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The dynamical equations of motion for a discrete, one-dimensional harmonic
chain with side restoring forces are analogous to the relativistic Klein–Gordon
equation. Dirac factorization of the discrete Klein–Gordon equation introduces
two equations with time reversal (T) and parity (P) symmetry-breaking
conditions. The Dirac-factored equations enable the exploration of the
properties of the solutions of the dynamic equations under PT symmetry-
breaking conditions. The spinor solutions of the Dirac factored equations
describe two types of acoustic waves: one with a conventional topology
(Berry phase equal to 0) and the other with a non-conventional topology
(Berry phase of π). In the latter case, the acoustic wave is isomorphic to the
quantum spin of an electron, also known as an “acoustic pseudospin,” which
requires a closed path, corresponding to two Brillouin zones (BZs), to restore
the original spinor. We also investigate the topology of evanescent waves
supported by the Dirac-factored equations. The interface between
topologically conventional and non-conventional chains exhibits topological
surface states. The Dirac-factored equations of motion of the one-dimensional
harmonic chain with side springs can serve as a model for the investigation of
the properties of acoustic topological insulators.
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1 Introduction

A topological insulator cannot be adiabatically transformed into an ordinary insulator
without passing through an intermediate conducting state (Qi and Zhang, 2011). While the
bulk system is insulating, the surface can support conduction that is topologically protected,
meaning that the surface states are insensitive to local perturbations (Hasan and Kane,
2010). Topological insulators can exhibit quantum mechanical properties such as the
quantum spin Hall (QSH) effect (Qi and Zhang, 2010) and the anomalous quantum Hall
(QH) effect, which occurs in the absence of an external magnetic field due to the breaking of
time-reversal symmetry (Chang et al., 2023). Acoustic analogs of the QSH effect have been
implemented (a) by tuning an accidental double Dirac cone in graphene-like lattices (He
et al., 2016; Mei et al., 2016) and (b) via a BZ folding mechanism (Zhang et al., 2017; Yves
et al., 2017; Xia et al., 2017; Deng et al., 2017). QH-related effects have been realized in
acoustics by arranging circulating flows into periodic settings to form an acoustic lattice that
breaks time reversal symmetry (Yang et al., 2015; Ni et al., 2015; Khanikaev et al., 2015).

Phononic structures can support elastic waves with non-conventional topology by
breaking symmetry (Xue et al., 2022). Dirac factorization of the wave equation reveals
potential topological properties that may result from symmetry breaking (which might be
brought about by structural or external perturbations). For instance, the equations of
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motion of two coupled one-dimensional harmonic systems
(Deymier and Runge, 2016) can be factored in the long
wavelength limit as a product of two Dirac-like equations, each
of which breaks parity symmetry and time reversal symmetry.
Propagative wave solutions to each Dirac equation can satisfy
two possible dispersion relations, giving rise to symmetric and
anti-symmetric eigenmodes. The former exhibit the conventional
character of Boson-like phonons, while the latter exhibit Fermion-
like behavior of phonons (Deymier et al., 2015; Deymier et al., 2014).
The topological properties of evanescent waves in product parity-
time symmetry have also been investigated near exceptional points
(Chen et al., 2024).

The wave equation for a two-dimensional plate coupled to a
rigid substrate can also be subject to Dirac factorization (Deymier
and Runge, 2022). These factors are analogous to the long-
wavelength limit of the Qi, Wu, and Zhang (QWZ) model of the
anomalous quantum Hall effect (Qi et al., 2006). The Dirac
factorization reveals waves with spin-like degrees of freedom that
have a gapped band structure, which is similar to the spin Hall effect.
Kane and Lubensky (2014) demonstrate a method inspired by the
Dirac factorization of the Klein–Gordon equation to establish a
connection between topological mechanical modes and the
topological band theory in electronic systems. This leads to the
prediction of new topological bulk mechanical phases with distinct
boundary modes. Topological phonons can also be classified using
local symmetries (Süsstrunk and Huber, 2016) by adapting the
classification of non-interacting electron systems to
mechanical systems.

Here, we study solutions of the Dirac factorizations of the
discrete one-dimensional harmonic chain with side restoring
forces and investigate the appearance of edge modes at the
interface of conventional and non-conventional topologies. In
Section 2, we introduce the Dirac factorization of the discrete
Klein–Gordon equation, and in Section 3, we find the dispersion
relation and amplitude vectors corresponding to propagative
wave solutions of the Dirac equations. Section 4 addresses
evanescent wave solutions and their dispersion relation. In
Sections 5 and 6, we compute the respective Berry phases of
the amplitude vectors of the propagative and evanescent waves.
Section 7 addresses the existence of edge modes at the interface
between two topologically different semi-infinite media that obey
the acoustic Dirac equation. Finally, in Section 8, we summarize
and draw conclusions.

2Model system and equation ofmotion
for the discrete harmonic chain

We consider the model of the one-dimensional harmonic chain
illustrated in Figure 1. We assume that the chain lies along the x-axis.
The chain is composed of identical masses, M, interacting with their
neighbors via linear spring forces with a spring constantK; each of the
masses is connected to a rigid substrate through harmonic springs
with a spring constant K′. The coordinates of the nth mass at rest are
x0n � na, where a is the spacing between adjacent masses at rest.

We denote the displacement of the nth mass by un � xn − x0n.
Newton’s equation for the nth mass is

M
d2un

dt2
� K un+1 − un( ) − K un − un−1( ) − K′un (1)

Taking β2 � K
M and α2 � K′

M in Equation 1, we can rewrite the
above equation as

d2un

dt2
− β2 un+1 − 2un + un−1( ) + α2un � 0 (2)

The quantity un+1 − 2un + un−1 can be identified as a discrete
second derivative with respect to position. Thus, Equation 2 can be
thought of as a discrete version of the Klein–Gordon equation ∂2u

∂t2 −
β2∂

2u
∂x2 + α2u � 0. It can be shown that the continuous Klein–Gordon

equation (when interpreted as an operator acting on vectors with
two components) can be factorized as a product of Dirac equations:

σ1
∂

∂t
± iβσ2

∂

∂x
− iαI[ ] σ1

∂

∂t
± iβσ2

∂

∂x
+ iαI[ ]

� I
∂2u

∂t2
− β2I

∂2u

∂x2
+ α2I (3)

—where σ1 � 0 1
1 0

( ), and σ2 � 0 −i
i 0

( ) are the Pauli matrices and

I is the 2 × 2 identity matrix (Deymier and Runge, 2016).
Now, let us provide a physical interpretation of amplitude

vectors with two components. We note that if α � 0, the
equation corresponding to the first operator in the square bracket

of Equation 3 becomes [σ1 ∂∂t ± iβσ2 ∂
∂x]ψ � 0. Using a plane wave

solution with ψ � a1
a2

( )eikxeiωt, this equation reduces to the system

ω ± βk( )a2 � 0
ω ∓ βk( )a1 � 0

{ . We obtain two solutions for the angular velocity

of the plane wave ω � ± βkh. These correspond to plane waves
propagating in the positive and negative directions. In this case, the
components a1 and a2 are now independent of each other and of the
wave number. The amplitude of the plane wave propagating in the
positive direction is independent of that of the wave propagating in
the opposite direction. When α ≠ 0, the plane wave solutions of the
equation [σ1 ∂∂t ± iβσ2 ∂

∂x − iαI]ψ � 0 obey the system of linear

equations
ω ± βk( )a2 − αa1 � 0
ω ∓ βk( )a1 − αa2 � 0

{ with the dispersion relation

ω � ±
									
(βk)2 + α2

√
. The amplitude components a1 and a2 are

given by
a1
a2

( )∝
						
ω ± βk

√							
ω ∓ βk

√( ). The components of the 2 × 1

amplitude vector are not independent of each other. This
indicates that the directions of propagation are not

FIGURE 1
Schematic illustration of the one-dimensional harmonic chain
attached elastically to a rigid substrate (top gray box). The side springs
restore longitudinal motion.
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independent of each other anymore; it is parameter α that couples
those directions. The wave function ψ has the character of quasi-
standing waves, which are composed of forward and backward
waves with a very specific proportion of their respective
amplitudes a1 and a2.

In order to achieve a factorization of the discrete
Klein–Gordon equation as a product of Dirac-like equations, we
will interpret the operator d2

dt2 − β2(Δ+ Δ−) + α2 as acting on vectors
with four components. Here, Δ+ is the forward difference operator
defined by Δ+un � un+1 − un, and Δ− is the backward difference
operator defined by Δ−un � un − un−1. These difference operators
are linear (note that Δ+ Δ−un � Δ+(un − un−1) � Δ+un − Δ+un−1 �
un+1 − 2un + un−1). The operators Δ+ and Δ− can also be interpreted
as operators on vectors where the difference operations are carried
out component-wise.

Let e1 � 0 1
0 0

( ) and e2 � 0 0
1 0

( ). We can reformulate

Equation 2 in terms of a product of two operators:

σ1 ⊗ I
∂

∂t
+ iβσ2 ⊗ e1Δ+ + e2Δ−{ } + iαI ⊗ I[ ]

× σ1 ⊗ I
∂

∂t
+ iβσ2 ⊗ e1Δ+ + e2Δ−{ } − iαI ⊗ I[ ]

It can be verified that this product is the same as I ∂2

∂t2 −
Iβ2Δ+Δ− + α2I (with I being the 4 × 4 identity matrix in this
equation). Note that the matrices in the above product are
tensor products of 2 × 2 matrices and hence are 4 ×
4 matrices. Thus, the operators in the factorization are acting
on vectors with four components, and the product of the
operators is a four-dimensional version of the discrete
Klein–Gordon equation:

σ1 ⊗ I
∂

∂t
+ iβσ2 ⊗ e1Δ+ + e2Δ−{ } ± iαI ⊗ I[ ]ψn

� I
∂2

∂t2
− Iβ2Δ+Δ− + α2I[ ]ψn (4)

—where ψn �
ψ1n
ψ2n
ψ3n
ψ4n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Now the solution to Equation 4 ψn is a 4 × 1 vector. We have
seen that the long wavelength limit (continuous limit) of the
operators in the square brackets of Equation 3 leads to solutions
with two components, corresponding to the mutually dependent
amplitudes of the forward and backward waves. The four
components of the discrete system reflect the fact that the
forward difference Δ+ and backward difference Δ− operators act
differently on the forward and backward amplitudes of a quasi-
standing wave. However, this solution form does not correspond to
any straightforward physical interpretation.

The tensor products of the matrices appearing in the above
equation are as follows:

Taking C � σ1 ⊗ I, A � iσ2 ⊗ e1, and B � iσ2 ⊗ e2, the Dirac
factorization of the discrete Klein–Gordon equation becomes

C
∂

∂t
+ β AΔ+ + BΔ−{ } − iα′I[ ]ψn � 0 (5)

—where α′ � ± α.

3 Eigenvectors and dispersion relation

3.1 Dispersion relation

Wewill now find propagative solutions to the Dirac equations in
Equation 5. Let us consider an ansatz taking the form of a plane wave
with a 4 × 1 amplitude vector, ζk:

ψn � ζke
iωteikna �

a1
a2
a3
a4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠eiωteikna (6)

We have the matrices

C �
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, A �
0 0 0 1
0 0 0 0
0 −1 0 0
0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,B �
0 0 0 0
0 0 1 0
0 0 0 0
−1 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

and I �
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Then, with the ansatz in Equation 6, the Dirac equations become the
following system of equations:

−iα′a1 + iωa3 + β eika − 1( )a4 � 0

−iα′a2 + β 1 − e−ika( )a3 + iωa4 � 0

iωa1 − β eika − 1( )a2 − iα′a3 � 0

−β 1 − e−ika( )a1 + iωa2 − iα′a4 � 0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (7)

In matrix form, Equation 7 becomes

−iα′ 0 iω β eika − 1( )
0 −iα′ β 1 − e−ika( ) iω

iω −β eika − 1( ) −iα′ 0

−β 1 − e−ika( ) iω 0 −iα′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
a1
a2
a3
a4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� 0

(8)
The determinant of this 4 × 4 matrix is

α′( )2 − β2 eika − 1( ) 1 − e−ika( ) − ω2[ ]2 (9)
and there exist non-zero solutions to Equation 8 if the determinant is
zero. Equation 9 gives us

ω � ±
																								
α′( )2 − β2 eika − 1( ) 1 − e−ika( )

√
� ±

																						
α′( )2 − β2 eika − 2 + e−ika( ).

√
(10)

Equation 10 gives us the dispersion relations

ω � ±

															
α′( )2 + 4β2 sin 2

ka

2

√
(11)

The dispersion relation is illustrated in Figure 2.

3.2 Eigenvectors

We now solve Equation 8 for the components of the amplitude
vector a1, a2, a3, and a4, satisfying the dispersion relations given by
Equation 11. Let us redefine ka � 2θ such that (eika − 1) �
eiθ(eiθ − e−iθ), (1 − e−ika) � e−iθ(eiθ − e−iθ), and (eika − 1)(1 −
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e−ika) � (eiθ − e−iθ)2. For the sake of simplifying the notation, we also
define X � (eiθ − e−iθ). With this notation, Equation 8 becomes the
system of four linear equations:

−iα′a1 + iωa3 + βeiθXa4 � 0 (12a)
−iα′a2 + βe−iθXa3 + iωa4 � 0 (12b)
iωa1 − βeiθXa2 − iα′a3 � 0 (12c)
−βe−iθXa1 + iωa2 − iα′a4 � 0 (12d)

To find solutions to the system of equations given by Equations
12 a–d, we hypothesize that

a1 � ia4e
iθ (13a)

a2 � −ia3e−iθ (13b)
a3 � iωei

θ
2 (13c)

a4 � e−i
θ
2 α′ − βX( ) (13d)

Recognizing that ω � ±
								
(α′ + βX)

√ 								
(α′ − βX)

√
,

(α′ − βX) �
								
(α′ − βX)

√ 								
(α′ − βX)

√
, and

(α′ + βX) �
								
(α′ + βX)

√ 								
(α′ + βX)

√
, the normalized amplitude

eigenvector is obtained in the form

ζ̂k � 1

2

																							
α′( )2 − β2X2

√√
iei

θ
2

							
α′ − βX

√
± e−i

θ
2

							
α′ + βX

√
± iei

θ
2

							
α′ + βX

√
e−i

θ
2

							
α′ − βX

√
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (14)

4 Evanescent waves

In order to find non-propagative solutions of the Dirac
equations (Equation 5), we consider the ansatz

ψn � ξk′e
iωtei k+ik′( )na �

b1
b2
b3
b4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠eiωtei k+ik′( )na (15)

We follow the procedure used in Section 3 to find the dispersion
relation for waves of the form given by Equation 15:

ω � ±

																			
α′( )2 − 4β2 sinh

k′a
2

( )2

√√
(16)

When k′ � 0, then ω � α′, and ω � 0 when
(α′)2 − 4β2(sinh k′a

2 )2 = 0; that is, sinh k′a
2 � ± α

2β or equivalently
k′ � 2

asinh
−1(± α

2β). We denote this value of k′ by k0′. The points
± k0′ are illustrated schematically in Figure 3.

The normalized amplitude eigenvector is of the form

ξ̂k′ � 1												
2α′ eθ′ + e−θ′( )√

ie−
θ′
2

							
α′ − βX′

√
± e

θ′
2

							
α′ + βX′

√
± ie−

θ′
2

							
α′ + βX′

√
e

θ′
2

							
α′ − βX′

√
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (17)

—where X′ � (e−θ′ − eθ′) with k′a � 2θ′.

5 Berry phase for propagative waves

5.1 Continuous contribution to the
Berry phase

The contribution of the continuous part of the function, ζ̂k to the
Berry connection (Berry, 1984) is given by

BC k( ) � −iζ̂*Tk
∂ζ̂k
∂k

(18)

FIGURE 2
Schematic illustration of the discrete system dispersion relation ω(k) � ±

																	
(α′)2 + 4β2(sin ka

2 )2
√

for � 1, β � 1, and α � 1.
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Note that ∂ζ̂k
∂k � ∂ζ̂k

∂θ
∂θ
∂k � a

2
∂ζ̂k
∂θ since ka � 2θ, and therefore,

Equation 18 gives us BC(k) � 0 for all k ∈ [−π
a,

π
a] for which ζ̂k is

continuous. So, the continuous contribution to the Berry
connection is zero.

5.2 Contribution of discontinuities in the
eigenvectors to the Berry connection

The eigenvector given by Equation 14 contains components in

the form of square roots—
							
α′ + βX

√
and

							
α′ − βX

√
—which are

square roots of complex numbers.
The square root of a complex number is given by the formula						
A + iB

√ � ±

													
A

2
+ 1
2

							
A2 + B2

√√
+ i

B

B| |
													
1
2

							
A2 + B2

√ − A

2

√( )
Here, A � α′ and B � 2β sin θ. Near the origin on both sides

(positive and negative) of the Brillouin zone: θ± � 0±, so

B ~ 2θ± � 0±. We therefore have
							
α′ + βX

√
~± ⎛⎝ 								

A
2 + 1

2

			
A2

√√
+

i B
|B|

								
1
2

			
A2

√ − A
2

√ ⎞⎠ � ⎛⎝ 							
A
2 + 1

2 |A|
√

+ i B
|B|

							
1
2 |A| − A

2

√ ⎞⎠.

The phase of
						
A + iB

√
in the vicinity of the origin of the first

Brillouin zone satisfies tanφ � sgn(B)
					
−A+|A|

√ 				
A+|A|

√ .

If A � +α—that is A> 0—then |A| � A and tanφ �
sgn(B)

				−A+A√ 			
A+A√ � 0. The quantity

							
α′ + βX

√
remains continuous at

the origin of the Brillouin zone; the same is true for the quantity							
α′ − βX

√
. Therefore, in this case, there is no discontinuity in the

complex amplitude, which leads to the Berry phase being equal to
zero, as discussed in in Section 5.1.

If A � −α, then A< 0—that is, |A| � −A and tanφ �
sgn(B)

			
A+A√			
A−A√ � sgn(B) ∞ . On the positive side of the origin of

the Brillouin zone B � 0+, sgn(B)> 0 and φ � π
2. On the negative

side of the origin of the Brillouin zone B � 0−, sgn(B)< 0 and
φ � −π

2. The quantity
							
α′ + βX

√
undergoes a π phase discontinuity at

the origin of the Brillouin zone.
Considering the component

							
α′ − βX

√
, we still have A � α′ but

B � −2β sin θ. We still have a discontinuity when A � −α, but then
tanφ � −sgn(B) ∞ . On the positive side of the origin of the
Brillouin zone B � 0−, sgn(B)< 0 and φ � −π

2. On the negative
side of the origin of the Brillouin zone B � 0+, sgn(B)> 0 and
φ � +π

2. The quantity
							
α′ − βX

√
undergoes a -π phase discontinuity

at the origin of the Brillouin zone.
In the case ofA< 0, to calculate the discontinuity contribution of

the components at 2θ � ka � 0 to the Berry phase, consider two
amplitude vectors on both sides of the origin of the Brillouin zone:

ζ̂k~0+ � 1
2

ie−iφ θ+( )
± eiφ θ+( )
± ieiφ θ+( )
e−iφ θ+( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ and ζ̂k~0− � 1
2

ie−iφ θ−( )

± eiφ θ−( )

± ieiφ θ−( )

e−iφ θ−( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Their inner product gives ζ̂

*T

k ~ 0+ ζ̂k~0− � cos π. Therefore, the
change in geometric phase as the amplitude vector is crossing the
origin of the first Brillouin zone is Δη � π. Now, the Berry phase is
therefore the sum of the contributions from the continuous and
the discontinuous parts of the amplitude vector, so the Berry
phase is equal to π. Note that this phase is independent of the
specific value of α as long as we consider the Dirac-factored
equation with −α.

The Berry phase is a topological invariant of the system. Dirac-
factored equations [C ∂

∂t + β AΔ+ + BΔ−{ } − i(± α)I]ψn � 0 describe
two types of acoustic waves: one with a conventional topology (Berry
phase equal to 0) and the other one with an unconventional topology
(Berry phase of π). In the latter case, the acoustic waves are
isomorphic to the quantum spin of an electron, which requires a
closed path, corresponding to two Brillouin zones to recover the
original eigen amplitude vector. This is an example of an acoustic
pseudospin.

FIGURE 3
Schematic illustration of the discrete system dispersion relation for propagative waves (blue and yellow lines): ω(k) � ±

															
α′2 + 4β2(sin ka

2 )2
√

for a � 1,

β � 1, and α � 1 and evanescent waves (green line) at k � 0: ω(k′) � ±
																	
α′2 − 4β2(sinh k′a

2 )2
√

.
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6 Berry phase for evanescent waves

We now compute the Berry connection of the unit amplitude
vector ξ̂k′ given by Equation 17 along the loop given by the
dispersion relation of the evanescent waves with k � 0. Since ω is
a real number, we have the restriction − α

2β≤ sinh k′a
2 ≤ α

2β , which is
equivalent to −α

β≤X′≤ α
β —that is, 0≤ α + βX′ and 0≤ α − βX′.

We first compute the Berry connection along the top and the
bottom halves of the loop, when ω> 0 and ω< 0.

Case 1: α′ � α with ω> 0 or ω< 0.
In this case, the unit amplitude vector is

ξ̂k′ � 1								
2α eθ′+e−θ′( )√

ie−
θ′
2

							
α − βX′

√
± e

θ′
2

							
α + βX′

√
± ie−

θ′
2

							
α + βX′

√
e

θ′
2

							
α − βX′

√
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. Note that the quantities

inside the square root are non-negative because of the restriction
on k′, so the unit amplitude vector is a continuous function of k′.
Therefore, the Berry connection is given by

BC k′( ) � −iξ̂*Tk′
∂ξ̂k′
∂k′

We note that ∂ξ̂k′
∂k′ � ∂ξ̂k′

∂θ′
∂θ′
∂k′ � a

2
∂ξ̂k′
∂θ′ since (k′a � 2θ′), which leads

to BC(k′) � 0.
Therefore, the Berry connection when α � α′ is zero along the

top and bottom halves of the loop.

Case 2: α′ � −α with ω> 0 or ω< 0.
In this case, the unit amplitude vector is

ξ̂k′ � −1								
2α eθ′+e−θ′( )√

ie−
θ′
2

							
α + βX′

√
± e

θ′
2

							
α − βX′

√
± ie−

θ′
2

							
α − βX′

√
e

θ′
2

							
α + βX′

√
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. Again, the quantities

inside the square root are non-negative. The Berry connection is
thus given by −iξ̂*Tk′ ∂ξ̂k′∂k′ . A similar calculation to that in case α′ � α

gives us BC(k′) � 0 along the top and bottom halves of the loop.

Case 3: The Berry connection near the points where the loop
intersects the x-axis.

Wewish to determinewhether near ± k0′, ξ̂k′,ω+ , the unit amplitude
vector at k′ with positive ω, is parallel or anti-parallel to ξ̂k′,ω− , the unit
amplitude vector at k′ with negative ω. We calculate the dot product

ξ̂k′,ω+* · ξ̂k′,ω− � 2β
α′ sinh θ′.

As k′ → k0′, note that ω → 0. So in that limit, the dispersion

relation given by Equation 16 gives us 2β
|α′| � 1

|sinh θ′|. Therefore, when
α′ � α, we have ξ̂k′,ω+* · ξ̂k′,ω− � sinh θ′

|sinh θ′| as k′ → k0′. When α′ � −α, we
have ξ̂k′,ω+* · ξ̂k′,ω− � sinh θ′

|sinh θ′| as k′ → k0′. So, when α′ � α, ξ̂k′,ω+·* ·
ξ̂k′,ω− → sinh θ′

|sinh θ′| � 1 as k′ → k0′. Therefore, ξ̂k′,ω+* and ξ̂k′,ω− are

parallel. When α′ � −α, ξ̂k′,ω+* · ξ̂k′,ω− → − sinh θ′
|sinh θ′| � −1 as k′ → k0′. So,

ξ̂k′,ω+* and ξ̂k′,ω− are anti-parallel.

Similarly, when k′ → − k0′, if α′ � α, ξ̂k′,ω+* and ξ̂k′,ω− are anti-
parallel, and if α′ � −α, ξ̂k′,ω+* and ξ̂k′,ω− are parallel.

Therefore, along the closed loop over the evanescent mode, the
Berry phase amounts to π for both α′ � ± α.

7 Interface modes

We now consider a system composed of two semi-infinite chains
described by the acoustic Dirac equation, but differing only in the
value of the parameter α′. Such a system may be realized by
considering the mass spring system in Figure 1 (which is
governed by the Klein–Gordon equation) (Calderin et al., 2019)
and by considering evanescent waves corresponding to the +α Dirac
equation for masses with a negative label and −α Dirac equation for
masses with a positive label (since solutions to the Dirac equations
are solutions to the Klein–Gordon equation). The consideration of
such waves is mathematical. Figure 4 describes the set up.

At the interface, the Dirac equations are

C
∂

∂t
+ β AΔ+ + BΔ−{ } − i +α( )I[ ]ψn�−1 � 0 (19a)

C
∂

∂t
+ β AΔ+ + BΔ−{ } − i −α( )I[ ]ψn�0 � 0 (19b)

The Equations 19 a,b can be expanded as

C
∂

∂t
ψ−1 + β A ψ0 − ψ−1( ) + B ψ−1 − ψ−2( ){ } − i +α( )Iψ−1[ ] � 0

(20a)
C

∂

∂t
ψ0 + β A ψ1 − ψ0( ) + B ψ0 − ψ−1( ){ } − i −α( )Iψ0[ ] � 0 (20b)

We now seek solutions to these equations that take the form of
evanescent waves decaying on both sides of the interface. These are
solutions of the form

ψn �
b1
b2
b3
b4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+α,k′> 0

eiωtek′na if n< − 1 (21a)

ψn �
b1
b2
b3
b4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−α,−k′< 0

eiωte−k′na if n> 0. (21b)

FIGURE 4
Schematic illustration of an interface between two topologically
different semi-infinite media obeying the acoustic Dirac equation. The
medium with α′ � −α is topologically non-trivial, and the medium with
α′ � +α is topologically trivial.
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Equations 21 a,b give are solutions to the bulk acoustic Dirac
equation of infinite chains, each with its respective values of α′. At
the interface, we consider

ψ−1 �
W−1
X−1
Y−1
Z−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+α,k′> 0

eiωte−k′a (22a)

ψ0 �
W0

X0

Y0

Z0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−α,−k′< 0

eiωt (22b)

The existence of solutions in the forms given by Equations
22a,b, which satisfy Equations 20a,b, implies the existence of
interface modes between the two chains with different
topologies.

Inserting Equations 22a,b into Equations 20a,b gives us a system
of eight linear equations in the eight unknownsW−1, X−1, Y−1, Z−1,
W0, X0, Y0, and Z0:

−i +α( ) 0 iω −β 0 0 0 βek′a

0 −i +α( ) β iω 0 0 0 0
iω β −i +α( ) 0 0 −βek′a 0 0
−β iω 0 −i +α( ) 0 0 0 0
0 0 0 0 −i −α( ) 0 iω −β
0 0 −βe−k′a 0 0 −i −α( ) β iω
0 0 0 0 iω β −i −α( ) 0

βe−k′a 0 0 0 −β iω 0 −i −α( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

W−1
X−1
Y−1
Z−1
W0

X0

Y0

Z0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

0
βb+3e

−k′a

0
−βb+1 e−k′a
−βb−4 e−k′a

0
βb−2e

−k′a

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(23)

Equation 23 has solutions if the 8 × 8 matrix is invertible—that
is, if its determinant is not equal to zero. By defining a � i(+α)/β,
b � iω/β, and c � 1, we calculate the determinant of that matrix to be

det ω( ) � b8 + b6 −4a2 + 6( ) + b4 6a4 − 14a2 + 11( )
+ b2 −4a6 + 10a4 − 14a2 + 6( ) + a8 − 2a6 + 3a4 − 2a2 + 1

(24)
Note that this determinant is independent of k’. To illustrate, let

us set β � α � 1 and plot det(ω) � ω8 − 10ω6 + 31ω4 − 34ω2 + 9.
The det(ω) is non-zero for the majority of frequencies

corresponding to evanescent waves, except for the two frequencies
ω � ± 1

2 (
	
5

√ − 1). There exist solutions to Equation 24 within this
range of real frequencies. The interface between the chains with trivial
and nontrivial topologies supports localized interfacial modes. These
are topological interfacial modes. In Figure 5 there are two values of ω
for which det(ω) = 0. This implies that there are no real frequency
solutions, although there may be solutions with complex frequencies.
These waves may decay as a function of time.

8 Conclusion

We have here demonstrated that the Dirac factorization of the
equations of motion of a mass and spring model exposes the
potential for topological insulator behavior in acoustic systems.
In particular, for a 1-d harmonic mass and spring chain attached
elastically to a rigid substrate, the equations of motion give rise to a
discrete version of the Klein–Gordon equation that can be factorized
into Dirac equations with broken time-reversal and parity
symmetry. Propagative and evanescent wave solutions of the
Dirac factored equations were obtained. For propagative modes,
the Berry phase for the Dirac equation with the + sign was found to
be zero (conventional topology), and that with the – sign was found

FIGURE 5
Plot of det(ω) � ω8 − 10ω6 + 31ω4 − 34ω2 + 9. The region between the vertical lines corresponds to the frequency range of evanescent waves for
α � 1.
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to be π (non-conventional topology). In contrast, for the evanescent
mode, the Berry phase was π for both the + and – equations. Using
the distinction between topologies for the propagative waves, we
demonstrated the existence of a topologically protected interface
mode between conventional and non-conventional topologies.

Dirac factorization of classical wave equations exposes the
possibility of topological insulators arising from broken symmetries.
It reveals the possibilities offered by symmetry breaking in terms of the
direction of wave propagation. However, additional physical conditions
or mechanisms are needed to break T- or P-symmetry and realize one-
way propagating waves in physical systems.
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