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We investigate the dynamics of acoustic waveguides with time-varying Helmholtz
resonators and the ensuingwave propagation features.We focus on the numerical
modeling of such a system with emphasis on the time-varying dispersion
properties and emerging wave phenomena due to slow time modulation. We
show that a propagating wave packet experiences a transformation that preserves
the wavenumber content, resulting in frequency conversion that follows the time
evolution of the dispersion bands. The conditions for such a transformation to be
“adiabatic” are derived analytically, which allows the identification of the limiting
modulation speed required to avoid undesired reflections or mode conversions.
The predictions from the dispersion investigations are confirmed by time-domain
numerical simulations, which illustrate the possibilities for frequency conversion
and temporal signal compression or decompression of impinging signals. The
framework presented herein may open new avenues in the context of time-
varying phonic waveguides, with possible applications in communication, sound
isolation, and frequency conversion.

KEYWORDS

acoustic metamaterials, time-varying waveguides, Helmholtz resonators, frequency
conversion, time compression, adiabatic transformation

1 Introduction

The extensive research in metamaterials has investigated intriguing properties to
functionally control wave propagation within different physical domains. Various
implementations in optical, elastic, and acoustic systems showcase phenomena
produced by periodic tessellations of Bragg-scattering or locally-resonant units,
which define different bandgap formation mechanisms (Hussein et al., 2014;
Cummer et al., 2016; Kadic et al., 2019; Oudich et al., 2023). Following this concept,
a number of wave manipulation strategies have emerged to produce attenuation (Liu
et al., 2000), localization (Hu et al., 2021), and mode-conversion (Dong et al., 2022),
which are of particular relevance for sound and vibration isolation purposes. Other
configurations rely on the careful manipulation of spatial symmetries in the creation of
back-scattering immune topological waveguides (Ma et al., 2019), including elastic/
acoustic analogs to the quantum spin Hall (QSH) (Süsstrunk and Huber, 2015; Miniaci
et al., 2018) and quantum valley Hall (QVH) (Pal and Ruzzene, 2017) effects, for
example. Another line of work takes advantage of metamaterials with gradually varying
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units, which are known to support slow waves (Tsakmakidis
et al., 2007; Wang et al., 2023) produced by a gradual decrease of
the wave’s speed in space, and which may be useful in
applications such as energy harvesting (De Ponti et al., 2020)
and enhanced sensing (Chen et al., 2014). Acoustic cloaks
(Norris, 2008), rainbow trappers (De Ponti et al., 2021), and
lenses (Allam et al., 2021) are additional examples where spatial
variations of the underlying medium properties are key in
providing some degree of wave control.

All the examples above are induced by a modulation of the
underlying media in space. However, wave propagation in
spatially periodic or spatially varying systems is constrained
by frequency-invariant dispersion characteristics. In contrast,
time-modulated metamaterials are excellent candidates to
broaden the wave control opportunities in the context of
metamaterial-based waveguiding. For instance, non-reciprocal
wave propagation (Trainiti and Ruzzene, 2016; Marconi et al.,
2020), parametric amplification (Trainiti et al., 2019), temporal
pumping (Grinberg et al., 2020; Xu et al., 2020; Xia et al., 2021),
and temporal waveguiding (Pacheco-Peña and Engheta, 2020b;
Santini and Riva, 2022) are behaviors that cannot be met by linear
time-invariant interactions. Experiments on this matter have
propelled this research topic, establishing itself as an attractive
field during active times in phononics (Zangeneh-Nejad and
Fleury, 2019).

In this context, we present a framework for the study of wave
propagation in time-modulated acoustic metamaterials within
the context of an adiabatic theorem. Our analysis is inspired by
previous studies on adiabatic transformations of standing modes
(Xia et al., 2021), and on adiabatic wave steering in spring-mass
lattices (Santini and Riva, 2022). Here, we explore an acoustic
waveguide endowed with Helmholtz resonators whose neck
cross-section is modulated in time to produce a time-varying
resonant frequency. We show that an incident wave packet
propagating through the time-varying waveguide undergoes a
wavenumber-invariant frequency conversion that follows the
time evolution of the dispersion bands. Through the adiabatic
theorem, we show that fast, or non-adiabatic, modulations
produce leaks from the incident wave packet toward other
wave modes. Through this framework, we compute a limiting
condition for the modulation velocity which produces frequency
conversion through a scattering-free process and we identify the
transition between adiabatic and non-adiabatic processes.
Supported by the derived adiabatic conditions, our numerical
results reveal possibilities for frequency conversion and temporal
signal compression or decompression, which may define novel
functionalities of metamaterial waveguides enabled by smooth
temporal modulations which may otherwise be difficult to realize
via purely mechanical or electromechanical configurations (Xia
et al., 2021).

This paper is organized as follows. The theoretical aspects are
discussed in Section 2, starting from the derivation of the
equations of motion and with emphasis on the dispersion
analysis and the adiabatic theorem. In Section 3, we report a
number of relevant case-studies, where time modulation is
tailored to control frequency and mode conversion.
Concluding remarks are presented in Section 4.

2 Acoustic waveguides with time-
varying resonators: modeling and
solution methods

In this section, we describe the modeling of the one-dimensional
(1D) acoustic waveguide endowed with time-varying Helmholtz
resonators. We first derive the equations of motion of the coupled
system, followed by a homogenization in the long-wavelength limit
which allows for analytical expressions of the dispersion relations in
the absence of time modulation. Finally, we describe the adiabatic
conditions for transformations induced by slow time modulation of
the resonators’ properties, which delineates the transition between
frequency conversion with and without energy scattering toward
undesired wave modes.

2.1 Equations of motion

We consider a 1D acoustic waveguide of constant cross-section
area A, featuring a period array of Helmholtz resonators of volume
V, spaced by a distance a (Figure 1). The resonators have a neck
length l and neck area Ar(t), the latter assumed to be mechanically
varied in time. The wave equation for the acoustic waveguide is
expressed as Kinsler et al. (2000):

1
c2

∂2p

∂t2
− ∂2p

∂x2
� ∂G

∂t
(1)

where p � p(x, t) is the pressure field along the pipe, c is the
speed of sound, and G(x, t) is the apparent rate of input mass per
unit volume associated with the resonators. We assume a
lumped-parameter model for the resonators, whose only
degree of freedom ψ(t) is the outward fluid displacement of
the neck, which is constant along the cross-sectional area Ar.
Under this approximation, the resonators are tuned to a
frequency ωr(t) � c

��������
Ar(t)/Vl′

√
which also varies in time, with

l′ = l + 1.7r being the effective neck length of a flanged resonator
whose cylindrical neck has a radius r (Kinsler et al., 2000). The
apparent input mass rate provided by a single resonator is given
by g = ρAr(t)∂ψ/∂t, where ρ is the air density. Therefore, the
expression for the total rate per unit volume accounting for a
series of N resonators is expressed as:

G x, t( ) � ∑N
j�1

ρ
Ar

A

∂ψj

∂t
δ x − xj( ), (2)

where δ(x − xj) is the delta function that accounts for the assumed
point-wise action of the jth resonator placed at xj. Substitution of
3 into 1 yields the equations of motion of the waveguide coupled
with those of the resonators:

1

c2
∂2p

∂t2
− ∂2p

∂x2 � ρ∑N
j�1

Ar

A

∂2ψj

∂t2
+ 1
A

∂Ar

∂t

∂ψj

∂t
⎛⎝ ⎞⎠δ x − xj( )

m
∂2ψj

∂t2
+ ∂m

∂t

∂ψj

∂t
+ kψj � −Arp xj( ), j � 1, 2, . . . , N

(3)

wherem = ρArl′ and k � ρc2A2
r/V are the effective mass and stiffness

parameters of the resonators (Kinsler et al., 2000).
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2.2 Dispersion calculation in the
subwavelength regime

In order to investigate wave motion in the considered system
and carry out analytical derivations, we now consider the
homogenized version of Eq. 3, whereby the resonators are
continuously distributed through the pipe:

1

c2
∂2p

∂t2
− ∂2p

∂x2 �
ρ

a

Ar

A

∂2ψ

∂t2
+ 1
A

∂Ar

∂t

∂ψ

∂t
( )

m
∂2ψ

∂t2
+ ∂m

∂t

∂ψ

∂t
+ kψ � −Arp.

(4)

Here, both p(x, t) and ψ(x, t) are now continuous functions of
space and time. This approximation is accurate in the
subwavelength regime, i.e., when the lattice size is much smaller
than the wavelength (a ≪ λ), and therefore there is a sufficiently
dense distribution of resonators compared to the wavelength at the
operating frequency. Eq. 4 is generally dependent upon the
instantaneous value Ar(t), and the rates ∂Ar/∂t and ∂m/∂t. We
first evaluate the dispersion in the time-invariant regime,
i.e., assuming ∂Ar/∂t = 0 and ∂m/∂t = 0, with the area Ar

considered as a free parameter. The obtained solutions form the
basis for the adiabatic expansion under smooth temporal
modulations derived in the next section. Therefore, we seek a
plane wave solution of the form p(x, t) � p0ei(κx−ωt) and
ψ(x, t) � ψ0e

i(κx−ωt), where ω and κ are respectively angular
frequency and wavenumber. Substitution into Eq. 4 yields the
following dispersion relation:

κ � ±
ω

c

��������
1 + μ

1 − ω2

ω2
r

√
(5)

where μ =V/aA is the volume ratio, i.e., the ratio between the volume
enclosed in the resonator’s chamber and the volume of the unit cell’s
pipe segment. Eq. 7 can be directly solved for ω(κ):

ω � ±

������������������������������������������
c2κ2 + ω2

r 1 + μ[ ]
2

±

�������������������������
c2κ2

2
+ ω2

r

2
1 + μ[ ]( )2

− c2κ2ω2
r

√√√√√
. (6)

Note that for any real-valued wavenumber κ, there are four solutions
that define wave modes propagating in the pipe. The dispersion relation
ω(κ) is illustrated in Figure 2A for two distinct conditions of Ar,
corresponding to the initial and final modulation values A(i)

r �
10−5mm2 (solid line) and A(f)

r � 5 · 10−5mm2 (dotted line)
employed in the numerical part of the paper. Other relevant
parameters of the resonator are a = 16mm l = 4mm, and r = 8mm.
In the figure, dimensionless frequencies Ω = ωa/πc are used to highlight
the subwavelength operational regime (Ω < 0.5). Only two dispersion
branches with positive frequencies Ω1 and Ω2 are shown in the figure,
which define waves propagating to the right. The dispersion is symmetric
about the wavenumber axis, with the two leftward propagating solutions
Ω−2 = −Ω2 and Ω−1 = −Ω1 not shown in the figure for ease of
visualization. The presence of the Helmholtz resonators breaks the
typical linear dispersion curve of the pipe into two dispersion bands
separated by a bandgap, whose bounds can be easily extracted from the
analytical solutions. The lower bound ωl = ωr takes the wavenumber κ to
infinity in Eq. 7, while the upper bound ωu � ωr

�����
1 + μ

√
is estimated by

using κ = 0 in Eq. 6. We observe that the relative gap width Δω/ωr �
(ωu − ωl)/ωr � �����

1 + μ
√ − 1 is determined solely by the resonator

volume ratio μ, which plays a similar role to the mass ratio of
mechanical resonators (Sugino et al., 2017). The examples in
Figure 2A employ a fixed volume ratio of μ = 0.66, and normalized
tuning frequencies ofΩr = 0.127 andΩr = 0.23 induced by the initialA(i)

r

and final A(f)
r modulation values, respectively (note that the neck area

does not influence the volume ratio μ). The analytical solution provided
in Eq. 6 is valid in the subwavelength regime, and it’s confirmed by
comparison with numerical simulations in Section 3 that consider Eq. 3
without the subwavelength approximation. This solution is also
compared to full 3D Finite Element (FE) simulations conducted

FIGURE 1
Schematic of the waveguide endowed with Helmholtz resonators, along with a zoomed view of the unit cell. The neck cross-section area Ar,
highlighted in red, is modulated in time, while the other parameters are kept constant.
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within the COMSOL multiphysics environment in the Supplementary
Material, which confirms the validity of the lumped parameter resonator
approximation.

While here the area Ar(t) is treated as a free parameter, its
temporal variation modifies the dispersion properties of the pipe
during wave propagation, producing a transformation that
preserves the wavenumber content while promoting conversions of
the frequency content across the modulation (Pacheco-Peña and
Engheta, 2020a). We seek an adiabatic transformation represented
with the black vertical arrow, whereby the energy initially injected in
Ω(i)

1 (κ*) follows the time evolution of the underlying dispersion until
the valueAr(t) reachesA(f)

r , without triggering any energy conversion
to other wave modes. In contrast, non-adiabatic transformations
triggered by fast modulation protocols induce energy scattering to
the neighboring wave modes that populate the dispersion at different
frequencies Ωj(κ*). Note that, after time-modulation takes place, the
energy is distributed among the frequencies of the final dispersion at
the imposed wavanumber, i.e.,Ω(f)

j (κ*), which are independent upon
themodulation speed. Hence, the amount of frequency conversion can
be designed solely based the resonators’ initial and final configurations,
and the associated dispersion properties. The modulation speed will in
turn determine whether the modulation occurs with or without
scattering to other wave modes, i.e., having a single or multiple
output frequencies. In the following, we characterize these
transformations in the light of the adiabatic theorem, which allows
us to delineate the transition between waveguiding with and without
scattering in time-varying acoustics.

2.3 Adiabatic transformations for slow
temporal modulations

To investigate the time-varying dynamics caused by slow
temporal variations of the area Ar, Eq. 4 is written in a first-
order differential form by imposing only the wavenumber κ:

ẑ,t
∣∣∣∣ 〉 � H κ, Ar t( )( ) ẑ| 〉 (7)

where |ẑ〉 � (∂p̂
∂t ,

∂ψ̂
∂t , p̂, ψ̂)T, (), t denotes a temporal derivative, and

the time-dependent Hamiltonian matrix H(κ, Ar(t)) is:

H κ, Ar t( )( ) �

0 μ
ω2
r

Ar

∂m

∂t
− ρc2

aA

∂Ar

∂t
−c2κ2 − μω2

r μ
kω2

r

Ar

0 − 1
m

∂m

∂t

Ar

m
−ω2

r

1 0 0 0

0 1 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (8)

This first-order differential form resembles Schrodinger’s
equations for quantum states where the adiabatic theorem is
classically established [see for example, the book by Griffiths and
Schroeter (2018), and also employed in multiple following studies
due to its convenience in deriving adiabatic conditions (Amin, 2009;
Tong, 2010). The ansatz |ẑ〉 � |ẑ0〉eiωt yields a time-dependent
eigenvalue problem of the form H(κ, Ar(t))|ẑRj 〉 � iωj|ẑRj 〉, whose
instantaneous solutions define the time-varying dispersion branches
ωj(κ, t) and associated eigenvectors |ẑ〉R(κ, t). In the case of smooth
modulations produced by small rates of change of the area Ar(t),
these instantaneous solutions correspond to those obtained in Eq. 6
where Ar is treated as a free parameter. Hence, the solutions define
the four time-dependent waves that can propagate in the pipe, and
form a natural basis for the expansion of the total solution:

|ẑ〉 t( ) � ∑
j

cj t( )|ẑRj 〉 t( )eiθj , j � −2,−1, 1, 2[ ], (9)

where θj � ∫t

0
ωj(τ)dτ is the geometric phase, which replaces the ωt

term commonly present in time-independent solutions, and cj(t) are
the time-dependent participation factors for each wave mode.
Plugging the solution into Eq. 7 and performing a series of
algebraic manipulations (Santini and Riva, 2022) yields the
following differential equation that describes the time evolution
of the participation factor cr(t):

cr,t � −〈ẑLr |ẑRr, t〉 cr −∑
j≠r

〈ẑLr |H,t|ẑRj 〉
i ωj − ωr( ) cje

i θj−θr( ), (10)

FIGURE 2
(A) Dispersion relation before (solid line) and after (dashed line) time-modulation. The gray boxes highlight the corresponding variation of the gap
limits. The energy, provided with a central frequencyΩi

1 and wavenumber κ*, undergoes an adiabatic transformation that follows the vertical arrow and is
accompanied by frequency conversion fromΩi

1 toΩf
1. In contrast, non-adiabatic processes involve also other dispersion branches. (B) Limiting condition

for adiabaticity in order for the wave mode Ω1(κ*) not to couple with the neighboring wave mode Ω2(κ*). The black region accommodates the
values of Ar and ∂Ar/∂t for which the transformation can be considered non-adiabatic. (C) Limiting conditions for adiabaticity betweenwavemodesΩ1 and
Ω−1. The horizontal lines illustrate the constant velocity value used in the numerical simulations. v(1)m corresponds to a non-adiabtic transformation, while
v(2)m corresponds to an adiabatic transformation.
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where 〈zLr |(t) is the left eigenvector. For a given initial condition
defined by a combination of propagating modes, these equations can
be solved to obtain the time evolution of each participation factor
cr(t). While that is not always convenient, the equations are
particularly useful to derive the conditions for adiabatic
transformations in which the evolution occurs through an
isolated mode. Suppose for example, that energy is initially
inserted in a single mode r, i.e., cr(0) = 1 and cj(0) = 0 for j ≠ r.
In order for the participation factor cr(t) to remain the only non-zero
term, its coupling to the other modes, represented by the right-most
term in Eq. 10 must remain small and, therefore, the following
integral must be negligible:

∫t

0
∑
j≠r

〈ẑLr |H,ξ |ẑRj 〉
i ωj − ωr( ) cje

i θj−θr( )dξ � −∑
j≠r

〈ẑLr |H,ξ |ẑRj 〉
ωj − ωr( )2 cjei θj−θr( )

∣∣∣∣∣∣∣∣∣∣∣
t

0

+ ∫t

0

d

dξ
∑
j≠r

〈ẑLr |H,ξ |ẑRh〉
ωj − ωr( )2 cjei θj−θr( )⎛⎝ ⎞⎠dξ.

(11)
Since the second term on the right-hand side (obtained through

integration by parts) is negligible (Ibáñez andMuga, 2014), we arrive
at the following condition:

〈ẑLj H,t

∣∣∣∣ ∣∣∣∣ẑRr 〉
ωh − ωr( )2

∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣≪ 1. (12)

The condition in Eq. 12 is employed to analyze the coupling
between the imposed wave mode and the other modes which may
be involved in the solution. The condition must be evaluated for a given
pair of wave modes and a certain imposed wavenumber. To exemplify,
we consider the imposed wavenumber k* and solution Ω1 marked in
Figure 2A, and we quantify the coupling to the solution Ω2 and to the
left-propagating solution Ω−1 = −Ω1 in Figures 2B, C, respectively. We
evaluate the norm in Eq. 12 as a function of Ar and its rate of change
(i.e., modulation speed) vm= ∂Ar/∂t, markingwith black the regions that
surpass a chosen threshold value of 0.01. The plots, therefore, serve as
maps which mark adiabatic (white) and non-adiabatic (black) regions
as a function of Ar and vm. Two horizontal lines for representative
velocity values v(1)m � 0.1 mm2/s and v(2)m � 0.01 mm2/s are displayed
in the figure, illustrating two extreme cases that promote non-adiabatic
and adiabatic transformations. The behavior for these modulation
speeds is further demonstrated by the numerical simulations in the
next section, illustrating the presence and absence of scattering to other
wave modes.

3 Numerical results

In this section, we present a few case studies to elucidate the role of
timemodulation in the considered acousticmetamaterials, with emphasis
on frequency conversion, mode conversion, and the derived adiabatic
conditions. The results are obtained through numerical simulations
performed through a finite difference time domain (FDTD)
algorithm, where the partial derivatives in Eq. 3 are discretized
through a central difference approximation, and absorbing conditions
are added to the boundaries to mitigate reflections. For simplicity, we
employ a piecewise linear variation of the neck cross-section area:

Ar t( ) �
A i( )

r t< ti
A i( )

r + vm t − ti( ) ti < t< tf
A

f( )
r t> tf

⎧⎪⎪⎨⎪⎪⎩ (13)

Where ti and tf are the start and finish time instants for the
modulation, and vm is the constant modulation velocity. In the
simulations, a sinusoidal wave packet with n = 30 periods is imposed
through a prescribed velocity to the left end of a finite waveguide of
length L. We remark that the wavepacket propagates at a speed given
by the group velocity cg = ∂ω/∂κ, which is evaluated at the impinging
wavenumber κ and angular frequency ω(κ, t), and therefore varies in
time. The distance traveled by the wavepacket at an arbitrary time T
is calculated by the integral ∫T

0
cg1(κ*)dt, where cg is the group

velocity relative to the impinging state Ω1(t), evaluated for the
incident wavenumber κ* = 2π/λ* with corresponding wavelength λ*.
In the following simulations, we employ a waveguide of length L/λ*
≈ 34, which we estimate to be sufficiently long in order to observe the
time history of interest. The excitation occurs within the time-
invariant window t < ti, establishing a propagating wave packet with
a desired frequency/wavenumber spectral content according to the
dispersion at the initial state Ar � A(i)

r . We hereafter present the
following representative examples: (i) a fast (non-adiabatic)
modulation with vm � v(1)m , which allows increasing the frequency
content of an impinging wave packet while compressing its time
envelope. Such a non-adiabatic process is accompanied by energy
leakage toward the other states supported by the waveguide, (ii) a
slow (adiabatic) modulation with vm � v(2)m able to perform
frequency up-conversion and compression of an impinging wave
packet, but without any energy leakage toward other wave modes.

The time history relative to example (i) is displayed in Figure 3A.
The excitation is provided with a central frequency
Ω(i)

1 � Ω1(κ*) � 0.109, targeting the lower dispersion branch of
Figure 2A in the nearly-flat region close to the resonance, which
exhibits limited group velocity and highly dispersive characteristics.
This region is chosen as it exhibits a large change with respect to the
final dispersion branch (dashed lines in Figure 2A) for the imposed
wavenumber. In this example, the modulation takes place in a non-
adiabatic manner due to the high modulation speed v(1)m , and the
energy content is leaked to other available states supported by the
waveguide. Indeed, wave motion in Figure 3A exhibits sharp
changes after time modulation, with distinct wave packets of
different amplitude and speeds emerging. To better elucidate this
concept, we report the wave packets before (black curves) and after
(red curves) time modulation. Figure 3B illustrates the spatial
envelope of the wave and its wavenumber content, evaluated at
fixed time instants (marked with dots in Figure 3A). We note that, as
expected of temporal modulations and discontinuities (Pacheco-
Peña and Engheta, 2020b), the wavelength and associated
wavenumber content are preserved throughout the process. In
contrast, the corresponding frequency content undergoes
transformations, as illustrated in Figure 3C which displays the
time and frequency representation of the wave packet for fixed
spatial positions before and after time modulation. We note that the
main frequency component of the wave packet undergoes a
frequency shift toward a higher frequency Ω(f)

1 , and its spectral
width broadens after time modulation, which corresponds to a
compression of the time-domain signal. An additional frequency
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component centered at Ω(f)
2 is also noted after the time modulation

due to the scattering caused by the non-adiabatic process.
To better illustrate the frequency transformations, we present a

frequency spectrogram in Figure 3D, which is evaluated by windowing
the pressure field p(x, t) with a moving Gaussian function
G(t) � e−(t−t0)

2/2c20 . Here,c0 = 0.06Tf determines the width of the
Gaussian and t0 is its central value, which is smoothly varied to
produce the spectrogram within the interval t0 ∈ [0, tf]. For ease of
visualization, the Fourier-transformed pressure field p̂(κ, f, t0) is
further processed by taking the RMS value along κ, which
eliminates one dimension. The resulting spectrogram |p̂(f, t0)| in
Figure 3D is overlaid to black curves that represent the wave modes
Ωj(κ*) supported by the waveguide at the incident wavenumber κ*. As
expected, the energy content is initially concentrated in the branchΩ(i)

1

and is mainly converted through the evolution of that branch to Ω(f)
1 .

Due to the non-adiabatic transformation, other wavemodes are present
after modulation: the second branch Ω(f)

2 significantly contributes to
the wave motion, and minor contributions are also observed for Ω(f)

−1
and Ω(f)

−2 , generating back-propagating waves. Note that around t =
30 ms the back-propagating waves are reflected off the left boundary
and converted back into the right propagating modes Ω1 and Ω2.
Finally, Figures 3E, F display the 2D Fourier Transforms of the pressure
field before and after time modulation, overlaid to the numerical
dispersion curves for the initial and final states. These diagrams
confirm that frequency conversion follows the underlying dispersion,
with energy initially concentrated in the excited first branch, and

afterward leaked also to the second branch. Due to the
wavenumber-preserving transformation, the output frequency
content of the first branch has a wider spectrum when compared to
the input, which explains the time compression of that portion of the
signal evidenced in Figure 3C. In this case, the frequency shift and signal
compression are observable but contaminated with energy from other
wave modes due to the non-adiabatic-induced scattering.

A cleaner frequency conversion and signal compression are
demonstrated in the second example (ii) corresponding to a
modulation velocity v(2)m < v(1)m , which triggers an adiabatic evolution
of the state dictated by the underlying conversion mechanism and
described by the black vertical arrow in Figure 2A. As such, the time
history in Figure 4A evidences a single wave packet that transformswith
minimal scattering toward other states. This is confirmed by the space
snapshot and time evolution of the wave packets reported in Figures 4B,
C, along with corresponding wavenumber and frequency
representations. In absence of further wave modes, Figure 4B
illustrates the same wavenumber conservation as in example (i),
while 4(c) displays a frequency conversion and compression
mechanisms of the impinging wave packet. In addition, the
spectrogram in Figure 4D confirms the evolution through the single
branch corresponding toΩ1, while the dispersion plots in Figures 4E, F
confirm that the spectral content obeys the predicted behavior of the
initial and final states, with no scattering to other wave modes. Finally,
we note that in experimental implementations it may be important to
estimate the minimum waveguide length necessary to observe an

FIGURE 3
(A)Wavefield p(x, t) obtained through a non-adiabatic modulation velocity v(1)m , which is graphically represented in the waterfall plot. In the figure, x1,
x2, t1, and t2 are used to mark the space and time coordinates used to produce the plots in Figs. (B,C). (B) Pressure field and corresponding wavenumber
content evaluated at constant time instants t1 and t2 before (black curve) and after (red curve) time modulation. The wavenumber is preserved across the
time discontinuity. (C) Pressure field and corresponding frequency spectrum evaluated at prescribed coordinates x1 and x2. A frequency conversion
mechanism takes place, whereby the impinging energy is split over multiple and distinct frequencies. (D) Frequency spectrogram evaluated over time.
The colored contours represent the energy that is injected to excite Ω1 and is frequency-converted into different wavemodes Ωj. The black curves
represent the expected evolution of the states in time. (E,F) Comparison between dispersion relation and 2D FFTs of the wavefield (E) before and (F) after
time modulation.

Frontiers in Acoustics frontiersin.org06

Riva et al. 10.3389/facou.2023.1271221

https://www.frontiersin.org/journals/acoustics
https://www.frontiersin.org
https://doi.org/10.3389/facou.2023.1271221


adiabatic transition. This is because themodulation has a limiting speed,
and therefore the wavepacket must be traveling within the waveguide
without experiencing reflections for the duration of the modulation. As
previously described, the distance traveled by the wavepacket can be
estimated by integrating the group velocity, which must include the
initial duration t = 0 → ti required to create the wavepacket, and the
duration of the time modulation t = ti → tf, here resulting in a distance
of Lmin � ∫tf

0
cg1(κ*)dt � 13.7λ*. Naturally, we guaranteed that the

total waveguide length in our simulations was larger than thisminimum
to observe the adiabatic transitions.

4 Conclusion

In this paper, we have explored the dynamics of acoustic
metamaterials endowed with time-varying Helmholtz resonators.
When a sound wave propagates simultaneously to a temporal
modulation, the wave packet experiences a frequency conversion
dictated by the underlying dispersion, which may result in signal
compression or dilation. If the speed of the modulation is fast, or
non-adiabatic, the time evolution of the wave packet can be
accompanied by energy scattering to other wave modes. In
contrast, sufficiently slow modulations can frequency transform
the impinging wave in an adiabatic manner and without any
energy leak to the other dispersion branches. We have
established the limiting condition for the modulation speed to
distinguish between adiabatic and non-adiabatic processes. The
developed framework, illustrated through selected numerical case

studies, is generally applicable to a variety of time-varying
metamaterial systems. Therefore, the presented results may open
new opportunities in time-varying acoustics with application to
signal processing, sound isolation, and energy conversion. Future
investigations will focus on the experimental validation of the
concepts herein explored, where time-varying resonators can be
achieved through mechanical opening and closure of the apertures.
Similar approaches have been used in the context of acoustic
topological pumping for example, by the relative translation of
two incommensurate waveguides (Cheng et al., 2020) or dynamic
boundary changes through rotation mechanisms (Xu et al., 2020).
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