- equals(z[i,1],4) #count if i is within study area

eps_i[i] ~ dnorm(0,pow(sigma.eps,-2)) #random effects at individual levels

#Observation error y[i,tt_,t_] ~ Bernoulli conditional on being inside z=4

for(tt_ in 1:T2[1]){ #loop through secondary periods

y[i,tt_,1] ~ dbern(equals(z[i,1],4)/(1+exp(-pd[1,tt_]-eps_i[i]))) #inverse-logit transform

}

#state transition and likelihood for primary periods 2:T

for(t_ in 2:T){

#State process: draw z(t_) conditional on z(t_-1)

z[i,t_] ~ dcat(trmat[1:4, z[i,t_-1] , t_-1])

#Observation error y[i,tt_,t_] ~ Bernoulli condition on being inside z=4

for(tt_ in 1:T2[t_]){ #loop through secondary periods

y[i,tt_,t_] ~ dbern(equals(z[i,t_],4)/(1+exp(-pd[t_,tt_]-eps_[i]))) #inverse-logit transform

}

#check whether i individual is alive and inside

alive_i[i,t_] <- step(z[i,t_]-3) #check alive

Nin_i[i,t_] <- equals(z[i,t_],4) #count if i is within study area

} #t_

} #i

#tally population size

for(t_ in 1:T){

alive[t_] <- sum(alive_i[,t_]) #number alive

Nin[t_] <- sum(Nin_i[,t_]) #number in study area

} #t_

} #end model

5.7. R code: initializing latent states for JAGS

JAGS requires initial guesses of all random variables to start each MCMC

chain, and to do so in a way that is consistent with the observed data and model

assumptions. The latent state matrix z is perhaps the most di�cult variable

to initialize, so we have provided an example R function generate.z.psi to

facilitate this initialization. The function uses a classic Hidden Markov Model

forward-messaging/backwards-sampling algorithm to sample from z, conditional

on PCRD parameters and the observed capture histories. The user must re-run

the function for each MCMC chain, and append the resulting z matrix to a

named list of other initialized parameters (which are trivial to generate). See the

rjags manual for how to pass initial values to JAGS. Here, the user must input

arguments: y, a 3D array of the observed capture histories (including all-zero
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pseudo-individuals), identical to that used in the JAGS model; T2 a vector of

the number of secondary periods per primary period; first.capture a boolean

integer whether or not the user intends to condition on �rst-capture (TRUE) or

intends to model the full-capture histories (FALSE), in which case the function

also returns initial guesses for the recruitment parameter psi. z.priors are a

named list of Beta parameters used to generate random values of the PCRD

parameters (phi, g1, g2, pd) which are then used to generate the latent states z.

The default values should work well and the JAGS model should quickly leave

the state initializations and converge on the posterior expectations.

generate.z.psi <- function(y,T2,first.capture=FALSE,

z.priors = list(phi.beta=c(shape1=30,shape2=5),

g1.beta=c(shape1=20,shape2=20),

g2.beta=c(shape1=20,shape2=20),

pd.beta=c(shape1=12,shape2=65))){

exclude_=1; dead_=2;out_=3;in_=4; nstates = 4; T=length(T2)

Y.t <-apply(y,c(1,3),function(x) sum(x,na.rm=TRUE)) # captures per primary period

mm<-nrow(Y.t)

first.capt <- apply(Y.t,1,function(x){ if(any(x>0)){ min(which(x>0))} else {T+1}})

priors.str = strsplit(names(z.priors),split=".",fixed=TRUE) # get name of parameter and its density

random.var = lapply(priors.str, function(x) x[1]) # get names of random variables

for(par_ in 1:length(z.priors)){

rdraw=do.call(get(paste0("r",priors.str[[par_]][2])),

args=c(list(n=T),as.list(z.priors[[par_]])))

assign(priors.str[[par_]][1],value=rdraw)

}

# estimate psi values

psi.counts = tabulate(first.capt,(T+1))[1:T] # number of entries per primary periods

psi= rbeta(T,10+psi.counts,5+(mm + mm*first.capture)-psi.counts) # random draws from beta

t.mat = array(0,c(4,4,T)) # transition matrix

if(!any(random.var=="lambda")){ # esimate lambda, only if its not a random variable

lambda = (1-g1)/(g2-g1+1) # probability of transitioning to 'onsite' state

}

for(t_ in 1:T){

t.mat[,1,t_]<-c(1-psi[t_],0,psi[t_]*(1-lambda[t_]),psi[t_]*lambda[t_])

t.mat[,2,t_]<-c(0,1,0,0)

t.mat[,3,t_]<-c(0,1-phi[t_],g1[t_]*phi[t_],(1-g1[t_])*phi[t_])

t.mat[,4,t_]<-c(0,1-phi[t_],g2[t_]*phi[t_],(1-g2[t_])*phi[t_])

}

z = matrix(0,mm,T) # latent states matrix

a = matrix(0,nstates,T+1);a[,1]=1*((1:4)==exclude_) # forward messages

z.vec = numeric(T) # latent states

for(i in 1:mm){ # loop through individuals

for(t_ in 1:T){ # loop through primary periods

alph = dbinom(x = Y.t[i,t_],size=T2[t_],prob = pd[t_]*((1:nstates) == in_)) *
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(t.mat[,,t_])%*%a[,t_]

a[,t_+1] = alph/sum(alph) # forward messages

} # t_

# backwards sampling z_{t} ~ z_{t+1},Y

z.vec[T] <- sample(1:nstates,1,replace=FALSE,prob=a[,T+1])

for(t_ in (T-1):1){

p_z = dbinom(x = Y.t[i,t_+1],size=T2[t_+1],prob = pd[t_+1]*(z.vec[t_+1] == in_)) *

t.mat[z.vec[t_+1],,t_+1]*a[,t_+1]/a[z.vec[t_+1],t_+2]

z.vec[t_]<-sample(1:nstates,1,replace=FALSE,prob=p_z/sum(p_z))

}

z[i,] <- z.vec

} # i

# if conditioning on first capture

if(first.capture){ # replace z values as NA, if only modelling fullcapture

z <- z-1 # need to remove unseen 'not-yet-entered' state

for(i in 1:mm){

z[i,1:first.capt[i]]<-rep(NA,first.capt[i])

}

RET = list(z=z)

} else { #

# if modelling full capture histories, need psi estimates too

RET = list(z = z, psi = psi) # return latents states and psi

}

return(RET) # inner function

}
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