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In recent years, the continuous increase in the speed of high-speed trains has led
to growing concern about noise generated by train operations. Currently, three
types of sound barriers are commonly used: fully enclosed, semi-enclosed, and
vertical. The effectiveness of noise reduction due to complex aerodynamics in
higher-speed trains remains unclear and requires further research. This article
employs ANSYS Fluent fluid software to establish a full-scale three-dimensional
numerical model that simulates the wind tunnel test of a train traveling at a speed
of 350 km/h. The noise distribution in the section with the largest noise source is
analyzed in COMSOL using the method of line sound source comparison.
Additionally, we investigate the noise reduction efficiency of various types and
sealing degrees of sound barriers concerning aerodynamic noise. The results
indicate that the fully enclosed sound barrier provides the best noise reduction
across all frequency ranges, followed by the vertical sound barrier, which offers
the second-best noise reduction effect. For high-frequency noise, a higher
sealing degree of the sound barrier correlates with improved noise reduction.
In highly sensitive areas, priority should be given to fully enclosed sound barriers,
followed by vertical sound barriers.
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1 Introduction

With the large-scale expansion of the global high-speed railway network and significant
advancements in train system dynamics performance, the continuous acceleration of
modern high-speed trains has become an important trend in the field of rail transit. As
a result, research has increasingly focused on the mechanisms and control of noise pollution
at speeds above 300 km/h. Research indicates that when a train’s operating speed exceeds
the critical threshold of 300 km/h, its noise contribution undergoes a substantial change:
aerodynamic noise becomes more prominent in the overall sound profile, accounting for
over 50% of the total sound pressure level, ultimately surpassing wheel-rail noise as the
dominant source of noise with a noticeable difference 5.76% (Ding, 2024). This broadband
noise, caused by aerodynamic effects, exhibits significant characteristics of long propagation
distance and wide spectral coverage. When the train reaches a speed of 350 km/h, the sound
pressure level at a distance of 12 m from the track can reach 82 dB (A) or more (Lu et al.,
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2017). It not only creates resonance in the train carriage’s interior,
significantly reducing passenger comfort but also leads to
continuous sound pollution within 200 m of the railway.
Prolonged exposure to noise levels above acceptable limits can
result in negative effects on human health problems (Kumar and
Lee, 2019). To tackle this issue, sound barriers are extensively
utilized as the primary method for reducing noise, with ongoing
research related to their effectiveness deepening (Lichtneger and
Ruck, 2015; Carassale and Brunenghi, 2013; Quinn et al., 2001;
Zheng and Wang, 2009; Zhou et al., 2013; Zhao et al., 2015; Li and
Tian, 2012; Xiang et al., 2015).

As a key facility for controlling noise propagation in rail transit,
sound barriers primarily reduce noise by blocking the path of sound
waves. Their design must comprehensively consider acoustic
performance, structural strength, and economy (Chen et al.,
2024). The current engineering applications primarily use three
structural forms: vertical, semi-enclosed (inverted L-shaped), and
fully enclosed. Among these, the fully enclosed type offers the best
noise reduction efficiency, but it also has the highest construction
cost and needs to be selected and optimized based on the level of
noise sensitivity in the areas.

Regarding the distribution of aerodynamic noise sources specific
to high-speed trains, research has revealed that they mainly occur in
the bogie area (turbulent separation effect), the nose tip of the train
(airflow impact zone), and the train’s wake area (vortex shedding)
phenomenon) (Zhang et al., 2022). The distribution characteristics
of this noise source impose specific requirements for the geometric
design of sound barriers, particularly emphasizing the need to
concentrate on the bottom absorption structure of the sound
barrier for near-field noise control in the bogie area.

Notable advancements have been made in traditional wind
tunnel testing and acoustic array technology, with Nagakura
pinpointing major sources of aerodynamic noise, including
pantographs and vehicle body connectors, using Lighthill’s
acoustic analogy theory (Zhang, 2012; Nagakura, 2006; Kitagawa
and Nagakura, 2000; Zheng and Li, 2011; Gao et al., 2013).
Nonetheless, there are limitations to real vehicle testing due to
high costs and lengthy duration, which can be effectively mitigated
by numerical simulation methods that develop detailed models.
Yuan and Li (Yuan and Li, 2013) demonstrate that a computational
model incorporating both head and tail trains provides a more
precise characterization of the vehicle’s surface sound power
distribution, achieving nearly a 12% reduction in error compared
tomodels that feature only the head train. Additional research (Yang
and Yang, 2012) introduced the concept of the intermediate vehicle
unit, revealing that a multi-vehicle coupling model considerably
enhances the predictive accuracy of vortex-induced noise at the
vehicle body connections. These findings lay a strong
methodological groundwork for the numerical simulation of
aerodynamic noise. However, most current studies have
concentrated on speeds below 350 km/h, and there is a lack of
systematic investigations into the coupled effects of various sound
barrier structures- like fully enclosed and inverted L-shaped
barriers- on high-speed aerodynamic noise. This gap highlights
the central focus of this study.

Currently, research on aerodynamic noise primarily focuses on
speed levels below 350 km/h and examines the types of models for
the noise reduction efficiency of sound barriers. There is relatively

little research on the aerodynamic noise characteristics of noise
sources in various sound barriers for high-speed trains traveling at
350 km/h. To explore the noise reduction mechanisms of different
types of sound barriers for high-speed trains and compare their
noise reduction efficiency, this paper employs numerical simulation
methods to study the aerodynamic noise characteristics of high-
speed trains operating at 350 km/h.

2 Noise attenuation mechanism of
noise barriers

A sound barrier is an engineering structure designed to diminish
noise by controlling how sound waves travel. Typically, its main
framework consists of composite materials that serve both sound
insulation and absorption purposes. As sound waves interact with
sound barriers, three key physical phenomena take place: diffraction,
transmission, and reflection, illustrated in Figure 1. This interaction
significantly attenuates sound energy, ultimately resulting in a
reduced sound pressure level at the receiving point. Notably,
high-frequency sound waves tend to diffract around the barrier’s
edge due to their shorter wavelength, causing their energy to
diminish geometrically as the distance of propagation increases.

The sound insulation capabilities of barrier materials effectively
limit the transmission of sound waves. Meanwhile, a sound-absorbing
surface layer transforms incoming sound energy into thermal energy
via a porous design, which helps diminish the cumulative impact of
secondary sound reflections. This mechanism results in two distinct
areas in the sound field behind the barrier: the sound brightness area,
situated outside the barrier’s geometric shielding range, where sound
pressure reduction is primarily influenced by air absorption.
Conversely, the sound shadow area, located on the noise-back side
of the barrier, is crucial for protecting noise-sensitive targets due to the
combined effects of diffraction attenuation and transmission
suppression. This differentiation in the sound field forms a
theoretical foundation for refining the geometric parameters and
selecting materials for sound barriers.

3 Numerical methods

The curved wall surface of the train introduces some distortion
in the calculations when using the standard k-ε turbulence model for
flow on curved walls. This paper employs the Realizable k-ε
turbulence model, which is accurate, efficient, and highly
applicable, to numerically simulate the aerodynamic noise and
vibration noise generated by fluctuating wind pressure loads
acting on the train surface within the flow field. The equation for
the Realizable k-ε turbulence model is as follows (Wang, 2022):
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The Realizable k-ε model shown in (Equations 1, 2) introduces
constraint terms into the equation to prevent negative positive
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pressure caused by excessive time-averaged strain rates, ensuring
that the solution adheres to the flow law. Additionally, incorporating
quantities related to rotation and curvature into the equation is more
appropriate for addressing flow models such as rotational flow
and mixed flow.

The Broadband Noise SourceModel serves to forecast and assess
the noise radiation features of various engineering and
environmental noise sources. Broadband noise consists of sound
exhibiting a consistent spectral distribution over a specific frequency
range. This model is founded on the Lighthill acoustic analogy
theory from aeroacoustics and employs the statistical attributes of
turbulence to characterize the vortex motion and acoustic radiation
traits of the noise source by correlating the turbulent flow field with
the acoustic field. Frequently utilized for preliminary noise
predictions, the broadband noise source model offers the benefits
of high efficiency and rapid computation.

In simulating high-speed train operations, it’s essential to use
broadband noise source models under conditions of uniform
isotropic turbulence, a high Reynolds number, and a low Mach
number. The calculation models used in this article are shown in
(Equations 3, 4)

∂2p1

∂t2
− c2

∂2p1

∂x2
� ∂2Tij

∂x∂xj
pijδ f( ) ∂f

∂xj
[ ] + ∂

∂t
p0μδ f( ) ∂f

∂xi
[ ] (3)

p1 � p − p0 (4)
where p is the flow field pressure, p0 is the undisturbed flow field
pressure, p1 is the far-field sound pressure, δ(f) is the Dirac
function, and the function f describes the surface function of the
wall (Shih et al., 1995).

To enhance computational efficiency, a comparative method
was implemented: a train wind tunnel simulation was performed in
ANSYS Fluent to obtain the surface acoustic power of the train. This
equivalent sound power was used to establish a linear sound source,
calculate the noise intensity at monitoring points in COMSOL

Multiphysics, compare experimental data to assess the
accuracy of the simulation, and research the noise reduction
efficiency of sound barriers. This calculation model can
characterize the noise distribution created when moving
through areas with high surface acoustic power, specifically at
the train head and its surroundings.

The formula for calculating the sound power of a train is:

WTotal � ∫
s

Ids (5)

The formula for calculating the power of a linear sound source is:

Prms � WTotal/L (6)

The formula for calculating the total sound pressure level is:

Ltotal � 10 · log10 ∑
f

10LP f( )/10⎛⎝ ⎞⎠ (7)

where Ltotal is the total sound pressure level, LP(f) is the
corresponding sound pressure level at each frequency, WTotal is
the total surface sound power of the train, I is the sound intensity, L
is the length of the train, and Prms is the free space reference power
per unit length (Curle, 1995).

4 Computational model and accuracy
verification

4.1 Model establishment and boundary
conditions

4.1.1 Fluent boundary setting
This article employs the commercial software ANSYS Fluent to

simulate wind tunnel tests on trains and capture the surface sound

FIGURE 1
Schematic diagram of acoustic propagation: (a) A three-dimensional view of the surface acoustic power distribution when a train passes through a
sound barrier. (b) A three-dimensional view of the surface acoustic power distribution for a selected local cross-section. (c) A front view of the surface
acoustic power distribution for a chosen cross-section. The acoustic propagation modes can be categorized into three types: diffraction, reflection, and
transmission.
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power distribution of the train. According to Liu et al.’s research
(Liu et al., 2023), the noise spectrum generated in the bogie area of
the train closely resembles the spectrum produced by the entire
vehicle model; thus, the whole vehicle model is used for
calculation.

It is generally recommended that outdoor high-speed trains use
a proportional model to capture the airflow around the train
accurately. This article establishes a full-scale computational
domain for train wind tunnel test simulation, as shown in
Figure 2. The computational domain size of this study exceeds
the requirements specified in the CEN European Standard
(EN14067-6, 2010).

To enhance computational efficiency in CFD numerical
simulation, we simplified the high-speed train structure: the
surface of the high-speed train is treated as completely smooth,
disregarding structural details such as windows, doors, and bogies.
We streamlined the connections between the trains while
maintaining representative aerodynamic shapes. The train model
is developed based on the surface parameters of CRH380A, with
dimensions set to 3.38 m wide, 3.70 m high, and a total length of
74.28 m (Li et al., 2009).

To verify the accuracy of numerical simulations and
establish a numerical model consistent with wind tunnel
tests, tests were conducted in the 5.5 m × 4.0 m acoustic
wind tunnel 3/4 opening test section at the Low Speed
Aerodynamics Research Institute of the China Aerodynamics
Research and Development Center in Mianyang City, Sichuan
Province, with a maximum wind speed of 100 m/s. The test

section was surrounded by a fully anechoic chamber (Jia et al.,
2021). The experimental section utilizes a bottom-mounted
floor to simulate the ground, and the model is a 1:8 scaled
representation of a high-speed train comprising three cars. The
test wind speed is 83.33 m/s.

Boundary conditions: All surrounding walls and the upper
surface function as pressure outlets, the ground acts as a non-slip
wall, and symmetrical constraints are applied along the perimeter.
The wind input velocity is 83.33 m/s, aligning with the experimental
conditions.

FIGURE 2
Computational domain and boundary conditions.

FIGURE 3
COMSOL computational model.
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4.1.2 COMSOL model settings
In COMSOL, it is assumed that the train acts as a line sound

source with a length of 74.28. Since the sound power is primarily
concentrated at the front of the train, and the height of the point
is situated at the windbreak of the front of the train, this problem
can be simplified to a two-dimensional issue. The modeling
diagram is shown in Figure 3. Point A serves as the noise
source, while point B is the monitoring point, which
corresponds to the monitoring point’s location at the front of
the vehicle as referenced in the data source. The surrounding
boundaries are perfectly matched to simulate an infinite field.
The sound power of the point source is provided by Fluent
results, with the phase set to 0°.

4.2 Mesh

4.2.1 Fluent mesh
The purpose of Fluent calculation is to determine the sound

power level on the vehicle body surface and to refine the grid of the
vehicle body surface, with a maximum size of 0.1 m and a

minimum size of 0.05 m. The meshing diagram is shown
in Figure 4.

4.2.2 COMSOL grid partitioning
Utilize the COMSOL physical field to manage grid division, with

a minimum size of 0.001 m. Refer to the meshing diagram of the
COMSOL validation model, illustrated in Figure 5.

4.3 Solver settings

A fluent solution is established using a steady-state analysis
based on an implicit solution method that relies on a pressure
basis. The realizable k-ε turbulence model is combined with a
wideband noise model for numerical simulation. Given that the
train speed exceeds 0.3 Ma, compressibility must be considered;
therefore, compressible gas is selected for the analysis. The
simple algorithm is utilized for pressure-velocity coupling. A
standard discrete format is applied for pressure, while a second-
order upwind discrete format is used for convection and
dissipation terms. COMSOL calculation is configured for

FIGURE 4
Mesh diagram: (a)Mesh diagram depicting half of the computational domain. The section enclosed by the red dashed line illustrates the local area.
(b) Mesh division status of the local area.

FIGURE 5
COMSOL validation model mesh partition diagram: (a) Mesh diagram of the computational domain. (b) Local area mesh division situation.
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frequency domain research, with a sampling frequency ranging
from 0 to 1000 Hz and sampling points at {1, 2, 4, 8, 16, 31.5, 63,
125, 500, 1,000}.

4.4 Simulation accuracy verification

The diagram of the surface sound power level of the train is
shown in Figure 6.

Figure 6 illustrates that the surface sound power level peaks at
the front of the train, primarily due to wind turbulence occurring
there. This allows for a reasonable simplification of the line noise
source at the front. By substituting the calculation results of Fluent
into (Equations 5–7), we can obtain that the sound power level
derived from integration is 0.53295 W, while the line noise source
intensity in COMSOL is 0.0071W/m.

In Figure 7, the sound pressure level at the monitoring point is
recorded at 91.27 dB from simulation and 89.83 dB from test data,
resulting in a 1.4 dB error which falls within the acceptable range of

2 dB (Liu et al., 2024). The model effectively simulates the noise
distribution across the section where the highest surface sound
power is measured.

4.5 Computational model optimization

In the CFD stage, we extract only the key noise-source
distribution generated by the train’s geometry and aerodynamic
parameters. This source data is then imported into COMSOL, where
a coarser acoustic mesh is utilized for sound-field calculations,
avoiding the high cost of employing a very fine acoustic mesh
directly in Fluent. During the CFD stage, we apply a fine mesh
only in the critical aerodynamic regions surrounding the train while
using progressively coarser meshes in far-field areas to reduce the
total mesh count without sacrificing aerodynamic fidelity. In
COMSOL, we use a high-density mesh only near the sound
barrier and in the observation zones; all other regions employ a
sparse mesh, which enables faster solution times.

FIGURE 6
Fluent simulated surface sound power level distributions.

FIGURE 7
Comparison of simulation results with test results.
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FIGURE 8
Modeling diagrams of various types of sound barriers: (a) fully enclosed sound barrier; (b) semi-enclosed sound barrier with a 1/3 opening; (c) semi-
enclosed sound barrier with a 2/3 opening; (d) vertical sound barrier; (e) vertical sound barrier with a 1/2 height; (f) no sound barrier.
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5 Sound barrier noise reduction
efficiency study

The surface of the sound barrier was assumed to be flat, neglecting
the effects of the complex sound absorption design. Additionally, we
simplified the overall track layout by omitting elements such as tracks
and track panels. The track section near the sound barrier is regarded
as a straight section, without taking into account any track gradient or
the train’s interaction with the sound barrier.

The Fluent boundary condition wind speed is 97.2 m/s, and the
sound power is measured at 1.2525 W. Without accounting for the
interaction between the aerodynamic characteristics of the train and
the sound barrier, the power of the COMSOL line source is
0.0167 W/m. The sound barrier material is selected as built-in
aluminum. The boundary dimensions of the computational
domain of the COMSOL model are 100 m by 40 m.

5.1 Sound barrier modeling and meshing

Types of noise barriers typically include vertical, semi-enclosed,
and fully enclosed structures. This study examines six scenarios: no
barrier, low-height vertical barrier, high-height vertical barrier, semi-
enclosed barrier with two-thirds opening, semi-enclosed barrier with
one-third opening, and a fully enclosed barrier. The aim is to evaluate

how varying enclosures affect noise distribution. Modeling for these
scenarios is depicted in Figure 8, and the layout of monitoring points
is displayed in Figure 9. For instance, in the case of the semi-enclosed
barrier with one-third opening, the meshing is illustrated in Figure 10.
The mesh is created in COMSOL with physics-controlled settings for
accuracy and computational efficiency.

5.2 Analysis of results

As shown in Figure 11, the fully enclosed sound barrier exhibits
the lowest sound pressure level and the most effective noise
reduction at various testing points, achieving a noise reduction of
4.5–6 dB, while the vertical sound barrier follows closely with a

FIGURE 9
Map of monitoring points.

FIGURE 10
Model meshing diagram (as an example of semi-closed).

FIGURE 11
Sound pressure levels at different sound barrier
monitoring points.

FIGURE 12
Sound pressure level-frequency diagram for monitoring point 2.
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FIGURE 13
Distribution diagram of sound pressure level at a frequency of 1000 Hz: (a) fully enclosed sound barrier; (b) semi-enclosed sound barrier with 1/
3 opening; (c) semi-enclosed sound barrier with 2/3 opening; (d) vertical sound barrier; (e) vertical sound barrier with 1/2 height; (f) no sound barrier; (g)
color bar.

Frontiers in Acoustics frontiersin.org09

Zhang et al. 10.3389/facou.2025.1616806

https://www.frontiersin.org/journals/acoustics
https://www.frontiersin.org
https://doi.org/10.3389/facou.2025.1616806


reduction of about 4 dB. The six conditions can be categorized into
two groups: Group A includes four conditions- no sound barrier,
two types of vertical sound barriers, and a fully enclosed sound
barrier; Group B consists of two conditions- 2/3-opening semi-
enclosed sound barriers and 1/3-opening semi-enclosed
sound barriers.

Comparisons within the two groups demonstrate the following
characteristics: 1. Sound pressure level decreases with increasing
distance, and this decreasing trend is consistent for all conditions
within each group. 2. The noise reduction effect of the barriers
improves as the airtightness of the sound barriers increases. A key
difference between the two groups is that, as distance grows, the rate
of sound pressure level decay varies; specifically, Group A decays
faster than Group B, and the noise reduction effect of the barriers
also increases with distance.

At distances greater than 10 m, the noise intensity at the
monitoring point with 2/3 openings in the sound barrier
surpasses the intensity recorded without any barrier. Refer to the
curve of sound pressure level versus frequency at monitoring point
2, as illustrated in Figure 12.

Figure 12 shows that once the frequency surpasses 31 Hz, the
sound pressure level for the no sound barrier condition remains the
highest across all frequencies. In contrast, the fully enclosed sound
barrier condition has the lowest sound pressure level at all
frequencies, while the other tested conditions exhibit fluctuations
within each frequency range. Notably, in the high-frequency band,
the 2/3-opening sound barrier demonstrates better noise reduction
than the vertical sound barrier, ranking just after the fully enclosed
sound barrier. However, its noise reduction performance in the low-
frequency range is less effective, with a recorded level of 91 dB at
16 Hz, resulting in an overall SPL that exceeds those of the other
conditions. As frequency increases, the effectiveness of noise
reduction shows a positive correlation with the amount of sound
barrier confinement, with the ranking of noise reduction at 1,000 Hz
aligning with the level of sound barrier confinement.

When examining Figures 13a–f, it is evident that increasing the
opening at the top of the sound barrier leads to a significant rise in
the distribution of total sound pressure levels. As the degree of noise
diffraction grows, the size of the sound shadow area gradually
decreases. Noise intensity within this shadow area continues to
rise, which is reflected in the cloud map by the warming color of the
region to the right of the sound barrier. A fully enclosed sound
barrier effectively blocks both direct and top-diffracted sound,
resulting in the largest sound shadow area, the lowest total sound
pressure level, and the most effective noise reduction. In a semi-
closed structure, the top opening allows some noise to escape behind
the barrier through diffraction paths, thereby increasing the noise
intensity in the sound shadow area and diminishing the shielding
effect. This leakage effect becomes particularly pronounced when
the opening is large. If the top of the sound barrier is fully open,
diffraction at the top emerges as the primary route for noise
propagation, significantly reducing the size of the sound shadow
area and dramatically increasing the total sound pressure level at the
receiving end. To conclude, sealing the top of the sound barrier is
crucial for effective noise control. Greater sealing enhances the
shielding effect on mid to high-frequency noise, while increased
openness results in greater sound wave leakage and weakened noise
reduction by the barrier.

6 Conclusion

This article uses ANSYS Fluent to create a detailed 3D numerical
model simulating a wind tunnel test for a train at 350 km/h. We
analyze noise distribution at the highest source using line sound
source comparison in COMSOL and evaluate the noise reduction
effect of different sound barriers and seals on aerodynamic noise.
Findings indicate:

1. The sound power simulation technique used in this paper
effectively models noise distribution in areas where train noise
is most intense, significantly enhancing computational efficiency.

2. Among the various models, the fully enclosed sound barrier
achieves the highest noise reduction, exceeding 4.5 dB up to
20 m away, followed closely by the vertical sound barrier.

3. In terms of high-frequency noise, a more air-tight noise barrier
yields improved noise reduction.

The simulations indicate that the fully enclosed sound barrier
provides the highest level of noise reduction, followed by the vertical
barrier. However, due to low-frequency noise, greater confinement does
not enhance the reduction. Analyzing frequency distribution is crucial
when utilizing vertical or semi-enclosed barriers. For trains traveling at
350 km/h, fully enclosed sound barriers with greater noise reduction
efficiency are the optimal choice in noise-sensitive areas, even if they are
more expensive. In regions where noise is relatively less concerning, it is
advisable to use lower-cost vertical sound barriers.
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