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Understanding and predicting the vibro-acoustic behavior of acoustical porous
materials (like foams, synthetic or natural fibers, metamaterials...) requires to
determine the parameters of their solid and their fluid phases. This work presents
an non-exhaustive overview of themethods commonly used to assess the visco-
elastic and acoustic parameters of such acoustic porous media. A first part is
dedicated to identify the parameters related to the dissipation in the fluid phase
while a second part focuses on the identification of the parameters related to the
solid phase (also called the skeleton). The perspectives related to the
characterization of acoustical porous media are also depicted, particularly in
the context of recent and ongoing standardization developments.
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1 Introduction

Traditionally, 2 types of characterization are considered for an acoustical porous
material: the acoustic one related to its fluid phase and the elastic (or more rigorously
viscoelastic) one related to its solid phase (also called the skeleton of the porous medium).
These 2 characterizations can be considered as independent in some cases, while in general
they are not, since the fluid phase can influence the solid behavior and vice versa. The
seminal work by M. A. Biot is often used to account for the coupling between these 2 phases
(Biot, 1956a; Biot, 1956b, Biot, 1962; Allard and Atalla, 2009; Jaouen, 2025a).

The acoustic parameters of the fluid phase, for an isotropic material, are those required
to compute its dynamic mass density ρeq, describing the visco-inertial dissipative effects,
and its dynamic bulk modulus Keq, describing its thermal dissipative effects. Alternatively,
the characteristic impedance Zc �

������
ρeqKeq

√
and the characteristic wavenumber kc �

ω
������
ρeq/Keq

√
(ω denotes the pulsation or angular frequency) can be used without

separating the dissipative effects. For example, a Johnson-Champoux-Allard-Lafarge
(JCAL) model (Johnson et al., 1987; Champoux and Allard, 1991; Lafarge et al., 1997)
requires the knowledge of the six following parameters to compute ρeq and Keq (see
Figure 1).

1. The open porosity ϕ (usually simply named as “porosity”),
2. The static air-flow resistivity σ (in N.s.m-4) or the static viscous permeability k0 � η/σ

(in m2) where η is the dynamic viscosity of the fluid phase (in N.s.m-2),
3. The high frequency limit of the dynamic tortuosity α∞ (its name is usually simplified

to “tortuosity”),
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4. The viscous characteristic length Λ (in m),
5. The thermal characteristic length Λ′ (in m),
6. The static thermal permeability k0′ (in m2).

The elastic parameters of the solid phase are, again for an
isotropic material, its mass density ρ its Young’s modulus E, its
loss factor (sometimes refered to as its structural damping) and its
Poisson’s ratio ].

The model involving the 6 JCAL parameters discussed for the
fluid phase above and the 4 elastic parameters above for the solid
phase, i.e., 10 parameters in total, is referred to as the Biot-
JCAL model.

Some models for the fluid phase require less than 6 parameters
depending on the morphology assumption of the pore structure or
the physical phenomena involved. As examples the Delany-Bazley-
Miki (DBM) model (Delany and Bazley, 1970; Miki, 1990) only
requires σ to compute ρeq and Keq; the Johnson-Champoux-Allard
(JCA) model (Johnson et al., 1987; Champoux and Allard, 1991)
requires the first 5 parameters of a JCAL model (i.e., not accounting
for the static thermal permeability).

Similarly, some models for the solid phase are derived from Biot
equations with some simplifications. The limp model for a light
material with a Young’s modulus close to 0 (like a cotton candy)
requires only the mass density ρ (Panneton, 2007). The rigid-body
(Bécot and Sgard, 2006) (this reference, which discusses numerical
simulations, is the only published article to date that clearly presents
the difference between limp and rigid body models) for a light
material with a Young’s modulus that cannot be neglected, but
which is set in motion by a sound excitation like a rigid body also
requires only the mass desnity ρ. An example of rigid-body behavior
can be obtained for polystyrene beads glued together. Note that the
limp and rigid-body models for the solid phase of a material are
sometimes confused, as the models are equivalent for large
porosities.

Hence, other examples of models to describe the behavior of
acoustical porous materials are: the limp-DBM or the rigid-
body-JCA.

In the next sections of this document, we will focus on (i) the
hypotheses used regarding the materials to be characterized, (ii)
the characterization of the acoustic parameters of the fluid phase,
(iii) the characterization of the elastic parameters of the solid
phase, (iv) some general considerations regarding the
characterization of acoustical porous media. This document
cannot be exhaustive and does not aim to provide a complete
review of the characterization methods but rather to give some
guidelines.

2 Hypotheses

To characterize acoustical porous media, assuming they are
composed of only 2 phases: a fluid and a solid, the following
hypotheses apply.

• Both the fluid and solid phases are assumed to be continuous
(so that the theory of continuous media can be applied to
both phases)

• The pore size within the material is small compared to the
wavelengths of the waves involved, ensuring that the material
can be descibed by an Representative Elementary Volume
(REV) and behaves as a homogeneous medium at the
macroscopic level (Bensoussan et al., 1978; Auriault et al.,
2010). Note that while ρeq and Keq are defined for
homogeneous materials, it is possible to quantify
heterogeneities for acoustical porous media as John R.
Willis did for non-homogeneous elastodynamic materials
(Willis, 1981; Groby et al., 2021). The “Willis coupling
factor” χ, proportional to the inverse of a velocity, equals
0 for homogeneous materials and differs from 0 for
asymmetric materials/systems, or materials exhibiting non-
local effects when the long-wavelength assumption (compared
to the characteristic sizes of the materials) is no longer fulfilled
[see e.g., Lafarge and Nemati (2013)].

• A no-slip condition as well as a thermodynamic equilibrium at
the interface between the fluid and the solid phases are
commonly assumed in most models. While this hypothesis
is not mandatory, it reduces the number of parameters to
be evaluated.

3 Characterization of the acoustic
parameters

In this section, we focus on the characterization of the
parameters related to the fluid phase and in particular to the
parameters of the Johnson-Champoux-Allard-Lafarge (JCAL)
model. Other models and parameters exist (see, e.g., Wilson
(1993), Horoshenkov et al. (2019), but they can be expressed as
those of the JCAL one (Jaouen, 2025b).

Note that the titles of some references mention the
characterization of “acoustic and non-acoustic” parameters,
following the request of some reviewers, in previous articles
published by, e.g., Doutres et al. (2010), who argued that
porosity, for example, is not a parameter used only in acoustics
and therefore cannot be labeled as an acoustic parameter.

FIGURE 1
Schematic representation of profiles of pore networks and
models that can be used to describe these morphologies. The more
complicated the morphology, the more parameters are required. In
blue: parameters related to the visco-inertial dissipation effects
and in red: the parameters of the thermal dissipation effects.
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The techniques are divided into two distinct categories: direct
measurements are those for which an analog or numerical signal can
be directly correlated to the value of the parameter while indirect
estimations are all other methods.

Only some of the acoustical parameters used to describe the
visco-inertial and thermal behviors of acoustical porous materials
are directly measurable. The open porosity, the static air flow
resistivity and the high frequency limit of the dynamic tortuosity
can be directly measured. The devices used in these cases are
borrowed from science fields related to other porous materials
(such as rocks) or are adapted from these other porous materials
to acoustical ones (which have usually very large permeability and
porosity compared to rocks).

The remaining part of the acoustical parameters (Λ,Λ′, k0′) are
estimated via indirect measurements.

3.1 Direct measurements

Direct measurements were the first to be developed and are still
commonly used today to double check the results of indirect
estimations.

3.1.1 Static air-flow resistivity
The first parameter to be directly measured is the static air-flow

resistivity σ. The method is based on the measurement of the
pressure drop across a sample of known thickness and area. The
flow resistivity is then calculated using Darcy’s law. The method is
standardized in ISO 9053-1 (International Organization for
Standardization ISO, 2018).

3.1.2 Open porosity
The second parameter to be directly measured is the open

porosity ϕ: the ratio of the volume of the pore network accessible
to the acoustic wave to the total volume of the material.

A first method, for acoustical porous materials with porosity
close to 1, was introduced by Beranek (1942) and was later improved
or adapted [see, e.g., Champoux et al. (1991), Leclaire et al. (2003)].
The principle is to reduce the volume of an enclosure containing a
material sample. Doing so, the pressure will increase in the enclosure
compared to the atmospheric pressure. This increase in pressure
depends on the volume of the enclosure and the volume accessible to
the air inside the porous medium. By measuring the pressure
increase it is possible to determine the open porosity of the
material. This method is close to the one used for geomaterials
called gas picnometer, detailed in various standards, which is based
on the injection of a gas under pressure in the volume enclosure.
One keypoint is that the larger the samples the more accurate will be
the results.

An alternative technique is based on Archimedes’ principle
(Panneton and Gros, 2005; Salissou and Panneton, 2007): the
porosity is measured by weighing a sample of known volume
and then saturating it with a fluid of known density. Again,
accurate measurements are obtained with large samples.

3.1.3 High-frequency limit of the tortuosity
Brown (1980), then Johnson et al. (1982) published methods for

measuring the high frequency limit of the tortuosity from the

determination of the electrical resistance at the extremities of a
porous sample for which an electrically charged liquid has saturated
the fluid phase.

One difficulty with these methods is saturating the sample,
which can be difficult for materials with small pore sizes of a few
microns or tens of micron, while these materials typically exhibit the
highest tortuosity values. These methods, which are no longer in use,
also require the skeleton of the tested material to be an electrical
insulator and prior knowledge of the open porosity.

3.2 Indirect estimations

Indirect estimations are based on the measurement of one or
more physical quantities in combination with a model (sometimes
only its physical asymptotic limits).

Inverse methods are a large part of indirect estimations. There
are two types of inversions: numerical and analytical. Numerical
inversions are based on minimization techniques between a
numerical simulation and at least one indicator such as the
sound absorption coefficient, the surface impedance, the
characteristic wavenumber... The estimation of more than two
parameters usually relies on a multiple indicators to avoid local
minima during the minimization step.

Analytical inversions rely on analytical expressions to identify
the parameters.

3.2.1 Ultrasound frequencies approach
The tortuosity α∞ can be assessed by measuring the speed of

sound in a sample of known thickness and porosity. The tortuosity is
then calculated using the speed of sound in air and the speed of
sound in the sample. Allard et al. (1994) described the method in the
frequency domain for ultrasound frequencies.

One keypoint of this method is that it is a quick method which
was then used to mapped heterogeneity of material samples. One
limit is however that at ultrasound frequencies, the multiple
scattering phenomenon can appear in porous media with a
characteristic pore size of hundreds of microns. This multiple
scattering is not accounted for in classical visco-thermal
dissipation models and require additional developments [see, e.g.,
Tournat et al., (2004)]. While trying to estimate more parameters (Λ,
Λ′) from ultrasound techniques in the frequency domain (Leclaire
et al., 1996a) it was proposed to make successive measurements
within 2 fluids to quantify and exclude the multiple scattering effects
from the estimations of both the viscous and thermal characteristic
lengths Λ and Λ′ (Leclaire et al., 1996b).

Later, based on the work of Panneton and Only in the audible
frequencies range, Groby et al. (2010) have proposed a method to
extract ρeq and Keq from a reflection and a transmission
measurements (on the same porous smaple) at ultrasonic
frequencies. From ρeq and Keq, Groby et al. were thus able to
estimate α∞, Λ, Λ′ and ϕ if this latter parmaeter was not used as
an apriori.

Currently, high-frequency methods are being developed to
estimate the parameters p and p′ (or alternately α0 and α0′) of
models used to finely describe the behavior of materials with pores of
non-uniform cross sections with possible constrictions [see, e.g.,
Roncen et al. (2019)].
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3.2.2 Audible frequency approach
3.2.2.1 Whole frequency range

The first attempts to characterize the visco-inertial and
thermal dissipation effects of porous media over audible
frequency ranges were made by minimization techniques, in
diffuse sound field, or more commonly in impedance tubes (with
more controlled excitation, at plane waves and normal
incidence) (International Organization for Standardization
ISO, 2023). Then, analytical techniques were developed to
assess the dynamic bulk properties ρeq and Keq (or
equivalently the characteristic impedance Zc and the
characteristic wavenumber kc) from the measurements, in an
impedance tube, of 2 samples with different thicknesses (Smith
and Parrott, 1983) or 1 sample backed alternately with 2 cavities
(Utsuno et al., 1989).

The impedance tube gained in popularity in the late 1990s when
the process to extract ρeq and Keq was simplified by using a third
microphone inside the rigid backing to measure the pressure behind
the sample, as described by Iwase and Izumi (1996); Iwase et al.
(1998). This 3-microphone technique [for which clear analyses and
easier references to find are Doutres et al. (2010), Salissou and
Panneton (2010)] was used by Panneton and Olny (2006), Olny and
Panneton (2008) to extract 4 of the JCAL parameters (α∞, k0′, Λ, Λ′)
from an analytical inversion with the prior knowledge of ϕ and σ.
This method was then extended to retrieve the 6 JCAL parameters
from asymptotes (Jaouen et al., 2020) (as discussed in the
next section).

Note that the 3-microphone technique is currently in the process
of being standardized via ISO 10534-3 International Organization
for Standardization (ISO) (proposition submitted).

A drawback of impedance tube methods is that the boundary
conditions can influence the overall behaviors of ρeq and Keq

(Cummings, 1991; Pilon et al., 2004). Leakages around the
material sample in the tube can create double-porosity effects
(Olny and Boutin, 2003) for resistive materials which will modify
ρeq and Keq. Vibrations of the material skeleton (i.e., its solid
phase) will also have impacts on the measured ρeq and Keq. Thus,
it is important to avoid or reduce such effects, with Teflon tape
rather than wax concerning leakages or adding nails to the
material sample as described in Iwase et al. (1998) (see
Figure 2) to reduce or shift the frequencies of the skeleton
resonances (or to extract the parameters from identified
frequency ranges not affected with these skeleton vibrations).
For low resistivity materials, fewer precautions are necessary as
the influence of small leakages around the sample has a smaller
effect on ρeq and Keq, and this effect can be modeled (Verdière
et al., 2013).

3.2.2.2 Asymptotic limits
The low-frequency limit of the imaginary part (I) of the

dynamic mass density (ρeq) for a homogeneous, isotropic
material with a motionless skeleton is proportional to the
static air-flow resistivity: σ � limω→0ω|I(ρeq)| (the sign of ρeq
is determined by the time convention: I(ρeq)≤ 0 for exp(+jωt)
and I(ρeq)≥ 0 for exp(−jωt) hence the absolute value). The
method, introduced by Panneton and Olny (2006) can be used to
estimate σ or to perform a consistency check with a direct
measurement. The method is now reported in the informative

appendix of ISO 9053-1 (International Organization for
Standardization ISO, 2018).

The open-porosity can also be estimated from high and low
frequency asymptotes. As an example, Jaouen et al. (2020) estimate
the open porosity from the low and high frequency limits of the real
part (R) of the dynamic bulk modulus (Keq) for a homogeneous,
isotropic material with a motionless skeleton: limω→0Re(K) � P0/ϕ
and limω→+∞Re(K) � γP0/ϕ (where γ is the ratio of the specific
heats of the fluid saturating the porous material).

The drawback of these methods being the possible difficulty in
identifying the asymptotes due to the limited spacing between the
microphones at low frequencies, the diameter of the tube at high
frequencies and possible vibrations of the skeleton of the
porous sample.

3.2.3 Time domain methods
In the early 2000s, theoretical and experimental developments

were also made in the time domain.
Fellah et al. (2003) presented a method for estimating the

porosity and the tortuosity of a porous material sample from the
reflected impulse waves. This method is limited to highly absorbing
samples as it approximates the reflected waves as coming only from
the first interface with air.

Two additional methods were developed a few years later to
estimate the static air-flow resistivity from the reflected waves Sebaa
et al. (2005) or the transmitted waves Fellah et al. (2006) depending
on the resistance of the sample. Numerical inversions
(i.e., minimization techniques) were used to extract the value of
the air-flow resistivity with the prior knowledge of the porosity.

Measurements in the time domain and analysis in both the time
and the frequency domains were used, for transmitted waves, to
estimate σ without the a-priori knowledge of the porosity (Sadouki
et al., 2014).

While the time domain approach is in a sparse state of
development, it offers perspectives for complementary robust
characterization methods.

FIGURE 2
The “Voodoo” technique relies on adding nails to the material
sample as described in Iwase et al. (1998) to reduce or shift the
frequencies of the skeleton resonances.
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3.2.4 Pore size distribution and microtomography
Less commonmethods for estimating the parameters of the fluid

phase include measuring the material’s Pore Size Distribution (PSD)
or extracting its microstructure (at the Representative Elementary
Volume) from 3D microtomography scans (Horoshenkov et al.,
2016, Horoshenkov et al., 2019; Perrot et al., 2012; Chevillotte
et al., 2013).

The pore size distribution is usually obtained by typical
methods such as mercury intrusion into the pore network.
3D microtomography acquisitions being expensive, 2D
images are usually preferred with the added difficulty of
capturing the third dimension which can result in inaccurate
microstructure dimensions or large uncertainties about these
dimensions, and hence inaccurate or uncertain material
parameters.

From the microstructural information extracted by one or the
other method, the parameters of a Johnson-Champoux-Allard-
Lafarge model or even a Johnson-Champoux-Allard-Pride-
Lafarge model (Pride et al., 1993) with 2 additional low-
frequency parameters usually denoted as p and p′ (or alternately
α0 and α0′) can be calculated (Perrot et al., 2008).

3.3 A note about thin porous media

The acoustic characterization of facing screens or perforated
plates, typically with a thickness of a few millimeters or less, has
been less addressed. Like Maa between the 1970s and the 1990s
(Maa, 1975; Maa, 1998; Atalla and Sgard, 2007), in 2007, used the
models developed for thicker porous media (Atalla and Sgard
benefited from an update of the models to the JCA and JCAL ones
compared to Maa) while adding a correction to account for the
flow distortion around the pores or perforations (see Figure 3). The
associated length correction Jaouen and Chevillotte (2018)
introduces additional viscous dissipation that is not negligible
compared to the viscous dissipation occurring within the pores
or perforations themselves.

Based on Atalla and Sgard model (Jaouen and Bécot, 2011),
developed an inverse analytical method to estimate the
independent parameters required from the measurements of
the thin porous material backed by a cavity in an
impedance tube.

3.4 Work in progress and perspectives

The methods presented in the previous sections still require
attention, as some subtleties remain. For example, at ultrasonic
frequencies, it is not always easy to determine whether scattering
effects are involved. In the impedance tube, dealing with the limp,
rigid body or, more generally, the motion or vibration of the skeleton
can also be challenging.

Some work is still in progress to characterize the materials in
different environments or conditions (and the references given up to
the next section do not all refer to characterization, but sometimes to
models, as no characterization is yet known to the authors). For
example, at high temperature (for muffler or thermo-acoustic
applications) (Debray, 2000; Di Giulio et al., 2024), at high
pressure (Aurégan and Pachebat, 1999; Temiz et al., 2016;
Chevillotte et al., 2017), with a fluid phase partially or totally
saturated with water (for building and underwater applications)
Chabriac et al., 2016; Gourlay et al., 2017), with flow (for aviation or
appliance applications), in-situ (for end-of-chain applications).

On a different note, while the main dissipation phenomena are
the same for all materials (including, for example, materials with
inner quarter-wavelength or Helmholtz resonators): visco-inertial,
thermal and structural damping in the skeleton, some techniques are
being developed to handle the specificities of multiple dynamics, aka
“metamaterials”. Examples of materials for which developments are
in progress include: activated carbon exhibiting a sorption
phenomenon (making it impossible to measure porosity directly)
(Castillo, 2011; Bechwati et al., 2012; Shen and Jiang, 2014; Venegas
and Umnova, 2016) natural fibers which typically exhibit multiple
scales of porosity (as were the materials manufactured using the first
3D printing technologies but this tendency is decreasing as printing
precision improves), as well as materials with fractal microstructures
(Jaouen and Olny, 2005; Fellah et al., 2021); nanomaterials for which
it can be difficult to manufacture prototype samples with a number
of cells large enough to have dimensions suitable for testing using
impedance tubes or ultrasound techniques.

As reported above, standardization methods are trying to adapt
to these new methods and new materials at a faster pace than ever
before (International Organization for Standardization, 2025). They
also provide a more critical and informative approach to some
techniques, as in the case of ASTM E2611-2019 (ASTM
International, 2019) and a possible future ISO 10534-
4 International Organization for Standardization (ISO)
(proposition to be submitted) (4 microphones), by explaining the
fundamental differences between diffuse field transmission
measurement on large samples and impedance tube transmission
measurement on small samples (International Organization for
Standardization, 2024).

4 Characterization of the elastic
parameters

Most of the experimental methods used to characterize visco-
elastic parameters (Young’s moduli, loss factors and Poisson’s
ratios) are adaptations of techniques used for polymers or metal
(Gibson and Ashby, 1997; Corsaro and Sperling, 1990; Hilyard and
Cunningham, 1994) (note that the terms elastic and visco-elastic

FIGURE 3
Length correction due to flow distortion for thin porous media.
The smaller the perforation rate (i.e., the porosity), the larger the added
dissipation.
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parameters are used interchangeably to refer to the parameters of the
solid phase). Modifications of existing devices are usually made to
account for the interaction between the two phases of an acoustical
porous material or to account for specific ranges of values for these
acoustical porous materials. Young’s moduli and loss factors of
acoustical materials range from approximately 100 to 109 N.m-2 and
from approximately 10−2 to 1 respectively.

A wide variety of methods exist to characterize the visco-elastic
parameters of the solid phase of porous materials. They are typically
divided into different categories according to their frequency regime:
static/quasistatic or dynamic and their vibration nature: uniaxial
compression, torsion, bending. . .

An almost exhaustive list was given in Jaouen et al. (2008) and is
still relevant today. Interlaboratory tests have followed [see, e.g.,
Bonfiglio et al. (2018), Chevillotte et al. (2020)]. Thus this work will
not enumerate all the methods, but will emphasize several
key features.

From interlaboratory tests, large deviations were observed
between the values of the elastic parameters obtained by different
methods. The main deviations were coming from the frequency
range and the initial condition (imposed load or imposed strain).

The uni-axial compression [in the quasistatic regime Langlois
et al. (2001) or in the dynamic one as described in, e.g.,
(International Organization for Standardization ISO, 1989;
Bonfiglio and Pompoli, 2015)], on cubic or short cylindrical
samples, is probably the most common method used (due to its
apparent simplicity). By examining the difficulties of such methods,
it is possible to highlight the critical aspects of viscoelastic
characterization of porous materials.

Apart from the issues of cutting and positioning the material
sample in the test bench, the uni-axial compression methods is
influenced by factors such as.

1. The possible anisotropy of the material,
2. The environment conditions and in particular the temperature

and the frequency (as these factors can significantly influence
the elastic moduli and their loss factors),

3. The static strain or stress dependence of the material,
4. The coupling with the fluid phase (as air enters and leaves the

sample during the compression test)

Point 1, the anisotropy, is particularly important for fibrous
materials as the elastic parameters in the direction of the fibers can
differ significantly from those in perpendicular directions.
Successive uni-axial compression tests on 3 different axes
(assuming they are the principal axes of the materials) only
provide estimations of the elastic parameters.

Point 2, the temperature and frequency dependence is illustrated
in Figure 4. Visco-elastic materials (compared to elastic materials)
exhibit strain and energy dissipations that are time-dependent. This
time dependence implies a frequency dependence as well as a
temperature dependence according to the Time-Temperature
Superposition (TTS). This point is particularly important for a
material with a polymer skeleton, since its glass transition
temperature (or frequency) is usually (designed to be)
between −20 and 20°C (or a few Hz to a few thousand Hz).
While visco-elastic models evolve with mathematical tools such
as fractional derivatives, commonly involving between 5 and

7 parameters (Dinzart and Lipiński, 2010; Gourdon et al., 2015),
it can be observed that there are still few characterizations made at
different temperatures and frequencies.

Point 3, the static strain or stress dependence is illustrated in
Figure 5. Estimation of the visco-elastic parameters requires, or at
least is much easier, to be in region 1 of Figure 5, where the linear
visco-elastic theory can be applied. It is worth noting that only a few
studies on the hysteresis effect in porous materials have been carried
out (Guyer et al., 1997; Gusev and Aleshin, 2002) and this field of
research is still wide open. Point 3 highlights the fact that it is
necessary for the rigorous experimenter to perform a strain-stress
measurement before the actual visco-elastic characterization. It is
noteworthy that there is no linear range for fibers, due to their
microstructures, which reinforces the fact that the static strain or
stress used during the tests should be reported and adapted to the

FIGURE 4
Schematic representation of the evolution of a complexmodulus
with time and frequency as per the Time-Temperature Superposition
(TTS) principle or more rigoursly here its frequency representation.

FIGURE 5
Strain vs stress measurement of a foam showing a hysteresis
behavior. Region 1 is a linear bending region, region 2 is the buckling
region, region 3 is the densification region where the foam behaves as
a solid material after the cells have collapsed.
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application in which the material will be used. An additional
difficulty with the dynamic uni-axial compression method (based
on the resonance of a mass-spring system, the porous sample
playing the role of a heavy spring) is that the frequency range
and the static stress and strain are not independent.

Point 4, the coupling with the fluid phase, has been studied by a
few authors including Kraak (1959) [and discussed further in
Schmelzer et al. (2021)] and Danilov et al. (2004). In his work,
W. Kraak has proposed a correction to the measurement of the
elastic properties of the material sample based on the transverse
resistivity of the material (i.e., in a direction perpendicular to the axis
of compression). This correction is currently considered to be
included in an ongoing revision of ISO 9052-1 (International
Organization for Standardization ISO, 1989). Danilov et al. on
the other hand have pointed out the importance of staying at
low frequencies (below 50–100 Hz) to avoid a significant
influence of the fluid phase on the results of the elastic
characterization.

Once these first 4 points have been addressed, it remains to
estimate the complex Young’s modulus and possibly the
Poisson’s ratio, assuming an isotropic material. Indeed, the
test result for the uni-axial compression test on a material is
the complex stiffness of the material sample (a function of its
complex Young’s modulus, Poisson’s ratio and dimensions).
Some authors refer to the “apparent Young’s modulus”, another
quantity derived from the stiffness. The apparent Young’s
modulus is equal to the Young’s modulus only when the
Poisson’s ratio is 0 [i.e., for fibrous materials without specific
surface or bulk treatment Tarnow, 2005; Berthelot, 1999]. In all
the other cases, a difficult direct measurement of the Poisson’s
ratio from a transverse displacement is required, or alternatively
and most commonly, 2 samples with different shape factors
must be tested to determine the Young’s modulus and
the Poisson’s ratio using a pre-computed abacus (Sim and
Kim, 1990; International Organization for Standardization
ISO, 2011).

For materials with higher Young’s moduli and lower porosity,
the cantilever beam as described in ASTM E756 (ASTM
International, 2005) and ISO 6721-3 (International
Organization for Standardization ISO, 2021) (homogeneous,
damped on one side, i.e., the Oberst’s beam, damped on both
sides, i.e., the modified Oberst’s beam, or the sandwich beam) is a
more suitable technique. Again, the estimation of the Young’s
modulus (in the axis of the beam) and its associated loss factor
can be a difficult task depending on the studied frequency range,
the thickness of the porous material and thus the required
hypotheses regarding the shear and the compression in the
deflection direction for the porous material.

While tentatives were made to characterize the elastic
parameters from impedance tube measurements, the results
were not always reliable due to the lack of control over the
boundary conditions. Even for thin materials, backed by an
air-gap, where a clamped boundary condition can be
guaranteed at the periphery with the tube, the difficulty is to
identify the bending modes before estimating the elastic
parameters. In addition, there is a difference in stresses
between an impedance tube and common elastic
characterization techniques. A sound pressure of 80 dB is a

weak excitation causing a low stress for the specimen under
test, a stress often smaller than the one required to be in the
linear stress-strain zone when exciting only the skeleton of the
material during, e.g., an uni-axial compression (the stress being
only sufficient for a surface stimulation of the “hairs” of
the sample).

Methods based on guided wave measurements (Allard et al.,
2005; Boeckx et al., 2005b; Boeckx et al., 2005a; Glorieux et al., 2014)
on specimens with dimensions of 1 square meter or more have also
been studied. The size of the samples together with the numerical
and experimental works needed to extract the elastic parameters
were the main limitations of these methods, which have not seen any
new developments for a decade.

5 General considerations

This section presents some general considerations that apply to
both the acoustic and elastic characterizations.

• Uncertainties in measurements and characterizations are now
regularly reported, improving the reliability of the results (see
e.g., Horoshenkov et al. (2007), Pompoli et al. (2017), Gaborit
et al. (2020).

• Anisotropy remains a slowly growing area of research
(Melon et al., 1998; Göransson et al., 2009; Guastavino,
2008; Cuenca and Göransson, 2012; Van der Kelen and
Göransson, 2013) despite its importance for some materials
(in particular fibrous) and for some conditions like
mechanical excitations (Tran-Van, 2004) (in French)
(Parra Martinez et al., 2016). The primary challenge lies
in the increased number of parameters required compared
to isotropic materials (σ, α∞, Λ, E, η, ] are
becoming tensors).

• Statistical approaches (in particular Bayesian methods) and
Machine Learning algorithms are more and more used to
identify and correct errors in measurement data (Chazot
et al., 2012; Roncen et al., 2018; Stender et al., 2021; Gaborit
and Jaouen, 2023; Chevillotte, 2024). The commercial
availability of material databases has significantly
improved the efficiency and applicability of these
algorithms, allowing for more accurate predictions in the
characterizations of materials.

6 Conclusion

Both acoustic and elastic characterizations of porous media
remain active fields of research with adaptations of methods to
new challenges such as materials with multiple dynamics, more
complex environment conditions with high temperature or flow. . .

While numerous methods are available, certain points still
require attention.

• On the acoustic side, the low-frequency parameters p and p′
(or alternatively α0 and α0′) remain difficult to characterize,
while the low frequency range is of tremendous importance for
sound absorbing materials.
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• On the elastic side, broadband frequency characterization
remains the exception rather than the rule while polymers
exhibit noticeable frequency-dependent behaviors.

• On both sides, the research on anisotropy is notably sparse
while fibrous materials, that exhibit noticeable anisotropy
(such as natural or recycled synthetic fibers) are becoming
more common.

Standardization is evolving faster than ever to keep up with
recent developments. Newly published standards try to be more
critical and informative about the methods and try to remain open to
the development of new methods to meet the challenges of new
materials and applications.

Finally, it is important to keep in mind that no method can be
considered perfect. A combination of complementary methods often
provides the most robust and comprehensive results and the words
of Tamas Pritz provide an insightful reminder of the importance of
simplicity in methodological development: “Some works suggest
that the curiosity of the methods is more important than the results...
In my opinion, the simpler the method, the better to have
reliable results.”
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