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The evaluation of sound quality is a pivotal area of research within audio and
acoustics. The sound quality evaluation methods commonly used include both
objective and subjective, the latter being time-consuming and costly as they rely
on listening tests. This research work aims to investigate the use of predictive
sound quality models as a way to objectively assess theDesire-to-buy of side-by-
side vehicles, in a more efficient, faster, and less costly way than conventional
methods. Multiple linear regression algorithmswere used to validate the objective
models derived from objective physical metrics and perceptual psycho-physical
metrics. The sensory profile objective models reported in this paper were
constructed using parsimonious linear Lasso and Elastic-net algorithms. Our
results show that linear objective models effectively account for each of the
perceptual attributes of the sensory profiles and the Desire-to-buy, while only
requiring a few physical and psychophysical metrics.
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1 Introduction

The evaluation of sound quality is a significant area of research in audio and acoustics
(Lyon, 2003). Traditional methods for assessing vehicle sound quality involve both
subjective and objective approaches, often relying on listening tests. However, most
objective sound quality models depend on a limited set of pre-selected metrics or
simple linear models to predict a single attribute, such as overall sound preference or
annoyance. Given the extensive array of available objective metrics, both physical and
psychoacoustic, and the advancements in computational tools, there is potential to enhance
the number of predictors used in these models.

This study builds on prior work published in Acta Acustica in 2021, exploring the use of
objective sound metrics to develop models for sound quality evaluation (Benghanem et al., 2021).
These models complement traditional subjective assessments used in engineering to evaluate
vehicle sound signatures. The objective models presented in this paper are designed to benefit
Noise, Vibration, and Harshness (NVH) engineers by improving the evaluation of critical sound
attributes, thereby optimizing the Desire-to-buy factor in vehicle design and marketing.

Specifically, this paper presents models that use objective metrics to predict the sound
quality and sound signature of seven recreational side-by-side vehicles (SSVs). The
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subjective evaluations were gathered through focus group sessions
and listening tests conducted with a panel of users, assessing sensory
profiles and Desire-to-buy. Additionally, the study analyzes
perceptual attributes, the Desire-to-buy factor, and essential
components of sensory profiles identified in previous work
(Benghanem et al., 2021).

Linear regression models based on parsimonious modeling
algorithms of multiple linear regression [Lasso (Tibshirani, 1996)
and Elastic-net (Zou and Hastie, 2005)] were used to correlate
subjective evaluations with objective physical or
psychoacoustic metrics.

Section 2 provides a detailed review of the thematic literature
and theoretical background. Section 3 outlines the methodological
aspects. Results are presented in Section 4 and discussed in Section 5.
Conclusions and future directions are discussed in Section 6.

2 Background in sound quality
evaluation and prediction

Within the industry, it is difficult to obtain a subjective
assessment of the interior noise of a vehicle to characterize the
sound comfort or other sound quality. Indeed, this is often a time-
consuming and expensive task. Therefore, industry and researchers
in acoustics and vibration tend to favor objective evaluations. In the
field of acoustics, an objective evaluation consists of determining the
characteristics of acoustic stimuli via objective metrics and physical
measurements. Subsequently, these metrics can be used to predict
subjective evaluation (Kwon et al., 2018; Lee, 2008).

Many research works have been conducted on the sound quality
of vehicles, mostly for automobiles (Otto et al., 2001; Chen and
Wang, 2014; Kim et al., 2009). To the authors’ knowledge, no similar
studies have been conducted to cover SSVs, aside from the
2021 study published in Acta Acustica (Benghanem et al., 2021),
upon which this research builds. Unlike automobiles, SSVs are all-
terrain utility vehicles used for heavy-duty work, which requires a
sound that conveys both a sense of power and efficiency. Therefore,
the research findings obtained with automobiles are not directly
transferable to SSVs.

In the early days of sound quality research and development, the
physical metrics used for objective sound evaluation were sound
power, loudness, pressure level, and frequency-weighted sound
pressure levels [dB (A), dB (C), etc.]. Over time, industry and
researchers found that the pressure level weights were not
sufficient to fully explain the human auditory perception of
products. Psychoacoustics studies (the study of the relationship
between the physical properties of sound and auditory perception
in humans, using the physiology of the ears and the mechanisms of
sound coding by human hearing) led to the development of
psychoacoustic indicators (sound metrics) in several areas of
audio and music. These indicators make it possible to describe
the various auditory aspects of sounds (Fastl and Zwicker, 2007;
Zhekova, 2007).

The psychoacoustic metrics developed to assess the sound
quality of vehicles are numerous; they include loudness, acuity,
roughness, fluctuation, pitch, and timbre. However, most of these
metrics were historically introduced in an attempt to predict the
annoyance of sounds and noise, not the desirability of a sound (Fastl

and Zwicker, 2007; Zhekova, 2007; Kim et al., 2009). Thus, these
usual metrics are not necessarily suitable for the research question of
this study, and more suitable ones need to be found.

In parallel, some research endeavors have led to metrics for
information extraction from music and its applications. This
interdisciplinary research area is known as “Music Information
Retrieval” (MIR) in the context of massive data and online file
sharing. The MIR technique is basically designed for music data but
can be extended to other types of audio information (Lartillot, 2014;
Choi. et al., 2017; Rumsey, 2009; Downie, 2003). Other
psychoacoustic metrics have been developed in music and signal
processing applied to music, taking into account several aspects of
sound (tonal, temporal, rhythmic, harmonic, timbre, pitch, etc.).
These psychoacoustic metrics constitute a dataset of descriptors for
audio analysis in the field of information retrieval, a field that has
received a lot of attention in recent years in the context of massive
data and machine learning (Urbano and Serra, 2013).

The field of MIR is defined as the extraction of information from
music and its applications. Since music refers to audio content, the
scope of MIR extends to other types of music information, for
example, lyrics, music metadata, or the user’s listening history (Choi.
et al., 2017; Downie, 2003). MIR is the technology behind systems
capable of searching, analyzing, and recommending audio content
(Rumsey, 2009).

Despite the possibility of using this technique for the analysis of
other non-musical sounds, there are no publications or applications
that aim to study sound quality in industry using MIR. Therefore,
this study aims to exploit and adapt MIR metric extraction software
and libraries (cited above) to extract the key feature of the sound
signature of recreational vehicle sounds.

2.1 Building predictive sound quality

Recently, sound quality assessment using subjective measures
has focused on identifying sound quality metrics that can predict
subjective responses. The goal is to design a numerical prediction
model that can replace listening tests. In practice, it then becomes
possible to predict the sound quality perception of a panel of
representative users for a new sound or a new sound design.

The principle is to link the detailed explanation of the properties
of the sound (subjective evaluation) with the psychoacoustic
indicators of the stimuli used in listening tests (objective
evaluation). Two types of approaches are used for the objective
prediction of sound quality.

The first approach involves correlation and regression analyses
using a pool of preselected metrics that can provide meaningful
models for engineers. Most of the research reported in the literature
on the creation of objective models of sound quality is based on the
theory of multiple linear regression (Otto et al., 2001; Kwon et al.,
2018; Jiang and Zeng, 2014).

The second approach leverages recent advancements in machine
learning and deep learning. For instance, Huang et al. demonstrated
that convolutional neural networks (CNN) can be used for the
sound quality prediction of interior noise (Huang et al., 2020). Other
neural networks have been applied to sound quality prediction,
including back propagation neural networks (BPNN) (Huang et al.,
2021), radial basis function (RBF) neural networks (Xiong et al.,
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2015), or even genetic algorithms (Chen et al., 2022). However,
despite the promise of these approaches, their practical application
in product design to improve sound quality perception remains
challenging (Lee, 2008; Paulraj et al., 2013; Wang et al., 2014)
because the integration of machine learning and neural network
models into the product design process often requires extensive and
high-quality training data, whichmay not always be available or easy
to obtain.

This paper presents an attempt to overcome these polarized
limitations by seeking a realistic and pragmatic in-between solution
that can be used by NVH engineers without requiring extensive and
high-quality training data.

2.2 Linear regression

The linear regression method is based on a least-square (LS)
approach that minimizes the prediction error. However, as with any
classical LS solution to a problemwithmany potential predictors, all the
predictor coefficients will be part of the solution, which can lead to
overfitting. To address this issue and to produce a more parsimonious
predictive model, more advanced methods adapted to the problem of
sound quality have been developed (Gauthier et al., 2017). For instance,
techniques such as regularization are used to simplify the model by
performing a pseudo-inversion of the matrix of potential predictors,
thereby selecting only the most relevant predictors.

Parsimonious models are preferred due to their simplicity,
interpretability, and reduced risk of overfitting, allowing for a
better understanding of data and more efficient, generalizable,
and computationally manageable analyses. In this research work,
the authors investigated parsimonious selection and extraction of
sound quality/significance predictors using Lasso/Elastic-net
(Tibshirani, 1996; Zou and Hastie, 2005) and Group-Lasso
(Tibshirani and Taylor, 2011). The Lasso corresponds to a
convex optimal problem with regularization of the 1-norm of the
solution. The Elastic-net is a convex minimization problem with a
weighted regularization of the 2-norm and 1-norm of the solution.
Finally, the Group-Lasso is a structured parsimony approach that
promotes inter-group parsimony via the 1-norm of the 2-norm of
the (predefined) predictor groups (Friedman et al., 2010).

Despite its effectiveness in many applications, Lasso regressions,
introduced by Tibshirani (Tibshirani, 1996), are known to have
some limitations. Mainly, if there is a group of highly correlated
predictors, the Lasso tends to select only any one of these predictors
in the group. The Elastic-net approach proposed by Zou and Hastie
(Zou and Hastie, 2005) is a variant of the Lasso regression. It
improves the Lasso predictions and enhances the ability to do
grouped selection. The Lasso and Elastic Net approaches used in
this research work incorporate cross-validation steps, ensuring the
selection of optimal models and reducing the risk of overfitting (see
Section 3.2). This cross-validation process enhances the reliability of
the predictive models for sound quality assessment.

3 Data and method

The objective models in this paper were built using listening test
data from seven existing recreational vehicles, assessed across three

driving conditions (idle, constant speed at 30 km/h, acceleration
from 0 to 60 km/h), extensively detailed in a prior study
(Benghanem et al., 2021). Given that SSVs typically operate at
speeds below 30 km/h for 95% of their operating time, and that
acceleration reflects the sensation associated with vehicle
sportiveness, the constant speed and acceleration conditions were
chosen for constructing the objective models.

These models aim to predict scores from the constant speed and
acceleration conditions, provided by twenty participants, on six
sensory attributes (Aggressive, Noisy, Soft, Metallic, Powerful,
Vibrating) rated from 0% to 100%. Additionally, the models also
aim to predict Desire-to-buy scores and the first two principal
components (PC1 and PC2) derived from Principal Component

FIGURE 1
Loadings on the first two Principal Components of the sensory
profile (PC1, PC2) for the constant speed condition. Reprinted from:
“Sound quality of side-by-side vehicles: Investigation of
multidimensional sensory profiles and loudness equalization in
an industrial context,” by A. Benghanem et al. (2021) Acta Acustica, 5
(7), page 17. doi: 10.1051/527aacus/2020032 publisher: EDP Sciences.

FIGURE 2
Loadings on the first two Principal Components of the sensory
profile (PC1, PC2) for the acceleration condition.

Frontiers in Acoustics frontiersin.org03

Benghanem et al. 10.3389/facou.2024.1477395

https://www.frontiersin.org/journals/acoustics
https://www.frontiersin.org
https://doi.org/10.3389/facou.2024.1477395


Analysis (PCA) of sensory attributes. As detailed in (Benghanem
et al., 2021), PC1 reflects the perceived powerfulness of the vehicle
(Metallic/Powerful), while PC2 represents the perceived softness
(Aggressive/Soft). Collectively, PC1 and PC2 retain 69% of the total
variance in the initial data for the constant speed condition (see
Figure 1) and 72% for the acceleration condition (see Figure 2).

Data from the listening test were global loudness equalized to
avoid overestimating loudness in the predictions and to ensure a
finer analysis of the timbre structure of the sound for example.

3.1 Predictors

Two families of metrics were used as predictors: 1) physical and
psychoacoustic metrics, hereafter referred to as engineering metrics,
and 2) the metrics from the MIR (Music Information Retrieval)
library used for the extraction of audio and musical characteristics
from digital audio files. Among the engineering metrics, the global
loudness in sone, the specific loudness on the Bark scale in the
24 frequency bands between 20 Hz and 1,550 Hz, the fluctuation
strength, the sound pressure level in dB of the third-octave band
spectrum in the 29 frequency bands between 20 Hz and 16,000 Hz,
roughness and sharpness were chosen. The MIR metrics used in this
research project come from the library MIRtoolbox 1.6.1 for Matlab
(Lartillot, 2014). These metrics are grouped into categories: tonality,
timbre, rhythm, dynamics, and pitch.

Three statistical variants of each of the metrics were calculated
and used as predictors: the mean value over the time duration of the
sound sample (Mean), the standard deviation (Std), and the slope
over time (Slope). The slope is defined as the linear trend along
frames, which is the derivative of the line that best fits the curve.
Specifically, the slope S is computed using a normalized
representation of the curve C—centered, with unit variance, and
scaled to a temporal series T of values between 0 and 1. This is solved
as a least-squares solution to the equation SpT � C. The choice of
using such metrics is motivated by the need to include significant
variables, such as the slope, for acceleration sounds (time-
varying signals).

For metric calculation and and their variants, the signal was
decomposed into frames, with a frame length of 50 ms and 50%
overlap for the MIR metrics, and a 30 ms frame length for the
engineering metrics. This frame-based analysis enables the
extraction of metrics that are representative of the signal’s
composition in both the time and spectral domains, ensuring an
accurate capture of its characteristics.

Specific loudness and global loudness values were calculated
according to the ISO532B model for stationary sounds (Zwicker
et al., 1991) (for constant speed and idle) and according to the model
of (Zwicker and Fastl, 1999) for non-stationary sounds
(acceleration). Also, the value of the sharpness of a sound, and
the value of variable sharpness in time, were calculated according to
the procedure proposed by Fastl (derived from Zwicker) with the
correction of (Aures, 1985). A total number of 182 metrics
(engineering, MIR, including variants for non-stationary signals)
were available in the bank of potential model candidates. The
temporal variations of the metrics for stationary sounds (idle,
constant speed) were then removed, resulting in a total of
127 metrics for these two stationary conditions.

3.2 Lasso and elastic-net

The linear model used to create sound quality models is defined
in matrix form and indices:

vi � ∑M
m�1

Fimbm + b + ei, (1)

with vi the ith component of the vector of scores obtained by
listening test statistics (I sounds), Fim the ith component of the
matrix of metrics or scalar measures of M potential predictors for
the I sounds, bm the coefficients to be solved as a vector (linear
regression coefficients), b the intercept (the score when all the
coefficients bm are null) and ei the prediction errors for each ith
sound. Equation 1 can be solved using linear regression. In the case
of wide data with much fewer observations than predictive metrics
(I< <M), classical linear regression based on a least-square
approach will typically achieve over-fitting and all the coefficients
bm will be nonzero. As mentioned in the introduction, this strongly
limits the interpretation of the resulting model for any engineering
use or design guidelines. The aim of the Lasso and Elastic-net is to
circumvent this issue by rewriting the problem as a composite cost
function (Tibshirani, 1996):

Jλ,α � 1
2I

∑I
i�1

vi − b − ∑M
m�1

bmFim
⎛⎝ ⎞⎠2⎛⎝ ⎞⎠

+ λ ∑M
m�1

1 − α( )
2

b2m + α|bm|( ), (2)

The first right-hand side term corresponds to the quadratic sum
of the predictor errors and the second right-hand side term is a
regularization term with regularization amount λ> 0. The
regularization combines 2-norm regularization b2m and 1-norm
regularization |bm| based on the Elastic-net parameter 0≤ α≤ 1.
For the Lasso, α � 1, only the 1-norm regularization is included.
This induces solution sparsity, i.e., few coefficients bm will be non-
zero and will be therefore selected in the model (Tibshirani, 1996).
The sparsity is controlled by the regularization amount λ. The
Elastic-net (Zou and Hastie, 2005) involves 0< α< 1 and will
typically smooth out the selection towards the extreme case of 2-
norm-only regularization with α � 0 (this corresponds to Tikhonov
regularization). The minimum of the composite cost function
cannot be found by analytical means since it is nonlinear.
Therefore, this is solved iteratively using coordinate descent
algorithms (Wright, 2015). In Equation 2, α is a user-selected
parameter. Note that in the following, to create the simplest and
parsimonious models, only the Lasso results are shown (α � 1). The
penalization amount λ is set rigorously using the following
procedure: The experimenter defines a limit on the maximum
number of metrics that should be included in the model. Here,
the aim is to make sure that the model is readable and is meaningful
for engineers that can latter use it for product modification. Next, the
problem is solved for a wide range of λ starting with the largest λ so
that all coefficients bm are zeros, and decreasing in successive
iterations. The λ iteration stops if: 1) the maximum number of
non-zero coefficients bm is reached or 2) the minimum prediction
error is obtained for k-fold cross-validation of the prediction. Cross-
validation is used to avoid overfitting of the model. In this paper, the
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maximum number of predictive metrics is 7 and the cross-validation
is 5-fold.

Cross-validation is a statistical technique used in machine
learning and model evaluation. It involves dividing a dataset into
subsets, typically a training set to build a predictive model and a
validation set to assess its performance. This process is repeated
multiple times, each time with a different subset as the validation
set and the rest as the training set. The results are then averaged,
providing a robust estimate of the model’s performance, helping
to mitigate overfitting, and ensuring the model’s generalizability
to unseen data. Cross-validation is crucial for selecting the best
model and optimizing its hyperparameters while avoiding data
leakage and providing a more accurate assessment of predictive
performance.

Note that in this study, all seven sounds were retained for the
training of the models. While this approach may limit our ability to
test the predictive power of the models on new sounds, it is
important to highlight that this was not a primary focus or
requirement of the study. As a reminder, the main objective of

this research is to develop simple objective models that can provide
an objective understanding of the measured sounds of side-by-side
vehicles. By including all available sounds in the training dataset, we
aimed to capture the full range of sound characteristics and ensure a
comprehensive analysis within the scope of this study.

4 Results

Tables 1, 2 present the objective models derived from Lasso
respectively for the constant speed and the acceleration conditions to
predict each perceptual attribute (Powerful,Aggressive,Metallic, Soft,
Vibrating, and Noisy), the overall Desire-to-Buy, and the two
principal components of the six-dimension sensory profiles of
recreational vehicles sounds. The description of the predictors
selected in these models can be found in Table 3. Figure 3
presents the listening tests responses and the responses’
prediction of the Powerful attribute for SSV sounds for constant
speed condition, as an example.

TABLE 1 Lassomodel results for the constant speed condition. The number of predictors selected from the 127 availablemetrics (nPredictors) used to build the
Lassomodels is shown in the second column. The estimated coefficients (bm) of each predictor are listed in parenthesis. The description of the predictors
can be found in Table 3.

nPredictors Predictors’ name (bm) model
p-value

Model adjusted
R-squared

Powerful 3 N′ B4 (6.78); N′ B14 (−3.02); L 3 October 4,000 (−2.58) 0.0152 0.91

Aggressive 1 Rollof85 Std (−12.36) 0.0016 0.86

Metallic 2 N′ B5 (−8.69); N′ B16 (5.01) 0.0107 0.84

Soft 2 L 3October 63 (3.53); Rollof95 Slope (−5.94) 0.0005 0.97

Vibrating 3 L 3October 200 (4.24); L 3 October 1,000 (−3.14); Rhythm Attack
Slope (−4.35)

0.0333 0.85

Noisy 2 Brightness Std (−2.33); Rollof85 Std (−2.25) 0.0011 0.95

Desire-
to-Buy

2 N′ B17 (−3.89); L 3October 63 (4.45) 0.0249 0.88

PC1 2 L 3 October 4,000 (1.02); Rollof 85 Std (0.78) 0.0158 0.81

PC2 2 L 3 October 40 (−0.47); Rollof 95 Slope (0.64) 0.0062 0.88

TABLE 2 Lassomodel results for the acceleration condition. The number of predictors selected from the 127 available metrics (nPredictors) used to build the
Lassomodels is shown in the second column. The estimated coefficients (bm) of each predictor are listed in parenthesis. The description of the predictors
can be found in Table 3.

nPredictors Predictors’ name (bm) model p-value Model adjusted R-squared

Powerful 1 N′ B11 Slope (19.54) 0.0005 0.91

Aggressive 2 N′ B11 Slope (4.22); N′ B12 Slope (13.18) 0.0038 0.91

Metallic 2 Rollof85 Mean (7.78); L 3October 3,150 (7.70) 0.0092 0.86

Soft 2 L 3October 80 (2.90); Sharpness Std (−3.43) 0.0009 0.95

Vibrating 1 N′ B6 Slope (10.32) 0.0026 0.83

Noisy 1 N′ B14 Std (5.61) 0.0069 0.76

Desire-to-Buy 2 N′ B11 Slope (7.08); N′ B12 Slope (11.62) 0.0288 0.75

PC1 1 N′ B11 Slope (1.54) 0.0028 0.83

PC2 2 N′ B16 Std (0.59); Spectral Flatness Slope (0.70) 0.0024 0.93
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4.1 Models’ prediction for the constant
speed condition

As can be seen in Table 1, the Lassomodels were able to predict the
Powerful attribute with a coefficient of determination of 91% using only
three predictors, the Aggressive attribute with a coefficient of

determination of 86% using only one predictor, the Metallic
attribute with a coefficient of determination of 84% using only two
predictors, the Soft attribute with a coefficient of determination of 97%
using only two predictors, the Vibrating attribute with a coefficient of
determination of 85% using only three predictors, the Noisy attribute
with a coefficient of determination of 95% using only two predictors,
and the overallDesire-to-Buywith a coefficient of determination of 88%
using only two predictors. Themodels derived from Lassowere also able
to predict the average scores of PC1 with a coefficient of determination
of 81% with only two predictors, and the average scores of PC2 with a
coefficient of determination of 88% with only two predictors. All
predictors were selected by the Lasso algorithm, which identifies the
most relevant metrics (i.e., those that minimize prediction error) from
the 127 available, with a maximum of three metrics per model.

The high adjusted coefficients of determination (adjusted R2)
and low p-values indicate that each of these models can be
considered statistically reliable. Based on the model’s estimated
coefficients, the following conclusions can be drawn regarding
the constant speed condition:

• Powerful attribute: the specific loudness of Bark 4 positively
impacts this model, while the specific loudness of Bark 14 and
the level (dB) per 1/3 octave band of the 4,000 Hz band
(3,548 Hz–4,467 Hz) negatively impact it. This means that 1)
an increase in the energy in this low-frequency range (Bark 4)
makes the sound feel more powerful and robust, 2) excessive
energy in this higher frequency range (Bark 14) can make the
sound feel less powerful, and 3) higher levels of energy in the
4,000 Hz band can reduce the overall sense of power.

• Aggressive attribute: the standard deviation (over time) of the
frequency below which 85% of the total energy of the spectrum
is contained negatively impacts this model, suggesting that less
variation in high-frequency energy correlates with a more
aggressive perception of the sound.

• Metallic attribute: the specific loudness of Bark 5 and 16 have
opposite impacts on this model. Specifically, to sound more
metallic, an SSV sound should have less energy in the Bark
5 band and more energy in the Bark 16 band.

• Soft attribute: the level in dB of the band centered at 63 Hz
(56.8 Hz–70.8 Hz) positively impacts this model, while the
slope (over time) of the frequency below which 95% of the
total energy of the spectrum is contained negatively impacts it.
This suggests that higher energy content in the 56.8–70.8 Hz
band and a lower Rolloff95 slope correlate with a softer sound.

• Vibrating attribute: the level in dB of the third-octave band
centered at 200 Hz (178 Hz–224 Hz) positively impacts this
model, while the dB level of the band centered at 1,000 Hz
(891 Hz–1,122 Hz) as well as the slope of the rhythm attack
negatively impacts it. This suggests that a higher energy
content in the 178 Hz–224 Hz band, a lower energy
content in the 891 Hz–1,122 Hz band, and a lower slope of
attack (lower slope of transient events in the signal, i.e. reduced
increase of transient events with time) correlate with a more
vibrating sound.

• Noisy attribute: both the standard deviation of the brightness
(variation of brightness over time) and the standard deviation
(over time) of the frequency below which 85% of the total
energy of the spectrum is contained negatively impacts this

TABLE 3 Description of the predictors used for constructing the Lasso
models.

Metrics Descriptions

N′ B4 Specific loudness in the 4th critical band (300 Hz–400 Hz)

N′ B5 Specific loudness in the 5th critical band (400 Hz–510 Hz)

N′ B14 Specific loudness in the 14th critical band (2,000 Hz–2,320 Hz)

N′ B16 Specific loudness in the 16th critical band (2,700 Hz–3,150 Hz)

N′ B17 Specific loudness in the 17th critical band (3,150 Hz–3,700 Hz)

L 3oct XX Sound pressure level in dB in the 1/3 octave band centered at
XX Hz

Roll of YY Corresponds to the frequency below which YY % of the total
signal energy is contained (i.e., the cutoff frequency where the
accumulated energy of the signal reaches YY % of its total
value)

Brightness Sound brightness

Sharpness Sharpness of the sound (acuity)

Spectral Flatness Also known as Wiener entropy, which is a measure of the
width and uniformity of the power spectrum

Rhythm Attack
Slope

Ratio between the difference in magnitude at the beginning
and end of the attack period, and the corresponding time
difference

Slope, Mean, Std Statistics (over time): Slope, Mean, and Standard Deviation
respectively

FIGURE 3
Responses and prediction of responses of the Powerful attribute
for SSV sounds for constant speed condition. The thick bars (in blue)
indicate the responses and the thinner bars (in red) indicate the model
predictions. The horizontal axis labels (V1, V2, etc.) correspond to
individual vehicles. The model’s fit, represented by the coefficient of
determination (R2 � 0.96), is shown in the legend.
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model. This suggests that lower variation (over time) of the
energy in the mid-and high-frequency ranges correlates with a
noisier sound.

• Desire-to-buy: the specific loudness of the Bark 17 band
(3,150 Hz–3,700 Hz) negatively impacts this model, while
the level in dB of the band centered at 63Hz (56.2 Hz–70.8 Hz)
positively impacts it. This suggests an incentive to design SSVs
with a sound signature with more emphasis on low
frequencies, as these frequencies contribute positively to the
desire-to-buy score.

• PC1: Both the level in dB of the band centered at 4,000 Hz
(3,548 Hz–4,467 Hz) and the standard deviation of the
Spectral Rollof85 metric positively impacts this model. It is
noteworthy that these two metrics are also selected by Lasso in
the models for the Powerful and Aggressive attributes.

• PC2: the level in dB of the band centered at 40 Hz
(35.5 Hz–44.7 Hz) negatively impacts this model, while the
slope of the spectral Rollof95 positively impacts it.

4.2 Models’ prediction for the
acceleration condition

As can be seen in Table 2, the Lassomodels were able to predict
the Powerful attribute with a coefficient of determination of 91%

using only one predictor, theAggressive attribute with a coefficient of
determination of 91% using only two predictors, the Metallic
attribute with a coefficient of determination of 86% using only
two predictors, the Soft attribute with a coefficient of determination
of 95% using only two predictors, the Vibrating attribute with a
coefficient of determination of 83% using only one predictor, the
Noisy attribute with a coefficient of determination of 76% using only
one predictor, and the overall Desire-to-Buy with a coefficient of
determination of 75% using only two predictors. The models derived
from Lasso were also able to predict the average scores of PC1 with a
coefficient of determination of 83% with only one predictor, and the
average scores of PC2 with a coefficient of determination of 93%
with only two predictors. Here again, all predictors were selected by
the Lasso algorithm, which identifies the most relevant metrics
(i.e., those that minimize prediction error) from the
127 available, with a maximum of three metrics per model.

The high adjusted coefficients of determination (adjusted R2)
and low p-values indicate that each of these models can be
considered statistically reliable. Based on the model’s estimated
coefficients, the following conclusions can be drawn regarding
the acceleration condition:

• Powerful attribute: the slope (over time) of the specific
loudness of Bark 11 positively impacts this model. This
suggests that a steady increase in the energy in the Bark

FIGURE 4
Objective models of SSV sounds for constant speed condition. The colors are associated with the attributes to be predicted. The area of eachmetric
(represented by a rectangle) is relative to its contribution (or coefficient (bm)) in themodel. The description ofmetrics can be found in Table 3. Rectangles
are ordered from largest to smallest from left to right and from top to bottom. Aminus sign (−) is shown in front ofmetrics that have a negative coefficient
in the model.
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11 band correlates with a more powerful perception of the
sound during acceleration. This indicates that an increase in
energy over time within this mid-frequency range (Bark 11)
contributes to a more powerful and dynamic perception of the
sound during acceleration.

• Aggressive attribute: the slope (over time) of the specific loudness
of both Bark bands 11 and 12 positively impacts this model. This
implies that a steady increase in the energy in these two Bark
bands makes the sound of acceleration feel more aggressive.

• Metallic attribute: both themean of the frequency below which
85% of the total energy of the spectrum is contained and the
level in dB of the third-octave band centered at 3,150 Hz
positively impacts this model.

• Soft attribute: the standard deviation (over time) of the sharpness
negatively impacts this model, while the level in dB of the third-
octave band centered at 80 Hz (70.8 Hz–89.1 Hz) positively
impacts it. This suggests that a stable sharpness and a pronounced
low-frequency content in the 80 Hz band lead to a softer
perception of the acceleration sound.

• Vibrating attribute: the slope (over time) of the specific
loudness of Bark 6 positively impacts this model. This
suggests that a steady increase in the energy of Bark 6 band
will make the sound of acceleration feel more vibrating.

• Noisy attribute: the standard deviation (over time) of the specific
loudness of Bark 14 positively impacts this model. This implies

that greater variation in the loudness of the Bark 14 band
correlates with a noisier perception of the acceleration sound.

• Desire-to-buy: the slope (over time) of the specific loudness of
both Bark 11 and 12 positively impacts this model. Notably,
these two metrics are also selected by Lasso in the models for
the Powerful and Aggressive attributes, suggesting that the
sound signature of an SSV’s acceleration should “sound”more
Powerful and Aggressive to increase the desire to purchase.

• PC1: the slope (over time) of the specific loudness of Bark
11 positively impacts this model.

• PC2: both the standard deviation (over time) of the specific
loudness of Bark 16 and the slope of the spectral flatness
positively impact this model.

4.3 Interpretation of models

In this study, we were also interested in communicating simply
the meaning of the objective models using a simple holistic visual
representation.

To this end, Figures 4, 5 present a summary of the sound
signature and sound quality models for the constant speed and
the acceleration conditions, respectively. These figures provide a
visual illustration of the different models for predicting the sound
signature and sound quality of SSVs with the metrics selected in each

FIGURE 5
Objective models of SSV sounds for acceleration condition. The colors are associated with the attributes to be predicted. The area of each metric
(represented by a rectangle) is relative to its contribution (or coefficient (bm)) in themodel. The description ofmetrics can be found in Table 3. Rectangles
are ordered from largest to smallest from left to right and from top to bottom. Aminus sign (−) is shown in front ofmetrics that have a negative coefficient
in the model.
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model. These figures also show the effectiveness of the Lasso in
selecting only a few metrics to build these parsimonious models
from a large metric bank.

From the models developed in this paper, it is now possible to
retrieve the sound signature and sound quality of current SSVs and
predict those of sounds measured on new SSVs or with virtually
modified sounds. However, comparing vehicles based on all these
models (all metrics in all three conditions) is likely to be confusing.
Therefore, to simplify this, i.e., to make it easier to grasp the

contribution of each metric and to compare between sounds, we
created a tool named “attribute wheel of SSVs.” This tool allows one
to easily visualize the different metrics, their contributions, the
corresponding perceptual attributes, and the operating conditions
for a given vehicle. It is typically read from the center to the
circumference. This wheel of attributes is equivalent to the wine
aroma wheel (Noble et al., 1987). As an example, Figure 6 shows the
attribute wheel for the second vehicle (named V2 hereafter). The
attribute wheel has three levels (the three circular rings in Figure 6):

FIGURE 6
Wheel of attributes for vehicle V2. The attribute scores are ordered for each driving condition from largest to smallest in a clockwise direction.
Starting at the center ring with the conditions, we move towards the outer rings, with attributes in the second ring and metrics in the last ring. The size of
each metric is relative to its contribution in the model. The description of metrics can be found in Table 3. In the third ring, the colors assigned to the
metrics do not carry any specificmeaning. They are solely added to differentiate between themetrics visually. The purpose of using different colors
is to aid in the visual distinction and organization of the metrics within the model. It is important to note that the colors do not convey any additional
information or signify any particular significance or relationship among the metrics.
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1. The operational conditions are represented by three different
categories: Constant speed (Cst speed), idle, and acceleration.
Note that models for the idle condition are not reported in
this paper.

2. The scores of the attributes and the Desire-to-buy, represented
by the areas of sectors for each attribute. The score values are
ordered clockwise from the largest to the smallest value for
each condition.

3. The objective metrics retained in the sparse models,
represented by sectors of the outer ring. Each attribute is
subdivided by the number of retained metrics in the model
using the metric coefficients as bin sizes. A minus sign in the
metric indicates a negative coefficient of this metric in
the model.

For instance, for the acceleration condition of V2, shown in
Figure 6, the Aggressive attribute has the largest score compared to
the other attributes. The Aggressive objective model involves the two
metrics N′ B12 Slope and N′ B11 Slope. These two metrics are the
band-specific loudness slopes of Bark bands 11 and 12
(1,270 Hz–1720 Hz), respectively. This result suggests that the
aggressiveness of the acceleration sound is predicted by the time
variation of the spectral content in these two Bark bands. The graph
also suggests that the effect of the N′ B12 Slope predictor is much
larger than the N′ B11 Slope predictor in the model. The graph also
shows that the same two metrics are involved in the Desire-to-buy
objective model for this condition. Therefore, any positive variation
in these twometrics will result in positive variations of theAggressive
attribute and Desire-to-buy. The inclusion of Desire-to-buy as one of
the perceptual attributes in Figure 6 may seem odd. Specifically, in
the idle condition, the features selected for the Desire-to-buy model
do not match those of any of the perceptual attribute models.
However, it should be noted that the idle condition may not be
as critical in influencing the overall “desire to purchase” factor as the
acceleration condition. Interestingly, in the acceleration condition,
the two parameters used in the Desire-to-buy model are identical to
those of the Aggressive perceptual attribute. This observation
suggests a potential correlation between the perception of
aggressiveness and the Desire-to-buy during acceleration, which
could be a valuable element for further study.

5 Discussion

The results show that the Lasso can select a few significant
metrics from a large bank of metrics for the objective models of
subjective assessments of SSV sounds. Indeed, when generating
models (of sensory profiles, sound quality, and principal
components of the sensory attributes), the Lasso retained only
one, two, or three predictors at most in each model from a list of
127 potential predictors (182 predictors for rapid acceleration),
leading to parsimonious and easily understandable models.

Overall, the objective model for Desire-to-buy suggests designing
SSVs with a sound signature that emphasizes low frequencies. Also,
since the acceleration condition (non-stationary signals) is important
for the global sound quality of SSVs, the objective models should
include time variation properties of the related signals and not just the
time-averaged values.

For the reported data, the constructed models have good
consistency and statistical significance. However, since the number
of samples in the cross-validation data was small, the significance of
these models for new sounds (samples that are distinct from the sounds
used in the listening tests) needs to be investigated.

In this study, we also propose a graphical visualization tool
(attribute wheel of SSVs) to easily interpret the objective models of
the sound signature and sound quality of SSVs. For instance, on
practical grounds, this resulted in useful indications for sound
quality optimization and for adjusting the sound signature of the
SSVs for the industrial partner that pursues the constant
amelioration of the sound of the SSVs.

6 Conclusion

The goal of this study was to develop objective models of subjective
assessments of SSV sounds. The applications of these models being, first
the prediction of sound quality of side-by-side vehicles (SSV), and
second, the explanation of the underlying structure of perceived
sound quality of SSV to guide engineers in future design (i.e. increase
this sound, reduce the brightness, etc.). This paper has provided a set of
experimental results that allow a better understanding of the sensory
profiles and sound quality of SSVs using physical and psychoacoustic
metrics. When generating the models, the Lasso retained only a few
significant metrics in each model from a large number of potential
predictors, which led to parsimonious and easily interpretablemodels. In
addition, a graphical tool for visualizing the metrics, named “attribute
wheel of SSVs,” was developed as part of this study. It facilitates the
interpretation of the contributions of metrics in models on the overall
sound quality of SSVs. This has led to useful insights for sound quality
optimization and for adjusting the sound signature of SSVs in general
and the studied vehicle in particular. Using such illustrations andmodels,
acoustic engineers from the SSV manufacturer can adjust future designs
for a stronger desirability or a better sensory profile of SSVs.
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