
Supplementary Material:
Handling Metadata in a Neurophysiology
Laboratory
Lyuba Zehl ∗, Florent Jaillet, Adrian Stoewer, Jan Grewe, Andrey Sobolev,
Thomas Wachtler, Thomas Brochier, Alexa Riehle, Michael Denker, and
Sonja Grün
*Correspondence:
Lyuba Zehl
l.zehl@fz-juelich.de

1 A COMPLEX NEUROPHYSIOLOGICAL EXPERIMENT

To analyze electrophysiological data and to relate the neuronal data to behavior the full details of the
experiment, the experimental setup including the detailed signal flows need to be known. In the main
text, we decided to put only a comprised description together with a figure of the setup Figure 1 and two
complementary tables (Table 1 and Table 2). For the sake of completeness, we here give a more detailed
description of the example experiment. The information given is organized according to the different phases
of such an experiment and their relevance in respect to the metadata use cases outlined in the main text.

1.1 The task

Three monkeys (Macaca mulatta; 2 females, L, T; 1 male, N) were trained to grasp an object using one
of two different grip types (side grip, SG, or precision grip, PG) and to pull it against one of two possible
loads requiring either a high (HF) or low (LF) pulling force. In each trial, instructions for the requested
behavior were provided to the monkeys through two consecutive visual cues (C and GO) which were
separated by a one second delay and generated by the illumination of specific combinations of 5 LEDs
positioned above the object. Information about the design and the mechanical engineering of the apparatus
(e.g. the system providing the visual cue) were collected into a project specific info spreadsheet by the
experimenter (label 0 in Figure 1, and Table 2). The experimental trial scheme including all behavioral
events, behavioral periods, and stimuli are illustrated at the bottom of Figure 1 and described in Table 1.
The corresponding metadata, such as the timing of the trial events, the typical duration of each period
as well as their definitions and convenient abbreviations, were also collected in the project specific info
spreadsheet.

1.2 The pre-recording period

When the monkey was fully trained in the task, a 100-electrode Utah array (Blackrock Microsystems,
Salt Lake City, UT, USA) was surgically implanted in the motor cortex contralateral to the working hand.
Details on the array (e.g. serial number, geometry, insulation, connector type) were collected in a Blackrock
configuration spreadsheet by the experimenter (label 4 in Figure 1, and Table 2). Information about each
electrode (e.g. ID, spatial location, impedance) was provided by the supplier (Blackrock Microsystems) in
a non-machine-readable format, and therefore was transferred into an electrode configuration text file (label

1



Zehl et al. Supplementary Material

2 in Figure 1 and Table 2). To be able to compare recordings across monkeys, a generalized order of the
electrode IDs with respect to the individual anatomical placement of the array on the cortical surface was
made by the experimenter and saved in a second array-specific text file (label 3 in Figure 1 and Table 2).
All information about the training (e.g., duration, trainer, approach) and the surgery (e.g., pre-medication,
surgeon, anesthesia) was collected in handwritten protocols. Later, key information about surgery and
training (e.g., training duration, date of the surgery, implanted hemisphere) was extracted from these
protocols and transferred, along with the links to the original files, into the subject or array specific info
spreadsheet (label 1 in Figure 1 and Table 2). The subject or array specific info spreadsheet also included
profile information for each monkey (e.g. birthday, species, name, working hand).

1.3 The recording period

The recording period lasted for at least half a year for each monkey. Recording sessions were performed
on a daily basis, 5 days per week, and each lasted for about 2 hours. Within each recording day, data were
recorded in 4 to 8 sessions, each saved in a set of 3 data files (.nev, .ns5/.ns6, and .ns2; labels 5, 6a, and 6b
in Figure 1, and Table 2). Each session had a recording duration of about 15 min and was composed of 100
to 200 trials of a specified task condition. A task condition is defined by the order of the cue presentations
(grip-cue first or force-cue first), the combination of 1, 2 or 4 trial types (PG/HF, PG/LF, SG/HF, SG/LF,
HF/PG, HF/SG, LF/PG, LF/SG) and their sequence of presentation in the session (random or block design).
The abbreviations and the respective numerical codes for the trial types and task conditions were again
collected in the project specific info spreadsheet (label 0 in Figure 1, and Table 2).

The task condition was selected for each session by the experimenter depending on the mood and
motivation of the monkey and the scientific question to be addressed. During some recording days,
additional complementary experiments were performed, such as mapping the receptive fields (by passively
moving (parts of) the limb or by tactile stimulation, see Riehle et al. 2013), or performing intra-cortical
micro-stimulation. Thus, over the whole recording period, hundreds of data files were recorded. Information
specific for each session (e.g. weekday, the chosen task condition, mood of the monkey) was first registered
into a handwritten notebook and later transferred to the recording specific spreadsheets (label 7 in Figure 1,
and Table 2).

1.4 The recording procedure and main preprocessing steps

The experimental setup (illustrated in Figure 1) was composed of two streams of signals: A) the recording
and processing of neuronal signals (yellow arrows), B) the task control and recording of behavioral events
(green and blue arrows).

The flow of the neuronal signals (stream A, yellow) started with cortical recordings with the Utah array.
The signals from each active electrode were transmitted to a high density connector fixed to the skull. They
were then processed by a headstage, attached directly to the connector, to improve the signal-to-noise ratio.
The type of headstage was specified in the recording specific spreadsheet (label 7 in Figure 1 and Table 2)
after each corresponding recording day. The signals were then transferred to the Front-End Amplifier to be
amplified (gain factor: 5000), hardware-filtered (band-pass with cutoff frequencies 0.3 Hz and 7.5 kHz)
and digitized (30 kHz). The hardware information about the Front-End Amplifier was entered into the
Blackrock configuration spreadsheet (label 4 in Figure 1, and Table 2) at the beginning of the project.
These processed ’raw’ signals were transmitted to the Neural Signal Processor (NSP) via an optic fiber. The
NSP was controlled by Central Suite (data acquisition software of Blackrock Microsystems) running under
Windows on the data acquisition PC. Within the NSP the signals were further processed and saved to disk

2



Zehl et al. Supplementary Material

into two output streams: (i) a direct output stream which was saved as .ns6 file (monkey N) or .ns5 (monkey
L and T) depending on the version of Central Suite (for both see label 6a in Figure 1 and Table 2), and (ii)
a downsampled (1 kHz) and digitally low-pass filtered (cutoff frequency 250 Hz) output stream designed to
capture the LFP which was saved as .ns2 file (label 6b in Figure 1, and Table 2). Information about how
the signals were processed and saved was distributed over several source files. Before the recording period
of each monkey, the hardware properties of the NSP and general information about Central Suite and the
data acquisition PC were entered into the Blackrock configuration spreadsheet (label 4). The hardware
settings of the NSP defined by Central Suite were, however, saved in the recording specific spreadsheet
(label 7 in Figure 1 and Table 2) and in the data files (label 5, 6a, and 6b Figure 1 and Table 2).

In parallel to the continuously sampled neuronal signals, a high-resolution (30kHz) high-pass filtered
signal stream (at 500Hz in monkey T and L, and 250Hz in monkey N) was used to identify and save
spiking activities online. For this, a user-defined threshold on each recording channel was set via the spike
sorting module of Central Suite for each session to extract potential spike shapes (waveforms). However,
these thresholds were not modified during a session. The waveforms were saved in the .nev file (label 5 in
Figure 1 and Table 2), together with their respective time stamps. The size of the extracted time window
for the waveforms (1.6 ms in monkey T and L, and 1.3 ms in monkey N) was set for the complete recording
period of each monkey and therefore saved in the Blackrock configuration spreadsheet (label 4 in Figure 1
and Table 2).

The actual sorting of the extracted waveforms into single unit (SUA) or multi unit activities (MUA) was
performed as a semi-automatic preprocessing step via the Plexon offline Spike Sorter (Plexon Inc, Dallas,
Texas, USA; version 3.3). The sorting results were saved in an additional .nev file by Plexon (label 8 in
Figure 1 and Table 2). The assignment of unit IDs to noise, SUA and MUA was defined in a hand written
spike sorting specific text file (label 9 in Figure 1 and Table 2). To assess the quality of the identified units,
a characterization of their waveforms (e.g., amplitude, width, signal-to-noise ratio) was performed using a
custom MATLAB program that stored the results in a .mat file (label 10 in Figure 1 and Table 2).

The behavioral signals (stream B, green and blue) were monitored and controlled in real-time by
LabVIEW (software of the National Instruments Corporation, Austin, Texas, USA) which ran on a second
PC. In parallel, the behavioral events (digitized by an Analog-to-Digital Converter of National Instruments,
where required) and signals were fed into the NSP and saved along with the neuronal events (.nev file, label
5 in Figure 1 and Table 2) or analog signals (.ns2 file, label 6b in Figure 1 and Table 2). The behavioral
analog signals, registered at the force and displacement sensors attached to the object, were later offline
processed via a custom MATLAB program to extract the performed pulling force and the event times (OT,
HS, and OR). The results and parameters used for this preprocessing step were saved in two .mat files
(labels 11 and 12 in Figure 1 and Table 2).

Another standard preprocessing step was the quality control of the LFP signals by custom Python program
(see Computer - Quality Check, Figure 1) for the elimination of individual trials (on all electrodes) or
individual electrodes (in all trials) which were corrupted by large artifacts or noise. This procedure was
semi-automatic, i.e. the experimenter needed to visually control and, if necessary, adjust the criteria (e.g.,
based on the variance of the LFP) and redo the analysis. The results and parameters of this preprocessing
step were documented in a .hdf5 file (label 13 in Figure 1 and Table 2).

1.5 Summary of metadata sources

To transform these various metadata sources into a comprehensive metadata collection it is necessary to
first reorganize them according to the following types of source files:

Frontiers 3



Zehl et al. Supplementary Material

• one source file per experiment containing metadata which are valid for the whole experiment
independent of the used subjects (in our example experiment this matches the project specific info
spreadsheet, label 0 in Figure 1 and Table 2)

• at least one source file for each subject containing metadata which are subject specific (source files
with label 1 in Figure 1 and Table 2 in our example experiment)

• at least one source file for each recording device containing metadata which are valid for the recording
period with the corresponding device (source files with label 2 - 4 in Figure 1 and Table 2 in our
example experiment)

• at least one source file per session containing recording specific metadata (source files with label 5 - 7
in Figure 1 and Table 2 in our example experiment)

• at least one source file for each preprocessing step of each recording containing metadata which are
valid for a specific preprocessing of a specific recording (source files with label 8 - 13 in Figure 1 and
Table 2 in our example experiment)

2 USING AN ODML METADATA COLLECTION

In the main text we described five use cases and showed along those the advantages of a standardized
organization of metadata. Additionally, we provided guidelines for creating a comprehensive metadata
collection. Here we now complement both sections with practical demonstrations. Note that the code
presented can be written in a more compact way, but for better readability we provide a longer, more
explicit code format.

2.1 Manual inspection

As described in use case 2 it can be quite useful to be able to manually inspect a metadata collection to
get familiar with an experimental study. There are three ways of manually screening an odML file.

The first possibility to open an odML file would be to use a simple text editor (see Listing S-1). This is
possible, because odML is based on XML which is a textual data format readable and editable with any
available text editor. It is therefore a quick way to manually inspect or edit the content of an odML file, but
the XML based representation is not convenient for large odML files.

A second possibility to view, but not edit an odML file is to open it via a web browser (Figure S-1). For
this, one has to add the XML-schema file (odML.xsl) to the directory where the odML files are located
before opening them to view. The XML-schema file is available for download on the odML website (termed
’metdataStylesheet’ on http://www.g-node.org/projects/odml/tools). The schema translates the XML based
representation of odML into HTML code which is then interpreted by the web browser into an interactive
web page representation. The web page will show the tree structure of the Sections as a static table of
contents at the top and below all Sections and their Properties as a flat content list. Each Section in the tree
representation is a link to its corresponding flat content representation. This approach is very useful for
screening and browsing through an odML file, especially if it is large and complex.

The third possibility to manually inspect or edit an odML file is to use the odML Editor (Figure S-2). The
editor (’odml-gui’) is part of the Python odML library. Here, the representation of the tree structure of
the Sections is separated from the flat representation of its Properties. The editor window is subdivided into
three parts. The Sections pane (upper left) displays a tree view of all Sections starting from the top level of
the document, the Properties pane (upper right) displays a table containing the Name, Value and the Value

4

http://www.g-node.org/projects/odml/tools


Zehl et al. Supplementary Material

attributes of each Property (row) belonging to a selected Section in the Sections pane, and the attributes
pane (bottom) displays the attributes of the current selected Section, Property or Document. The header of
the attributes pane indicates the path to the selected Section or Property in red starting from the Document
root.

2.2 Navigating the odML structure

Depending on the experiment, the odML structure can become large and complex, thus making it difficult
to find certain metadata within this complex structure. For this reason the odML Python library provides
helper functions which can be used to find and extract metadata values with minimal user knowledge on
the odML structure. In the following we will demonstrate how these helper functions, itervalues(),
iterproperties() and itersections() (collectively referred to as iter functions), can be used
in the scenario we defined for the use cases. For these demonstrations, we assume that an odML metadata
collection for the reach-to-grasp study was already generated resulting in one odML file per session.

Bob wrote an analysis script to test if the firing rates depend on the behavioral condition in the trials,
and he wants to run his analysis script on single unit (SUA) data pooled across sessions. Thus, he needs
to check which recording sessions were already spike sorted. From a previous manual inspection of the
odML files, he remembers that the Property containing this information was called “IsSpikeSorted”. He
also remembers that this Property name is unique and that the type of the metadata Value saved in this
Property is a boolean (True or False). He cannot remember where this Property is located in the complete
tree structure of the odML files (for an example on how to extract odML objects via their absolute path in
the hierarchy, see the odML Python tutorial at http://g-node.github.io/python-odml/). His knowledge is
sufficient enough, though, to make use of the Python odML helper function iterproperties() which
iterates through all Property objects of an odML file and combines it with a filter function that checks for
each Property object if its name is equal to “IsSpikeSorted” (Listing S-2). He knows that this will give him
a list containing exactly one Property containing the requested metadata. He extracts the Property from the
list and accesses the single Value object of the Property to extract the stored metadata of type boolean to
print out if the session he looked at was spike sorted or not.

If an odML Property or Section name is ambiguous, one can extend the filter function to check for several
attributes of the requested object. For example, Bob wants to know the SUA IDs of one particular electrode
with the ID 11. Again from previous inspections of the odML file, he remembers that the Property name
which contains the metadata he is searching for is “SUAIDs” and that it exists as a child object below
each of 96 uniquely named Sections which represent the active electrodes of the Utah array (cf., Figure 6).
He makes use of this fact and extends the filter function not only to make sure that the property name is
“SUAIDs”, but also that the name of the section of his particular electrode “Electrode 011” occurs in the
path of the requested property (see Listing S-3). Bob combines this more complex filter function with the
odML helper function iterproperties() and extracts the requested Property from the resulting list.
He is aware that the Property “SUAIDs” can contain multiple Values which he writes into a list. He then
loops through this list to access the Values containing the SUA IDs of Electrode 011.

Which iter function one has to use, and how complex the filter function should be, depends on both the
structure of the odML file and the user’s need. For automatic extraction of metadata one has to make sure
that the filter function is complex enough to guarantee that the iter function returns only the requested
objects. In case of a large odML structure one should narrow the search down to a certain branch of
the odML file and avoid iterations through Value objects of the odML. Both will save run time in the
implementation.

Frontiers 5

http://g-node.github.io/python-odml/


Zehl et al. Supplementary Material

The search for the Property “SUAIDs” of Section “Electrode 011”, for example, could have been also
written differently, as shown in Listing S-4. Bob knows that, although the Property name “SUAIDs” exists
many times within the odML file, the Section name “Electrode 011” is unique and below this Section only
one Property is named “SUAIDs”. He can make use of this fact by dividing the search for the requested
SUA IDs in two steps. In step one, Bob creates a filter function in combination with the odML helper
function itersections() to find and extract the Section with name “Electrode 011” from the odML
file. In the second step, he uses the odML helper function iterproperties() not on the entire odML
file (odml of recordingXX), but on the extracted Section “Electrode 011” in combination with a filter
function for finding the Property “SUAIDs”.

Bob can also make use of the ambiguity of the odML Property name “SUAIDs” to collect the number
of SUA IDs identified for all electrodes of the Utah array, which gives an idea about the quality of the
spike detection and the spike sorting (see Listing S-5). Therefore he would combine the odML helper
function iterproperties() with a filter function that only checks if the odML Property name equals
“SUAIDs” and counts, based on the resulting lists of odML Properties with name “SUAIDs”, how many
odML Values contain metadata matching SUA IDs.

2.3 Navigating across odML files

In the previous subsection we demonstrated how to locate and access specific metadata in a given odML
hierarchy. Here, we will illustrate how to apply this mechanism across odML files.

Let us assume that Bob defined his iter and filter function to find out whether a given recording session is
spike sorted (see Listing S-6). He also extracted a list of all odML file names and knows that they match the
names of the corresponding data files. He loops over all odML files and extracts for each if the session was
spike sorted. If so, he appends the corresponding filename automatically to the list of spike sorted sessions.

If Bob has more than one criterion to be used for selecting sessions or even data from sessions, such
as in use case 3, it is helpful to combine all checks based on the iterproperties() function in a
single criterion function for increased clarity. Based on the code examples in Listing S-2 and Listing S-5,
Bob may create a criterion function which checks if a session was spike sorted and if so, if the number of
identified single units was larger than 60 (Listing S-7).

2.4 Integration of additional metadata

Additional preprocessing steps (e.g. spike sorting or quality assessment) as described in Section 1 and
use case 1 (Section 3.1 of the main text) are often performed over a time period of months after the actual
recording which is typical for a workflow of an electrophysiological experiment. Along use case 1 we
will now illustrate different scenarios of how metadata of such preprocessing procedures can be gradually
integrated into an existing odML file.

In a first scenario, the preprocessing step is expected and known in advance (e.g. spike sorting). Here,
the odML structure can be planned ahead with default dummy metadata Values in the form of an odML
template. In this case it is possible to replace the dummy Values in the odML structure by the upcoming
actual metadata Values of the preprocessing step.

Alternatively, the preprocessing step may not be expected, for example, if its importance arises only
after performing preliminary analyses of the data. Indeed, the ideal odML structure for metadata may only
become clear during development of a new preprocessing step and needs to be integrated into existing
odML files later on. In such a case one should update the original odML template structure with the

6



Zehl et al. Supplementary Material

new preprocessing structure and rerun the generation of all odML files to keep overall consistency and
reproducibility.

2.5 odML access via MATLAB

In use case 5 we discussed a situation where two scientists (Alice and Carol) from different labs decide
to work together even though they use different programming languages for data analysis (MATLAB and
Python, respectively). The question arises how both scientists can use odML without abandoning their
preferred programming language. Indeed, odML libraries exist not only for Python but also for MATLAB
and Java. As MATLAB is often used in experimental neurophysiological laboratories, we illustrate here
how the previously stated Python code examples can be translated into MATLAB.

The current version of the MATLAB odML library provides an API that differs from the python-odml
library. In particular the MATLAB API is limited to load data from odML files but not to write to odML files,
and the flexible iterproperties() is replaced by a comparable, but more limited, helper function
called odml find().

When using the MATLAB odML library (https://github.com/G-Node/matlab-odml), the odML data are
stored in MATLAB structure arrays, making handling of the data convenient and familiar for MATLAB
users. It must be noted that the odml load() loading function provides an option to choose between two
possible ways of mapping the odML data to the fields of the structure array. Using the default ’tree’ option,
the fields of the structure array are directly named after the names of the Sections and Properties defined
in the odML file, as illustrated in Listing S-8. Using the ’odml’ option, the odML data are loaded in the
structure array following more closely the odML object model, as illustrated in Listing S-9.

As it can be inferred by comparing the code in Listing S-8 and Listing S-9, using one option or the
other is more suitable depending of the type of processing that will be performed on the metadata.
For example, when the user knows the odML hierarchy and wants to access directly a given Property,
the option ’tree’ leads to more explicit naming in the structure array fields which makes writing
and reading of the code more convenient (compare rootSection.Subject.Weight.value and
rootSection.section(1).property(2).value(1).value from Listing S-8 and Listing S-
9, respectively). For some more advanced processing, in particular when looping over metadata structures,
or when the number of Values or Properties or Sections is unknown, the ’odml’ option can be more suitable.
A more detailed discussion about the two loading options can be found in the help of the odml load()
function.

The odml find() function searches an odML tree for the Section or Property object with a given
name (object = odml find(odml tree, object name)) or all sections and property objects
with the given name (object list = odml find(odml tree, object name, Inf)). It can
be used to build the MATLAB code equivalent to the Python code that we gave in our previous examples.

In the simple case where the requested object is uniquely represented in the odML file, as it is the case in
our first code example in which Bob wants to find out if a particular recording session was spike sorted
(Listing S-2), the MATLAB code is straight-forward (Listing S-10).

In the more complex situation where the requested object is not uniquely represented in the odML file, as
in our second code example in which Bob wants to know the SUA IDs of the electrode with ID 11, we
need to extract first the unique identifiable electrode Section “Electrode 011” and then use the resulting
Section object in the odml find() function to access the metadata of Property “SUAIDs” (Listing S-11).
This approach is not as flexible as the Python code using the combination of iterproperties() with

Frontiers 7

https://github.com/G-Node/matlab-odml


Zehl et al. Supplementary Material

complex filter functions as demonstrated in Listing S-3, but it is very similar to the approach in Listing S-4
and still powerful enough to access any metadata within the odML file with little detail knowledge on the
odML file structure.

Finally, as illustrated in listing Listing S-12, we can also make use of the odml find() function to find
a list of Properties with ambiguous names. For example, we may wish to collect the number of SUAIDs
identified for all electrodes of the Utah array, as we did in the code example in Listing S-5.

REFERENCES

Riehle, A., Wirtssohn, S., Grün, S., and Brochier, T. (2013). Mapping the spatio-temporal structure of
motor cortical LFP and spiking activities during reach-to-grasp movements. Front Neural Circuits 7, 48.
doi:10.3389/fncir.2013.00048

8



Zehl et al. Supplementary Material

3 SUPPLEMENTARY TABLES AND FIGURES

odML - Metadata

Document info

Author: Bob

Date:

Version:

Repository:

Structure

Subject (type: subject)

ArrayImplant (type: subject/preparation)

Content

Section: Subject

Type: subject

Id:

Repository:

Link:

Include:

De�nition:Information on the investigated experimental subject (animal or person)

Mapping:

Name Value Uncertainty Unit value

id

Type Comment De nition

Species Macaca mullata string Binomial species name (genus, species

within genus)

top

Section: ArrayImplant

Type: subject/preparation

Id:

Repository:

Link:

Include:

De�nition:Information on the array implant performed on subject

Mapping:

Name Value Uncertainty Unit value

id

Type Comment De nition

Date 2011-09-30 date Date of the surgery

top

Figure S-1. HTML view of an odML file. The displayed odML document Subject Demo.odml is schematically displayed in Figure 5, its corresponding Python
implementation is shown in Figure 8, and the XML-based representation is demonstrated in Listing S-1.

Frontiers 9



Zehl et al. Supplementary Material

Figure S-2. odML Editor view of an odML file. The displayed odML document Subject Demo.odml is schematically displayed in Figure 5, its corresponding
Python implementation is shown in Figure 8, and the XML-based representation is demonstrated in Listing S-1. Note that the ’Subject’ section was selected
(marked in orange in the sections pane). The corresponding properties of the selected section (’Species’ and ’Weight’) are displayed in the properties pane.

10



Zehl et al. Supplementary Material

Listing S-1. XML-based representation of an odML file. XML-based representation of the odML Document Subject Demo.odml which is schematically
displayed in Figure 5. The corresponding Python code is shown in Figure 8.

Frontiers 11



Zehl et al. Supplementary Material

Listing S-2. Extract unique objects from an odML file in Python. Python code for extracting an odML object with a unique name. The example demonstrates
how one makes use of a filter function for the object name (“IsSpikeSorted”) in combination with the object corresponding Python odML function
iterproperties().

12



Zehl et al. Supplementary Material

Listing S-3. Extract ambiguous objects from an odML file in Python via search conditions. Python code for extracting an odML object with an ambiguous
name by extending the conditions given in the filter function.

Frontiers 13



Zehl et al. Supplementary Material

Listing S-4. Extract ambiguous objects from an odML file in Python via partial searches. Python code for extracting an odML object with an ambiguous name
by narrowing down the search to a smaller part of the odML document.

14



Zehl et al. Supplementary Material

Listing S-5. Extract all ambiguous objects from an odML file in Python. Python code for extracting a list of related odML objects with ambiguous names.

Frontiers 15



Zehl et al. Supplementary Material

Listing S-6. Extract a specific object from an odML file in Python used in a data selection. Python code to generate a list of filenames of spike sorted recording
sessions.

16



Zehl et al. Supplementary Material

Listing S-7. Extract multiple objects from an odML file in Python used in a data selection. Python code that uses a criterion function to generate a list of
filenames of spike sorted recording sessions which contain at least 60 identified units.

Frontiers 17



Zehl et al. Supplementary Material

✞
1 odml_config;

2
3 % load the test odML file with the default ’tree ’ option

4 rootSection = odml_load (’example_odML.odml ’);

5
6 % access the value of the weight of the subject

7 weight = rootSection.Subject .Weight .value;✝ ✆
Listing S-8. odML in MATLAB - ’tree’ option. MATLAB code for accessing a specific metadata value when using the default ’tree’ loading option. The
content of the file ’listing2.odml’ is given in Figure 5.

✞
1 odml_config;

2
3 % load the test odML file with the ’odml ’ option

4 rootSection = odml_load (’example_odML.odml ’, ’odml ’);

5
6 % access the value of the weight of the subject

7 weight = rootSection.section (1).property (2).value (1).value;✝ ✆
Listing S-9. odML in MATLAB - ’odml’ option. MATLAB code for accessing a specific metadata value when using the ’odml’ loading option. The content of
the file ’listing2.odml’ is given in Figure 5.

Listing S-10. Extract unique objects from an odML file in MATLAB. MATLAB code for extracting an odML object with a unique name.

18



Zehl et al. Supplementary Material

Listing S-11. Extract ambiguous objects from an odML file in MATLAB. MATLAB code for extracting an odML object with an ambiguous name.

Listing S-12. Extract all ambiguous objects from an odML file in MATLAB. MATLAB code for extracting a list of related odML objects with ambiguous
names.

Frontiers 19


	A complex neurophysiological experiment
	The task
	The pre-recording period
	The recording period
	The recording procedure and main preprocessing steps
	Summary of metadata sources

	Using an odML metadata collection
	Manual inspection
	Navigating the odML structure
	Navigating across odML files
	Integration of additional metadata
	odML access via MATLAB

	Supplementary Tables and Figures

