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BETSE (BioElectric Tissue Simulation Engine) is an open-source scientific software tool en-
abling bio-realistic modeling of dynamic electrochemical phenomena in gap junction-networked
cell collectives, with a focus on the role of bioelectrics in spatio-temporal pattern formation.

The core methods of the BETSE model are finite volume techniques, which use discretized
differential equations defined on grids with control volumes representing the cell and envi-
ronmental architecture of the heterogeneous tissue. The following is a detailed walk-through
of the BETSE model, covering computational, mathematical and theoretical aspects.
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1 Model Overview

The system diagram of Figure 1 outlines the information flow paths used in BETSE to calcu-
late various bioelectric system properties from ion concentrations in intra- and extracellular
spaces. Not all of the functionality shown in Figure 1 is discussed in the present report.

2 Discrete Mathematics on BETSE Grids

2.1 Overview of Grid Based Computations in BETSE

Biological tissue represents a unique modeling scenario due to its highly heterogeneous
nature, where closely-spaced (~10 to 30 nm) membrane bound, electrolyte-filled cells are in-
dividually interacting with a small extracellular space at individual plasma membranes, where
the extracellular spaces connect with a continuous, aqueous environment at the cell cluster
boundary. Individual cells are also connected internally via transmembrane channels such
as gap junctions, which enable passage of small molecules between cells. BETSE uses an
irregular Voronoi diagram based cell grid (Cell Grid) embedded within a regular square envi-
ronmental grid (Env Grid) to model the heterogeneous nature of tissues, while also allowing
modeling of a continuous environmental space around the cell cluster (Figure 2).

Finite volume methods define techniques by which differential equations can be discretized
to be applied and solved on grids of points such as the Cell Grid and Env Grid of BETSE.

In general, two fundamentally different types of properties are scalar properties, such as con-
centration and voltage, which have a magnitude defined at each point in space, and vector
properties, such as mass flux and electric field, which have both magnitude and direction at
each point in space. For this discussion, scalar properties are represented abstractly as sj
– the hypothetical scalar property with magnitude s defined at grid-point j. Vector properties
are represented as ~Fj with components Fxj and Fyj where ~Fj = Fxj x̂ + Fyjŷ. Here x̂ and ŷ are
the unit vectors defining the horizontal and vertical directions of the space, respectively.

The core mathematical operators of differential equations used in BETSE are:
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Fig. 1: System diagram detailing input/output relationships between BETSE variables and mathematical
functions/operators occurring in a single time-step of a simulation.
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Fig. 2: BETSE computations use an irregular Voronoi-based Cell Grid embedded within a regular square
Env Grid to model heterogeneous tissues composed of gap junction networked cells interacting
with both a small extracellular space at the individual cell boundary, and a continuous environ-
mental space at the cell cluster boundary. The Cell Grid is composed of cell center (’4’) and
membrane points (’∗’), with membranes lacking a neighboring cell (and therefore interacting with
the global environment) identified. The Env Grid consists of regularly spaced points (’o’) which
are tagged as being internal (and interacting with a Cell Grid membrane point) or external to the
cell cluster.
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• gradient (∇sj), which calculates the degree of change of the spatial property over space

• divergence (∇ · ~Fj), which measures the amount of outward flow of a vector field from
each point in space – the presence of a flux source, and

• the Laplacian (∇2sj = ∇ · ∇sj), which is most intuitively expressed as the divergence
of the gradient of a scalar property. When discretized, the Laplacian is a matrix, which
can be inverted to give the inverse of the operation (if ∇2Sj = cj then Sj = ∇−2cj )

Versions of gradient, divergence, and Laplacian/inverse Laplacian were defined, using first
principles and finite difference/volume techniques, on the Cell Grid and Env Grid. These
core mathematical operators were then used where required in specific differential equation
expressions.

The sub-sections below describe the detailed features of the Cell Grid and Env Grid, and the
specific definition of the three core mathematical operators.

2.2 The Cell Grid

Detailed features of the Cell Grid are illustrated in Figure 3. The Cell Grid was constructed
from a Voronoi diagram built from a 2D scatter of seed points. The seed points become the
center point of each cell control volume (cell centers indicated in grid diagrams as 4, see
Figure 2), where scalar cell properties such as concentration (ci) and intracellular voltage
(Vcell) are defined.

Each cell has a unique volume (volcell) and perimeter, which were defined by scaling the ver-
tices of each Voronoi patch in towards the cell center point. This allowed unique membrane
properties, such as Vmem, as well as membrane-specific concentration (ci) and intracellular
voltage (Vcell), to be defined for each segment of each individual cell membrane. Membrane-
specific scalar and vector properties are defined at each membrane midpoint. Membrane
midpoints are indicated in some grid diagrams as ?, see Figure 2.

Volume volcell was calculated using the “shoelace formula” to obtain the area, A, of the
individual cell region from its n vertices xi, yi :

A =
1
2

∣∣∣∣∣n−1

∑
i=1

(xiyi+1 + xny1)−
n−1

∑
i=1

(xi+1yi − x1yn)

∣∣∣∣∣ (1)

and multiplying A by world height, h, which was arbitrarily selected to be 10 µm.

Each cell membrane segment:

• has a membrane midpoint coordinate point (xmem, ymem) labeled for one cell by the
letters a to f in Figure 3A)
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Fig. 3: Main features of the Cell Grid. Each cell is a region with unique volume and membrane segments
with midpoints indicated by letters a to f in Panel A. Each cell connects to neighboring cells
via a gap junction connecting two opposing membranes (green lines Panel B). Each membrane
segment has normal and tangent unit vectors (A and D, respectively). The membrane midpoints
of each cell (yellow stars Panel C) interface with the central points of local Env Grid squares (red
points Panel C) via a nearest-neighbor interpolation scheme (j, k of Panel C shows a specific Env
Grid to Cell Grid pairing).

• has a surface area σmem, defined by multiplying the cell side segment length by h,

• has surface normal n̂memx , n̂memy (Figure 3A) and tangent vectors t̂memx , t̂memy (Figure
3D)

• connects to a neighboring cell with a membrane segment of the same length/area via
a gap junction (Figure 3B).

• interfaces with the points of the Env Grid via a nearest-neighbor interpolation scheme
(Figure 3C).

Gradients on the Cell Grid

Three types of gradients can be calculated on the Cell Grid :
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1. Inter-cellular gradients calculate change of a scalar property, such as concentration or
voltage, between cells and their neighbors. For a scalar property s defined on neigh-
boring cell centers a and b (Figure 3B) separated by distance dab :

Fab =
(sb − sa)

dab
(2)

The x− and y− components of the gradient are found by resolving Fabinto the gap
junction tangent vector components, and are defined at the midpoint (ab) between the
neighboring cells:

∇sab = Fab t̂gjx + Fab t̂gjy (3)

Note that for gap junction specific gradient calculations (e.g. the electric field across a
gap junction) the distance dab is taken to be the biological intercellular separation/gap
junction length of dgj = 26nm, instead of the cell-cell center spacing of the Cell Grid. As
the intercellular gradient is based on the network properties of the Cell Grid via existing
gap junction connections (3 B), the boundary conditions for the inter-cellular gradient
always enforce zero-flux at the cluster boundary.

2. Trans-membrane gradients calculate change of a scalar property, such as concentra-
tion or voltage, between a cell and its immediate environment (Figure 3C). For a scalar
property s defined on environmental point j and membrane point k, the transmembrane
gradient is calculated with respect the membrane thickness dmem as:

∇sjk =
(sj − sk)

dmem
(4)

The transmembrane gradient is assumed to only have a component in the direction
perpendicular to the cell membrane normal.

3. Intra-membrane gradients calculate lateral (i.e. tangential) change of a scalar property,
such as the concentration of an ion channel, between points of an individual cell’s
membrane. For a scalar property s defined on cell vertices p and q:

∇spq =
(sq − sp)

dpq
(5)

The separation between p and q is the membrane length. The gradient vector, which
is assumed to only have a tangential component, is defined at the membrane midpoint
between the two vertices (see Figure 3D).

Divergence on the Cell Grid

Divergence is a scalar property defined at the cell center points for the Cell Grid using each
individual cell patch as a control volume. By definition, the divergence of a vector field ~F
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Fig. 4: Laplacian calculation for a simple cell grid.

at a point j is the limit of the net flow of ~F across the boundary of a region surrounding j,
divided by the volume of the region, in the limit that the volume shrinks to an infinitesimal
value around j.

This formal definition was used to approximate divergence on the Cell Grid. For a vector
property ~Fj defined at each membrane midpoint j of an individual cell k, components of the
vector property normal to the cell membrane (~Fj · n̂memj) were multiplied by the membrane
surface area σmemj to obtain an approximation of net flux across the membrane, and all net
fluxes were summed for each membrane of the cell, with the result divided by cell volume
(see Figure 3A). The resulting divergence property is scalar and defined on the cell k center
point:

∇ · ~Fk =
∑~Fj · n̂memj σmemj

volcellk
(6)

This method is identical to the finite volume approximation of divergence using the Diver-
gence Theorem definition (Schafer 2006), with the assumption that the vector field is con-
stant within the cell region. Physically, this assumes no concentration or voltage gradients
exist within the cell (homogeneous concentration and charge distributions).

Laplacian (and inverse) on the Cell Grid

The Laplacian operator can be expressed as the divergence of the gradient of a scalar prop-
erty. This definition was used to construct a matrix-based Laplacian operator and inverse
operator for the cell grid.
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For a scalar property s defined on three cells a, b, and c, which are assumed connected to
one another but closed from the environment, the calculation of the Laplacian of s at cell a
begins by calculating the gradient fluxes, Faband Fac , of s between cell a and its neighbors
(see Figure 4). Next, the normal components of these fluxes to the membranes are obtained
using the membrane normal unit vectors (e.g. n̂xab and n̂yab), and net flux is obtained by
multiplying the flux by the membrane surface area of the shared membrane (e.g. σab):

~Fab · n̂ac σab =

(
sb − sa

dab

)
σab n̂xab +

(
sb − sa

dab

)
σab n̂yab

~Fac · n̂ac σac =

(
sc − sa

dac

)
σac n̂xac +

(
sc − sa

dac

)
σac n̂yac

(7)

The resulting divergence of the property s at cell a is the sum of the components from equa-
tion (7), divided by cell a volume:

∇2sa = A sa + B sb + C sc

A =
−2 σab

(
n̂xab + n̂yab

)
dac − 2 σac

(
n̂xac + n̂yac

)
dab

dac dab vola

B =
σab

(
n̂xab + n̂yab

)
dab vola

C =
σac
(
n̂xac + n̂yac

)
dac vola

(8)

The ability to express the Laplacian for each cell as an expression factored with respect to
the cell-centered property sj allows for the definition of a Laplacian operator matrix, MLap,
which can be matrix-multiplied with a linear vector of concentrations defined on cell points
(e.g. s = [sa, sb, sc]) to perform the Laplacian computation. For the simple example above,
and only considering cell a components, where A, B and C are the terms defined in equation
8 above and / represents a term in the matrix that this discussion has not defined:

∇2s = MLap · s =
A B C
/ / /
/ / /

sa
sb
sc

(9)

The inverse Laplacian is easily calculated from the Laplacian defined in equation 9 by taking
the pseudo-inverse using the singular value decomposition method in the ’pinv’ function of
the Numpy toolbox.

2.3 The Env Grid

The environmental grid consists of a regular array of center points spaced by dgrid (~ 5 µm).
In addition to the center points, the Env Grid uses a Marker and Cells (MACs) technique
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Fig. 5: The Env Grid consists of regularly spaced square centers. Calculation of simple x and y gradients
using a central difference scheme is schematically illustrated in Panels A and B. Two additional
staggered arrays define points at the W, E and N, S sides of each grid square (Panel C), where vec-
tor properties are defined. Panel D schematically illustrates the stencil used to obtain a Laplacian
operator.

(McKee et al. 2008) which features two staggered grids defining W, E points on the sides
of each square, and N, S points on the top and bottom of each square (see Figure 5C).
Vector properties are defined with Fx components on the W and E sides of each grid square
(Figure 5), and Fy components on the N and S sides of each square (Figure 5). The MACs
method was found to improve computational stability for the non-linear electrodiffusion of
concentrations in the environment.

Gradient, divergence, and Laplacian (and inverse Laplacian) discrete operators were defined
using a similar approach to that described for the Cell Grid.

Gradients on the Env Grid

First derivatives in space were estimated using the central difference formula for a grid with
uniform spacing dgrid and points on the grid indexed by their jth row and kth column (see

10



Pietak and Levin BETSE Theory

Figure 5A and B):

ds(xj, yi)

dx
⇒

s(xj+1, yi)− s(xj−1, yi)

2dgrid
(10)

ds(x, y)
dy

⇒
s(xj, yi+1)− s(xj, yi−1)

2dgrid
(11)

Derivatives use center points of the grid squares (’x’ markers in Figure 5C), while the x and y
components of the resulting gradient are defined on the grid sides, as described above and
shown in (Figure 5C).

Divergence on the Env Grid

Divergence on the Env Grid was handled using a method similar to that described for the cell
grid, also see (McKee et al. 2008).

Laplacian on the Env Grid

The discrete Laplacian was calculated using the definition of the Laplacian as the divergence
of the gradient of a scalar process, using a similar process to that defined for the Cell Grid in
equations 8 and 9.

∇2s(x, y) =
(

si+1,j − sij

dgrid
+

si−1,j − sij

dgrid
+

si,j+1 − sij

dgrid
+

si,j−1 − sij

dgrid

)
(12)

2.4 Mapping from cell to environment

The Cell Grid and Env Grid variables were connected by mass fluxes between the two envi-
ronments, as well as via the transmembrane voltage Vmem. Fluxes and Vmem were calculated
using gradients between pairs of points representing a cell membrane and its nearest envi-
ronmental grid square central point (Figure 3C). A weighting function (cell membranes seen
per grid square) was used to properly assign the mole transfer for a mass flux between cell
and environment (Figure 6).

2.5 Types and definition of system variables

The following section outlines how specific properties are defined on BETSE’s Cell Grid and
Env Grid.
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Fig. 6: The intracellular spaces of the the Cell Grid are assumed to be connected to the extracellular
environment by fluxes or gradients, which use points interpolated between the cell membrane and
environmental grid midpoints with a weighting function (cell membranes seen per grid square) to
properly assign the mole transfer for a mass flux between cell and environment.
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Cell Grid

Concentration, charge, and voltage; scalar propert ies. Concentrations of ions and other
substances, intracellular voltage, and intracellular charge are scalar properties defined on
cell center points and membrane midpoints (Figure 3). Ion concentrations are subjected to
diffusion within individual cells.

Transmembrane Voltage (Vmem); scalar property. Vmem is defined on each cell’s membrane
midpoint (Figure 3), as the difference between local intracellular and extracellular voltages (
Vmemi = Vcelli −Venvi ). This allows for a single cell to have different Vmem at difference regions
around its circumference, which enables study of single-cell membrane polarizations.

Flux, current, field, velocity; vector properties. Ion flux, ion current, electric field, and fluid
velocities are defined at each membrane midpoint (Figure 3), and are assumed to be normal
to the membrane boundary for both transmembrane ion flux and intercellular membrane flux.

Ion pump/channel concentration (scalar) and flux (vector). Membrane-bound ion pump and
channel concentrations are defined at each membrane midpoint (Figure 3).

Env Grid

Concentration, charge, and voltage; scalar propert ies. Concentrations of ions and other sub-
stances, extracellular voltage, and extracellular charge are scalar properties defined on the
center points of each Env Grid square (Figure 5). These properties are assumed constant
throughout each square of the grid.

Flux, current, field, velocity; vector properties. Ion flux, ion current, electric field, and fluid
velocities are defined at midpoints between two grid square centers (Figure 5). Vector prop-
erties have Fx components defined on the W and E sides of each grid square (Figure 5) and
Fy components on the N and S sides of each square (Figure 5).

2.6 Temporal dynamics

Time dependent properties f (x, y, t) were updated with respect to changes in time using
Euler’s method for a time-step ∆t:

f (x, y, tk+1) = f (x, y, tk) + ∆t g(x, y, tk) (13)

Where g(x, y, tk) is the estimated rate of change of f (x, y, tk) at the discrete time point tk.
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2.7 Boundary and Initial conditions

Boundary conditions were set at the global boundary of the Env Grid to be zero voltage
and fixed concentration of all ions at the global boundary, whereby the sum of the fixed
concentration set yielded zero net charge (bulk electro-neutrality of the electrolyte).

The concentrations or voltage at the global boundary can optionally be changed during the
course of a simulation to simulate the addition of a reagent (e.g. excess KCl) or application
of an external voltage to the cell cluster.

For typical simulations, the system begins with an initialization phase with zero charge and
zero voltage in cells and environment. Concentration profiles inside and outside of the cell
typically begin close to those found physiologically. After an initialization phase of approxi-
mately 10 simulated seconds, the simulation begins using initial concentration and voltage
conditions obtained from the completed initialization phase.

2.8 Assigning spatial properties using tissue profiles

The cell grid can be shaped using bitmaps as masks to selectively remove cell patches from
the Cell Grid (Figure 7). The Cell Grid can be shaped prior to a simulation to generate a
specific tissue shape. Alternatively cells can be removed during a simulation to simulate a
wounding process.

Bitmap masks are also used to define tissue profiles, to which different properties (e.g. mem-
brane permeability, presence of specific ion channel types) can be assigned to cells and their
membranes.

3 Membrane and Gap Junction Dynamics

3.1 Hodgkin-Huxley model voltage gated channels

A range of voltage gated channel types have been implemented in BETSE using Hodgin-
Huxley style differential equations to define the state of membrane diffusion to a specific ion
(e.g. Na+) as a function of Vmem and time. Specific parameters and functional relations were
obtained from the online database, Channelpedia (Ranjan et al. 2011).

The present work specifically uses a combined generic voltage gated sodium channel (NaV)
from (Hamill et al. 1991), and a delayed-rectifier voltage gated potassium channel (KV1.2)
from (Sprunger et al. 1996), to generate excitable signals. A standard Hodgkin-Huxley style
model uses an electrical equivalent circuit equation to determine changes to current and volt-
age across a membrane, with a set of differential equations controlling the conductance of
the membrane (Nelson 2004). Since conductance is proportional to the membrane diffusion
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Fig. 7: Bitmap masks can be used to shape the overall cell cluster (A) and to define regions where prop-
erties, such as membrane permeability or the presence of a dynamic ion channel, can be easily
assigned (B).
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constant for a particular ion, BETSE uses the same Hodgkin-Huxley style equations devel-
oped to describe membrane conductivity state to describe the membrane diffusion state of a
particular ion, updating subsequent changes to currents and voltages using its own methods,
as described in the above.

As an example, for the generic NaV channel model obtained from Hamill et al. 1991, the
dynamic NaV contribution to a cell’s sodium membrane permeability DmemNa would be ex-
pressed:

DmemNa = DNaV(m3h) (14)

Where DNaV is the maximum membrane diffusion to Na+ when the NaV channel is com-
pletely open and:

dm
dt

= (m∞ −m)/mτ

dh
dt

= (h∞ − h)/hτ

(15)

with:

mα = 0.182

(
(Vmem + 25)

1− exp(− (v+25)
9 )

)

mβ = 0.124

(
−(Vmem + 25)

1− exp( (v+25)
9 )

)
m∞ =

mα

(mα + mβ)

mτ =
1

(mα + mβ)

h∞ =
1

1 + exp( (Vmem+55)
6.2 )

hτ =
1

0.024 (Vmem + 40)
(1− exp(−(Vmem + 40)/5)) +

(
0.0091 (−Vmem − 65.0)
1− exp(Vmem + 65.0)

)
5

(16)

3.2 Gap junction voltage sensitivity

Gap junctions were modeled as (optionally) voltage-sensitive conduits influencing the inter-
cellular diffusion coefficient for all ions uniformly via a diffusion-constant scaling factor, βo

GJ.
Simulated transport through GJ used the Nernst-Planck Equation to update concentration of
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all ions moving under intercellular concentration and voltage gradients. In the absence of GJ,
cells were modeled to have an intercellular diffusion coefficient of zero (βo

GJ = 0). Medium-
high GJ connectivity corresponded to βo

GJ=1.0x10-6, an intercellular diffusion coefficient of
approximately 1.0x10-15m2/s. Assuming 1.0x105 GJ per cell, and cylindrical GJ with pore
diameter of 1.5 nm and length of 26 nm, this corresponds to individual GJ conductance of 68
pS, which is in the mid-range of reported GJ conductances (Goodenough and Paul 2009).

Voltage gating of GJ was described using the kinetic model of Harris et al. 1983, which
calculates GJ open/closed state (βGJ) dependence on voltage difference across the gap
junction (VGJ) and time via:

gmin = 0.04
mGJ = 0.0013 exp(−0.077 (VGJ − v1/2GJ))

nGJ = 0.0013 exp(0.14 (VGJ − v1/2GJ))

dPGJ

dt
= (1− PGJ)mGJ VGJ − (PGJ − gmin) nGJ VGJ

βGJ = βo
GJ PGJ

(17)

4 Additional Physical Mechanisms

4.1 Osmotic and hydrostatic pressure

The osmotic pressure gradient across a cell membrane was estimated using the Jacobus
van’t Hoff formula, subtracting osmotic pressure inside the cell from the pressure outside of
the cell.

4∏ =
(
∑ ccelli −∑ cenvi

)
R T (18)

4.2 Lateral movement of membrane pumps and channels

Lateral movements of membrane pumps and channels were calculated using the gradients of
concentration and voltage tangent to Cell Grid membrane segments, as well as the tangential
component of environmental electroosmotic flow at the boundary.

Fluxes were calculated by averaging membrane midpoint values of a scalar property to the
vertices. Next, gradients on the membrane were calculated between each vertex point p and
r around each cell, with dpr representing the membrane length and the membrane midpoint
being q. For instance, for a concentration c of ion pumps, the gradient along a membrane
segment is defined as:
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∇cq =
(cr − cp)

drp
(19)

The flux from the Nernst-Planck equation Φq was calculated from concentrations, tangential
fluid velocity utand tangential electric field Et via:

Φq = −∇cq + utcq −
(

D z q cq

kb T

)
Et (20)

Using the derivative definition of divergence:

∇ ·Φ =
∂Φx

∂x
+

∂Φy

∂y
(21)

The x, y components of the flux were first resolved using the membrane tangent vectors:

Φqx = Φq t̂x

Φqy = Φq t̂y
(22)

These flux components were averaged to the cell vertices. The derivatives of the flux com-
ponents were calculated as:

∂Φx

∂x
=

(Φrx −Φpx)

drp
t̂x

∂Φy

∂y
=

(Φry −Φpy)

drp
t̂y

(23)

The concentration was updated according to:

∂cq

∂t
= −∇ ·Φq = −

(Φrx −Φpx)

drp
t̂x −

(Φry −Φpy)

drp
t̂y (24)
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