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Network topology and cannabis
use following two weeks of
monitored abstinence:
moderation of sex and patterns
of use findings
Kyle A. Baacke1, Ryan M. Sullivan1,2, Chase A. Shankula1 and
Krista M. Lisdahl1*
1Department of Psychology, Brain Imaging and Neuropsychology Lab, University of Wisconsin-
Milwaukee, Milwaukee, WI, United States, 2Department of Psychiatry, Brain Addiction and Development
Laboratory, University of California, San Diego, La Jolla, CA, United States
Background: Chronic cannabis use (CU) can result in subtle deficits in cognitive
performance that may be linked with alterations in underlying neural functioning.
However, these network alterations are not well-characterized following
monitored abstinence. Here, we evaluate differences in functional brain
network activity associated with CU patterns in adolescents/young adults.
Methods: Functional connectomes were generated using resting-state fMRI data
collected from 83 healthy young adults (44 male) following two weeks of
monitored cannabis abstinence. Network topology metrics were calculated for
each of the 7 Yeo 2011 intrinsic connectivity networks (ICNs) and on the whole-
brain level. Multiple linear regressions were used to evaluate whether CU (regular-
users, n=35 vs. non-using controls, n=40) was associated with network
topology metric differences after controlling for past-year alcohol use, age, sex,
and cotinine levels; moderation by sex was also investigated. Regressions were run
within CU group to test for associations between cannabis use patterns (lifetime
CU, age of CU initiation, and past-year CU) and network topology. Finally, a
network-based statistic (NBS) approach was used to search for connectome
subcomponents associated with CU group, CU*sex, and patterns of CU.
Results: No significant association between CU groups and ICN topology was
observed. Sex moderation was observed; within male cannabis users, higher
past-year CU was associated with significantly higher frontoparietal and ventral
attention network (VAN) efficiency. Within female cannabis users, higher past-
year CU was associated with significantly lower Default Mode Network
assortativity. Within individuals who initiated CU before the age of 17, males
had lower assortativity in the VAN and Somatomotor network. NBS analyses
indicated that connectivity strength within a primarily right-lateralized
subnetwork distributed throughout the connectome was significantly and
reliably associated with past-year CU).
Conclusion: The present findings suggest that subtle differences in resting-state
network topology associated with CU may persist after an extended period of
abstinence in young adults, particularly males, especially those with heavier past-
year use and those who initiated CU earlier in life. While further replication is
required in larger samples, these findings suggest potential neuroimaging correlates
underlying long-term changes in brain network topology associated with CU.
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1 Introduction

Cannabis is one of the most extensively used psychoactive

drugs, with peak usage occurring during adolescence and young

adulthood (1). Delta-9-tetrahydrocannabinol (delta-9-THC) is the

primary psychoactive cannabinoid found in cannabis that is used

for recreational purposes; delta-9-THC interacts with the

endocannabinoid (eCB) system and acts as a partial agonist of

the cannabinoid receptor 1 (CB1R) (2–4). CB1R are localized on

neurons, astrocytes, microglia, and oligodendrocytes, and

endogenous endocannabinoids (N-arachidonoylethanolamine,

AEA; 2-arachidonoylglycerol, 2AG) are released in response to

synaptic activity and regulate neurotransmitter release (5–8). The

eCB system also contributes to numerous other processes linked

with brain health, including cell differentiation, neurogenesis,

energy metabolism, refinement of neuronal connections, pruning

of dendrites, myelination of axons, as well as being involved in

anti-inflammatory and immune functions (5–7, 9–14). Animal

and human research has shown high density of CB1R and eCB

signaling in the prefrontal cortex (PFC), parietal, cerebellar,

limbic system, and ventral striatal regions (3, 4, 8, 15).

The eCB system demonstrates dynamic adolescent changes, with

ligands (AEA, 2AG) increasing and CB1R expression peaking during

the teenage years (15–20). These co-occur with other adolescent

neurodevelopmental changes; subcortical regions (i.e., amygdala,

hippocampus, nucleus accumbens) develop first in preadolescence

and remain stable or slightly increase during later teen years

(evidenced through volumetric and diffusion MRI investigations),

while pruning of cortical (especially PFC and parietal cortices)

gray matter and improved white matter integrity continues into

early adulthood (21–29). These dynamic changes in the eCB

system are hypothesized to at least partially underlie these

adolescent neurodevelopmental processes, including changes in

dendritic structure, synaptic pruning, fine-tuning of functional

coupling, and enhancing white matter quality, particularly in the

PFC, parietal, cerebellar, striatal, and limbic regions (3, 4, 8, 15,

30–32). Functional neuroimaging (fMRI) studies also demonstrate

dynamic changes in the BOLD response during adolescence, with

limbic and striatal response to salient and affective stimuli peaking

resulting in increased “top-down” frontoparietal cognitive control

and interhemispheric connectivity (25, 33–35). This has sparked

interest in examining brain data using network-based statistics

(i.e., “connectomes”) where specified regions are denoted as nodes

and strength between nodes are evaluated (i.e., “edges”). These

changes also correspond to a distributed reorganization of

functional brain networks from “local” (i.e., within-network) to

“distributed” (i.e., between-network) with increasing modularity,

hierarchical organization, and greater specificity among within-

network connections that mirror canonical adult resting-state

networks (36–39).

Given the role of the eCB system during adolescent

development, chronic exposure to cannabis may disrupt

neuromaturation; there is evidence that repeated delta-9-THC

may downregulate the eCB system (40–45) and alter glutamate-

modulated synaptic refinement (46–49). Preclinical findings have

suggested that repeated delta-9-THC dosing alters glucose
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uptake, dopamine, glutamate and eCB signaling, gene expression,

microglial apoptosis, neuroplasticity, white matter quality, and

functional coupling (50–56). However, the effects of delta-9-THC

on distributed resting-state cortical networks in non-human

animals, especially among adolescents and young adults, have

not been well characterized.
1.1 Cannabis and human brain networks

Human longitudinal studies have collectively shown that

chronic cannabis use (CU) during adolescence leads to modest

cognitive decline, especially in the areas of executive functioning

and verbal memory [for reviews see (57, 58)]. These cannabis-

related deficits in cognitive function often correspond to

differences in functional brain activity when both are assessed;

for example, a recent meta-analysis focused on brain functional

connectivity outcomes associated with CU found evidence for

relatively widespread increased connectivity strength in late

adolescent and adult (16–42 years old) cannabis users relative to

controls, particularly in frontal-frontal, fronto-striatal, and

fronto-temporal region pairings (59). Similarly, Hammond and

colleagues conducted a meta-regression analysis on 1,216

cannabis using and 1,486 non-using adolescents and concluded

that cannabis using youth demonstrate greater activation in

rostral medial, ventral PFC, and ACC regions during executive

control tasks, but blunted dorsal medial PFC and dorsal ACC

response during affective processing tasks (60). Further, they

found that extent of CUD, length of abstinence, as well as sex,

were related to BOLD response in executive control, suggesting

that severity of CU may be key indicators of neurobiological

impacts of CU (60). Increased local connectivity in frontal and

midbrain regions was also higher in individuals who met the

criteria for CUD (n = 22) than non-using controls (n = 20),

suggesting the pattern of hyperconnectivity may extend beyond

cortical structures (61). However, not all seed-based analyses

have indicated increased connectivity associated with CU.

Most studies highlighted in these reviews have utilized BOLD-

response differences or seed-based functional connectivity analyses

that focus solely on connectivity to a singular region, such as the

anterior cingulate cortex (ACC) or insula. However, network-level

patterns have emerged from these findings as many of the brain

regions fall within the same set of brain networks: the Dorsal

Attention Network (DAN; a set of brain regions associated with

top-down, goal-directed processing of attention), the Ventral

Attention Network (VAN; a set of brain regions associated with

bottom-up, stimulus-driven processing of attention), the

Frontoparietal Control Network [FPCN; a network commonly

associated with executive function; (62)], and the DMN

[a network commonly associated with self-referential thought; (63,

64)]. Evidence has been mixed regarding the links between

adolescent and young adult CU and connectivity within the

DMN. Some studies have found hypoactivity (65–67) while others

indicate hyperactivity (68) among cannabis-using participants

within the DMN using seed-based analyses. In terms of between-

network connections, there is some evidence that
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hyperconnectivity between the DMN and VAN is associated with

the acute feeling of being high (66). This association is further

substantiated by the dose-dependent association between duration

of CU and connectivity strength between key structures in the

DMN and VAN (67). Harris et al. (69) identified decreased

connectivity between the intraparietal sulcus (a key region in the

DAN) and the insula (key region in the VAN) in abstinent

cannabis users relative to healthy controls. Cannabis users have

also demonstrated greater intra-network frontolimbic connectivity

at rest compared to non-using youth (70). Ertl and colleagues (71)

examined the impact of CU on connectivity in the frontoparietal

control network (FPCN), they found greater seed-based functional

connectivity in cannabis users vs. controls, though this association

did not extend to other networks, suggesting some specificity of

the effect. A data-driven approach supported this association,

primarily indicating fronto-parietal brain regions as being hyper-

active in heavy cannabis users (72). Therefore, to date, the FPCN,

DMN, and DAN appear to be the most strongly associated with

regular adolescent CU. Notably, these seed-based connectivity

analyses typically do not quantify the degree in overlap between

indicated brain regions and commonly found networks of brain

regions which tend to coactivate with one another, or intrinsic

connectivity networks (ICNs), as such, these results are difficult to

place in a network context.

Given the complexity of cannabis effects on neuromodulation

and glutamate-related functional coupling during development,

the impact of CU may be better addressed by studying brain

network topology. Analysis of brain activity on the level of

network topology has the benefit of evaluating distributed

functional brain activity using graph theory to represent the flow

of information in the brain. This “network neuroscience”

approach also reduces the issue of multiple comparisons in

conventional fMRI analyses by allowing for analysis on multiple

scales (e.g., network, module, or node level) and has proven to

be informative at delineating specific network patterns and

characteristics of interest within neuroscience investigations

(73–76). Functional brain network characteristics have been

reliably associated with dimensions of psychopathology, including

substance use, and may provide a useful biomarker of adolescent

neurodevelopment (35, 77–80). During adolescence, there is also

evidence for age-associated increased integration of the VAN and

FPCN with other specialized networks, suggesting that the

developmental refinement of functional brain networks may not

be uniformed in nature (81). Further, exposure to exogenous

cannabis may differentially disrupt specific networks.

Few studies to date have examined network topology in

adolescent and young adult recreational cannabis users. Global

efficiency (Eglob) is a common network marker generally

representing the global strength of connections, it is defined as

the average of the inverse shortest path length and represents

how quickly (in terms of number of steps) information can flow

in a network. In a weighted graph, this is heavily influenced by

edge strength (i.e., positive correlation strength between nodes or

regions). Thus, this statistic leverages both edge strength values

and the higher-level structure of the network. In one of the first

studies using brain network topology in acutely-abstinent (∼12 h,
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n = 18) adolescents with CU disorder (CUD), Nestor and

colleagues (82) found that individuals with CUD had reliably

higher Eglob, demonstrating greater whole-brain connectivity

strength, during a reward processing task than matched healthy

controls (n = 18). Greater connectivity strength was positively

associated with age of CU onset, supporting the idea that

differential use trajectories may influence patterns of brain

activity (82). Both of these findings were consistent across

connectome thresholding levels, suggesting reliable and robust

effects in adolescents with CUD. In another data-driven

approach to identify differences in functional connectomes in a

mixed sample of adolescents and adults (age 18–40), Ramaekers

and colleagues (83) found hyperconnectivity across all major

brain networks, but most prominently in the DMN, DAN, and

VAN, in recently abstinent chronic cannabis users (∼24 h,
n = 14) compared to abstinent occasional users (∼7 days, n = 12).

Using a meta-analytic approach, Blest-Hopley and colleagues

(84) identified hyperactivity within the FPCN and DMN

structures in abstinent cannabis using (> = 25 days, n = 98) vs.

non-using (n = 106) adolescents. Taken together, preliminary

findings suggest general hyperconnectivity brain patterns in

cannabis users, particularly among the FPCN, VAN, and DMN

regions, with mixed findings within the DAN and DMN.

Notably, most of these analyses have not tested for the impact of

more nuanced CU patterns, such as dose-effects, age of regular

use onset, length of abstinence, or sex of the user on differences

in functional brain network activity (85).

Another potential reason underlying inconsistent findings are

potential unique sex effects on cannabis during neurodevelopment.

There are significant sex-at-birth differences in typical adolescent

brain development, with girls typically reaching structural maturity

in limbic, striatal, and frontoparietal regions earlier than boys and

demonstrating distinct patterns of functional connectivity

maturation (29, 86–88). For example, males demonstrate

progressively increases in putamen integration (in terms of

participation coefficient) with age, but not females (89). On

balance, animal studies have reported significant sex-variations in

the eCB system, which plays a role in sexual dimorphism,

including differences in CB1R receptor sensitivity, hormone-linked

fluctuations in eCB signaling, and cannabis-related effects such as

gene expression, brain morphometry, and neuroinflammation (50,

51, 56, 90–96). Human studies have also reported differential

cognitive effects, with several studies finding increased male

vulnerability (97–100) and some finding female vulnerability (97,

99, 101, 102). fMRI connectivity studies have also reported sex

differences in the impact of cannabis on brain connectivity (50).

However, not all analyses have indicated an interaction between

cannabis use and sex (61, 65), and more studies examining sex

differences are needed (59). Importantly, no studies to date have

examined potential sex-differences in cannabis effects on

network topology.

Prior literature has found that regular cannabis use can result

in cognitive deficits and hyperconnectivity between brain areas,

particularly ICNs associated with attentional processing and

executive function, like the DAN, VAN, and FPCN (59, 83).

These alterations in brain functioning may be due to the impact
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chronic cannabis use has on the eCB system via alterations in CB1

receptor density. Importantly, the eCB system is dynamic

throughout the lifespan and is sexually dimorphic, which may

explain sex differences in cannabis use outcomes. Very few

studies have evaluated whether alterations in functional brain

activity remain in regular users after prolonged abstinence. The

current study aimed to examine markers of network connectivity

in regular cannabis using adolescents and young adults after they

completed a monitored three-week period of abstinence. Given

the critical developmental time-period, we also sought to evaluate

the hierarchical organization of brain networks as a marker of

functional brain network maturation. Prior network-based

analyses have quantified network organization through metrics

like modularity, integration, and participation coefficient, all of

which evaluate the degree to which subnetworks or modules are

connected with one-another (82, 89). However, these metrics rely

on one of many algorithms which allocate nodes into discrete

modules (e.g., Louvain, Newman, etc.), resulting in a high

number of researcher degrees of freedom. Alternatively,

assortativity refers to the degree to which nodes are more likely

to be neighbors with similar nodes (in terms of network

characteristics like degree or clustering coefficient) and represents

a metric of hierarchical organization free of any bias which

might be introduced by module assignment. Assortativity can

also be considered a metric of network robustness and resilience

to damage (103). Thus, for our analyses we focused on both

Egloband assortativity. We hypothesized that cannabis users would

demonstrate significantly higher Eglob and lower assortativity.

Further, we hypothesized that male users would demonstrate

more robust relationships between CU and network topology

compared to female users. Finally, we will examine the

relationships between CU characteristics (age of regular use

onset, past-year and lifetime use, and length of abstinence) and

global and specific ICNs network outcomes. Sex differences will

also be explored. We hypothesized that early CU initiation will

be linked with less assortative networks, reflecting impaired

maturation of the hierarchical structure of functional brain

networks. We also predict that greater CU, and more recent use

will be linked with hyperconnectivity, particularly in brain

networks associated with executive functioning and attentional

processing (FPCN, DAN & VAN). We predict these findings will

be more robust in male users.
2 Materials and methods

2.1 Participants

Ninety-four adolescents and young adults (42 female) were

recruited through local advertising for the larger parent study

(PI: Lisdahl, R01 DA030354). Inclusion criteria included being

between the ages of 16 and 26 years old, being a fluent English

speaker, and willingness to abstain from all alcohol or drug use

(except nicotine) for three weeks. Exclusion criteria included

being left-handed, major neurological and metabolic disorders,

past-year co-morbid independent Axis-I mood, anxiety,
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attentional, and psychotic disorders, prenatal medical issues or

premature gestation <35 weeks, prenatal alcohol (>4 drinks/day

or >7 drinks/week) or illicit drugs (>10 uses) exposure (by parent

or youth report), inability to complete VO2 maximum testing,

being categorized as a “heavy drinker” (Cahalan Criteria), and

excessive illicit drug use in lifetime (>50 uses of any drug

category except nicotine, alcohol, or cannabis). Abstinence from

all alcohol and drug use were confirmed through self-report and

drug toxicology. Eleven participants (3 female) did not have

sufficient neuroimaging data available and were excluded from

the current analyses. For the purposes of between group

comparisons, regular cannabis users (CAN) were defined as

individuals who had engaged in at least 44 cannabis uses in the

past-year and at least 100 lifetime cannabis uses. Control

participants were defined as individuals who had engaged in no

more than 5 past-year cannabis uses and no more than 20

lifetime cannabis uses (104). Other substance use (>50 lifetime

occasions) was exclusionary in the current study. Eight

participants (4 female) were excluded from group-comparison

analyses because they fell outside of the criteria for being CAN

or control subjects, resulting in a sample size of 75 for

comparisons between CAN (n = 35) and control subjects (n = 40).

For evaluation of the impact of cannabis use characteristics

within cannabis users (characterized as individuals who had

abstained for greater than 20 days and less than 100 days), 7

subjects were excluded due to missing data in critical covariates,

resulting in a sample size 39 cannabis users. Of note, participants

are comprised of illicit cannabis use due to lack of legal

recreational or medical laws surrounding cannabis use in

Wisconsin, USA (data was collected prior to the 2018 Farm Bill).
2.2 Procedure

All study methods were approved by the UWM Institutional

Review Board. Participants called in to a study line listed on the

fliers posted around the community and local newspapers that

highlighted a study recruiting active and sedentary participants

with varying CU histories. Participant verbal consent, or verbal

assent from minors, along with parent/guardian consent were

obtained during a brief phone screen to assess for initial

eligibility (i.e., age, MRI contraindications, and yes/no questions

regarding psychiatric and substance use history). If the initial

eligibility requirements were met, written consent/assent was

received via mail and a 45 min, more detailed screening session

was scheduled with both parents and youth. During this second

session, more detailed demographic and medical history, physical

health (to complete VO2 maximum testing), lifetime substance

use [Customary Drinking and Drug Use Record; CDDR;

(105, 106)] and psychiatric history (youth and parent versions of

the Mini International Psychiatric Interview (MINI) or MINI-

Kid if under 18 (107) were assessed. All participants and their

parents were compensated $20 for the second screening session.

Eligible participants were scheduled for study sessions. Ineligible

participants were not informed of the specific reason for their

exclusion to protect study integrity. Eligible youth completed five
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study sessions across 3.5–4 weeks [once a week for 3 weeks for the

initial monitored abstinence period along with a mini-psychiatric

and neuropsychological battery; see (108) for details]; during

session 4, youth completed a detailed substance use interview,

neuropsychological testing, and VO2 maximum testing. The fifth

session was scheduled within 24–48 after session 4 and consisted

of magnetic resonance imaging (MRI) scanning, TLFB update,

and drug toxicology testing.
2.3 Measures

Substance Use Patterns. The CDDR (105) was used to measure

lifetime CU episodes, age of regular CU initiation (defined as

weekly), and symptoms of CUD. The Timeline Follow Back (TLFB)

calendar interview was used to measure past-year substance use

according to standard units [alcohol (standard drinks), nicotine

(number of cigarettes, hits of chew/snuff/pipe/cigar/hookah),

cannabis (smoked/vaped flower, concentrates, and edibles were

measured and dosing was converted to joints based grams)], other

drugs including ecstasy/MDMA (tablets), cocaine (grams),

methamphetamine (mg), prescription sedatives (pills), prescription

stimulants (pills), hallucinogens (hits), GHB (occasions), ketamine

(occasions), heroin or opium (hits) and inhalants (hits). Other

substance use was primarily utilized for exclusion criteria for the

current sample. Total past-year cannabis use (in grams), lifetime

cannabis use episodes, age of regular cannabis use onset (weekly),

and length of abstinence (in days) were used in the current analyses.

Past-year alcohol use (standard units) was used as a covariate.

Drug Toxicology. At each study session, drug toxicology urinalysis

was completed screening for recent delta-9-THC, THCCOOH (delta-

9-THC metabolite), amphetamines, barbiturates, benzodiazepines,

cocaine, ecstasy/MDMA, methadone, methamphetamine, opiates,

PCP (ACCUTEST SplitCup 10 Panel drug test) and cotinine

concentrations (NicAlert). Cotinine was considered the most

relevant covariate as a representation of acute nicotine use which

has been known to influence BOLD signal. Past year nicotine use

was not included in the modeling approach to prevent issues of

multicollinearity. Participants were also administered the continuous

sweat toxicology patch (PharmChek Drugs of Abuse Patch;

PharmChem Inc., Fort Worth, TX, United States), which

continuously monitored sweat toxicology and provided quantified

values of THCCOOH (along with other drugs of abuse). Youth

also completed breathalyzer screens for recent alcohol use at each

session (Alco-Sensor IV; Inoximeters Inc., St. Louis, MO). If youth

demonstrated increasing THCCOOH levels, indicating recent use,

or new THCCOOH positive tests, they were offered up to one

week extension to complete the monitored abstinence period; 95%

of the youth completed the monitored abstinence period as

scheduled. Cotinine level (day 5) was used as a covariate.
2.4 MRI data acquisition

High-resolution anatomical images were collected using a

T1-weighted (T1w) spoiled gradient-recalled at steady-state pulse
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sequence (TR = 8.2 ms, TE = 3.4 s, TI = 450, and flip angle of 12°).

The in-plane resolution of the anatomical images was 256 × 256

with a square field of view (FOV) of 240 mm. One hundred fifty

slices were acquired at 1 mm thickness. Echo planar images (EPI)

were acquired for eight minutes during eyes-closed rest using

T2 × weighted gradient-echo EPI pulse sequence (TR = 2000 ms,

TE = 25 ms, FOV = 240 mm, matrix 64 × 64 voxels, slice

thickness = 3.7 mm., flip angle = 77 degrees, 40 contiguous axial

slices) with 240 TRs of volume data acquired per run.
2.5 MRI preprocessing

Full MRI/fMRI preprocessing and functional connectome

generation details can be found in the supplementary materials.

Results included in this manuscript come from preprocessing

performed using fMRIPrep 22.1.1 (109, 110); (RRID:

SCR_016216), which is based on Nipype 1.8.5 (111, 112); (RRID:

SCR_002502). Correction and registration was conducted using

ANTs 2.3.3 (113), (RRID:SCR_004757) and images were

normalized into standard space (MNI152NLin6Asym); (114).

Functional images were skull-stripped, corrected for motion, and

co-registered with the T1w-reference map Automatic removal of

motion artifacts using independent component analysis (ICA-

AROMA), (115) was performed on the preprocessed BOLD

time-series after removal of non-steady state volumes and spatial

smoothing with an isotropic, Gaussian kernel of 6 mm FWHM

(full-width half-maximum). Corresponding “non-aggressively”

denoised runs were then censored to exclude volumes using the

“basic scrubbing” procedure outlined in Parkes et al. (116) such

that all volumes with FDPower > 0.2 mm or BOLD data variance

(DVARS) >3% were excluded from subsequent analyses (117).

After scrubbing, only one subject was excluded for having less

than 4 min of viable data. The resulting smoothed and scrubbed

data were used to generate functional connectomes.
2.6 Functional connectome generation

The preprocessed, non-aggressively smoothed functional data

was then parcellated using the NiftiLabelsMasker function in

NiLearn v0.9.0 (171); (RRID:SCR_001362), using the 200 parcel

7 network atlas generated by Schaefer et al. (172). The parcel-

wise mean BOLD signal was then subtracted from the values in

the timeseries to center BOLD values for each parcel at a mean

of 0. After this, every parcel was correlated with one another

using the Pearson correlation to establish functional connectivity

matrices for each session. The unique values from this matrix

(i.e., the lower or upper diagonal) were extracted and the

negative correlation values were set to zero. The resulting matrix

was then normalized using a Fisher-z transformation and

thresholded using estimated proportions of non-spurious

correlations of .01, .1, .2, .35, and .5 in order to test the

replicability of any findings across thresholds of network

sparseness as typically used with network topology research (82,

118–120). While this approach inflates the number of
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comparisons, it also allows for greater reliability and comparability

with other network-based analyses (36, 39, 81, 82). The resulting

thresholded matrices were then treated as network objects in the

form of weighted adjacency matrices.
2.7 Statistical analyses

Network-Based Statistics. To examine whether CU group status,

age of initiation and CU patterns (past-year, lifetime use) impacted

subnetwork connectivity across all connectomes and thresholding

levels, we utilized the Network-Based Statistic (NBS) approach

across the entire sample of available neuroimaging data (n = 83).

This identifies links between CU markers and connectivity

patterns including potentially unique subnetworks, while

leveraging the network structure of connected sets of edges and

controlling for the high family-wise error (FWE) [see Levakov

et al. (121) for continuous NBS analyses]. Edges were thresholded

based on the degree of correlation between edge strength and the

CU markers of interest. Multiple thresholds (.3, .325, .35, and

.375) were evalueated to ensure the robustness of results.

Network Topology. Global efficiency (Eglob) and weighted

assortativity (122) were calculated for each functional

connectome on a whole-brain level and on the level of each of

the 7 Yeo ICNs (123) using brainconn V.0.0.2 in Python 3.10.11

across all thresholding levels. Next, we conducted and

exploratory analysis of the associations between cannabis group

and use characteristics and brain network outcomes (Eglob and

assortativity) using multiple linear regression within the “stats”

package in R 4.2.1 (124). All models included age, sex, past-year

alcohol use, and session 5 cotinine concentrations as covariates.

Separate models were created for each brain network

characteristic on the whole brain level and on the level of each of

the 7 ICNs. The first set of models included group membership

(regular cannabis users vs. controls) as a predictor (n = 64, 32

female). The second set of models only included participants

who endorsed CU (n = 31, 11 female), and included age, sex,

past-year alcohol use, length of cannabis abstinence, age of

regular CU onset (dummy coded variable indicating use was

initiated at or prior to age 17), past-year CU, and interaction

terms for sex*past-year use, sex*early CU initiation, and past-

year use*early CU initiation to examine interaction effects within

the same models. This resulted in a total of 80 regression

models. Results for all loadings from regression analyses include

uncorrected p-values as well as p-values corrected for false

discovery rate (FDR; padj) within each thresholding level for the

regressors of interest (heavy CU group and early initiation binary

variables, past year CU, and interaction terms).
3 Results

3.1 Demographics

Table 1 shows the demographic distributions for all groups of

participants. CU groups and age of initiation groups did not
Frontiers in Adolescent Medicine 06
significantly differ in terms of age, sex, ethnic or racial identity

and there were no significant correlations between any

demographic variable and past-year CU, lifetime CU, or length

of abstinence. Heavy cannabis users consumed more alcohol in

the past-year and had higher cotinine levels than healthy control

subjects; these were included as covariates. Neither framewise

displacement nor number of volumes scrubbed were significantly

associated with cannabis use characteristics or group membership.
3.2 Functional connectivity results

Network-Based Statistics: Cannabis Group Status. Across all
thresholds, group-wise NBS analyses were unable to identify sub-

networks which were significantly different between cannabis

users and controls, nor between cannabis users who initiated CU

early and those who initiated CU later in life.

Network-Based Statistics: Cannabis Use Patterns. The

continuous NBS approach (121) analysis found that increased

past-year CU was positively associated with a subnetwork of

edges at multiple threshold-levels (thresholds of .3, .325, .35, and

.375; all p’s < .05); this subnetwork was comprised of brain

regions from each of the ICN’s, and was primarily comprised of

between-network edges from the FPCN, DMN, Somatomotor

Network, and VAN (Figure 1). Nodes in the ACC, Frontal Pole,

and Precentral Gyrus were consistently identified across

thresholds. No relationships were found with lifetime CU.
3.3 Network characteristics

Cannabis Group & Network Topology: After controlling for

age, sex, alcohol use and cotinine levels, CU group status was not

significantly related to Eglob or assortativity in any of the ICNs or

on the whole-brain level (all p’s > .05). This null finding was

consistent across thresholding levels. Cannabis Group*Sex. There
were no significant cannabis group-by-sex interactions in

predicting global or ICN network outcomes at all thresholds.

Cannabis Use Characteristics & Network Topology: Within

cannabis users, a the most stringent threshold (.01), whole-brain

assortativity was significantly associated with duration of

cannabis abstinence and the interaction term between early

regular CU and past-year CU [F(10,28) = 2.55, p = .02,

R2
Adj = .29]. Specifically, shorter duration of abstinence was

associated with increased whole-brain assortativity [t(28) = 2.41,

b = .003, p = .02, padj = .48, f2 = .32] and within late regular CU

onset individuals, past-year CU was associated with higher whole

brain assortativity [t(28) =−2.52, b =−.15, p = .02, padj = .48,

f2 = .23]. There was also an observed interaction between past-

year CU and early regular CU initiation for whole-brain Eglob
[F(10,28) = 2.33, p = .038, R2

Adj = .26; t(28) =−2.08, b =−.009,
p = .05, padj = .89, f2 = .16]. post-hoc evaluation revealed non-

significant findings. At less stringent thresholds, shorter duration

of abstinence was associated with increased assortativity in the

VAN [0.35: F(10, 28) = 2.26, p = .04, R2
Adj = .25, t(28) = 2.08,

b = .003, p = .05, padj = .67, f2 = .28; 0.5: F[10, 28] = 2.32, p = .04,
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TABLE 1 Demographics for cannabis use group and early (prior to age 17) and late initiation cannabis users.

Demographic variable Cannabis users (n= 39)

Healthy
controls

Early initiation cannabis
users

Late initiation cannabis
users

Heavy cannabis
users

(n = 40) (n= 24) (n= 15) (n = 35)

% or M (SD) % or M (SD) % or M (SD) % or M (SD)

Range Range Range Range
Age (y) 21 (2.67) 21.08 (2.22) 21.93 (2.46) 21.46 (2.13)

16–25 17–24 18–26 17–26

Reading score (WRAT-IV) 106.1 (9.81) 107.17 (13.42) 105.47 (9.08) 104.66 (13)

87–133 80–133 90–126 72–133

Sex (% female) 55% 37.5% 27% 37.1%

% Caucasian 73% 63% 80% 60%

% Not Hispanic/Latino/a 90% 71% 93% 77%

Past-year Alcohol Use (Standard Drinks)* 108.77 (170.98) 299.52 (305.63) 297.32 (271.56) 325 (301.28)

0–698.5 24–1,120.5 10–800 0–1,120.5

Cotinine level* 1.1 (0.71) 2.13 (1.92) 1.33 (1.45) 1.86 (1.9)

0–3 0–6 0–6 0–6

Past-year Nicotine Use 0.56 (1.98) 230.45 (532.15) 66.2 (238.86) 189.78 (466.57)

0–12 0–1,867 0–929 0–1,867

Past-year Cannabis Use (joints)* 0.39 (1.15) 391.80 (543.53) 185.69 (223.63) 429.66 (447.48)

0–5 4–2,306 1–548.5 44.7–2,306

Lifetime Cannabis Use (joints)*+ 2.44 (4.99) 1,375.67 (1,620.71) 487.4 (543.65) 1,200.74 (1,389.0)

0–20 25–6,000 5–1,668 101–6,000

Age of regular cannabis use initiation
(weekly)+

- 14.71 (1.23) 18.4 (1.35) 16 (2.17)

12–16 17–21 12–21

Duration of Abstinence (Days) - 35.12 (15.35) 31.4 (13.19) 31.31 (23.19)

21–77 22–72 17–150

Differences between healthy controls and heavy cannabis users at p < .05 are denoted by (*). Differences between early and late initiators are denoted by (+).
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R2
Adj = .26, t(28) = 2.05, b = .003, p = .05, padj = .80, f2 = .29].

Greater past-year use was also associated with decreased Eglob in

the FPCN at the threshold of.35 [F(10, 28) = 2.59, p = .02,

R2
Adj = .3, t(28) =−2.22, β =−.08, p = .03, padj = .54, f2 = .11].

Effect size ranges for these findings were generally small to

medium ( f2 range .11–.32).

Cannabis Use Characteristics*Sex & Network Topology:
Within cannabis users, there were significant interactions

between sex and past-year CU in association with Eglob in the

FPCN at thresholds of .35 [F(10,28) = 2.59, p = .02, R2
Adj = .3;

t(28) = 3.16, b =−.13, p = .004, padj = .18, f2 = .37] and .5

[F(10,28) = 3.29, p = .006, b =−.13, R2
Adj = .38; t(28) = 3.26,

p = .003, padj = .14, f2 = .41]. Within males, past-year cannabis use

was positively associated with Eglob at both thresholds [.35: F(7,

18) = 3.13, p = .02, R2
Adj = .37; t(18) = 3.07, β = .06, p = .007,

f2 = .43;.5: F[7, 18] = 4.79, p = .003, R2
Adj = .51; t(18) = 4.24,

β = .07, p < .001, f2 = .74], while there was no significant

association within females. Similarly, there were significant

interactions between sex and past-year cannabis use on

assortativity within the Somatomotor network at thresholds of .2

[F(10,28) = 3.37, p = .005, R2
Adj = .38; t(28) = 2.38, b = .136,

p = .02, padj = .58, f2 = .21] and .35 [F(10,28) = 3.29, p = .006,

R2
Adj = .38; t(28) = 2.94, b = .16, p = .007, padj = .31, f2 = .34];

within males only, increased pass year cannabis use

was associated with increased Somatomotor assortativity [.2:
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F(7, 18) = 5.79, p = .001, R2
Adj = .57; t(18) = 4.32, β = .1, p < .001,

f2 = 1.29;.5: F(7, 18) = 4.08, p = .007, R2
Adj = .46; t(18) = 4.3, β = .1,

p < .001, f2 = .99]. Effect size ranges for these findings were

medium to large ( f2 range .21–1.29).

Interaction terms between sex and early regular CU onset

accounted for a significant portion of variance in assortativity in

the Somatomotor network [1: F(10,28) = 2.49, p = .028,

R2
Adj = .28; t(28) = 2.72, b = .31, p = .01, padj = .18, f2 = .24;.2:

F(10,28) = 3.37, p = .005, R2
Adj = .38; t(28) = .2.75, b = .24, p = .01,

padj = .49, f2 = .18] and VAN [35: F(10,28) = 2.26, p = .04,

R2
Adj = .25; t(28) = 2.39, b = .29, p = .02, padj = .57, f2 = .21;.5:

F(10,28) = 2.32, p = .04, R2
Adj = .26; t(28) = 2.83, b = .29, p = .009,

padj = .41, f2 = .25]. For both networks, post-hoc regressions

indicated that within males only, early regular CU onset was

associated with decreased assortativity [Somatomotor.1:

F(7, 18) = 2.99, p = .029, R2
Adj = .36; t(18) =−2.99, b =−.22,

p = .008, f2 = .21; Somatomotor .2: F(7, 18) = 5.79, p = .001,

R2
Adj = .57; t(18) =−3.69, b =−.17, p = .002, f2 = .18; VAN .35:

F(7, 18) = 2.73, p = .04, R2
Adj = .33; t(18) =−2.47, b =−.19,

p = .02, f2 = .13; VAN .5: F(7, 18) = 3.12, p = .02, R2
Adj = .37;

t(18) =−2.93, b =−.18, p = .009, f2 = .27]. Effect size ranges for

these findings spanned small to medium ( f2 range .13–.27).

A list of whole model statistics relevant to the results reported

here can be found in Table 2 and a summary of significant

findings can be found in Table 3.
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FIGURE 1

Network-based statistic subnetwork associated with past-year cannabis use among 79 adolescents at Pearson’s r thresholds of 0.3 (A), 0.325 (B), 0.35
(C), and 3.75 (D) edge color corresponds to the correlation between edge strength and past-year cannabis use. Connections appear to be primarily
right-lateralized and between rather than within networks. Frontoparietal Control Network (FPCN), Ventral Attention Network (VAN), Dorsal Attention
Network (DAN), Limbic Network (Lim.), Somatomotor Network (SM), Default Mode Network (DMN).

Baacke et al. 10.3389/fradm.2025.1549771
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TABLE 2 Whole model statistics for significant models in which CU characteristics within cannabis users accounted for a significant portion of variance
in network topology metrics of interest.

Network anylized Global efficiency Assortativity

Threshold df F p R2
Adj df F p R2

Adj

Whole Brain
.01 (10, 28) 2.33 .037 .26 (10, 28) 2.54 .025 .29

VAN
.35 (10, 28) 2.26 .044 .25

.5 (10, 28) 2.32 .039 .26

FPCN
.35 (10, 28) 2.59 .023 .30

.5 (10, 28) 3.29 .006 .38

Somatomotor
.1 (10, 28) 2.49 .028 .28

.2 (10, 28) 3.37 .005 .38

.35 (10, 28) 3.29 .006 .38

TABLE 3 Cannabis Use Characteristics & Network Topology. Significant associations between brain network topology and cannabis use characteristics
are summarized here.

CU characteristic Whole-Brain VAN DAN FPCN Som. DMN
↑ Past-year CU - - - ↑ Eglob (.35) - -

↑ Past-year CU * Sex - ↑ Eglob ♂ (.01) - ↑ Eglob ♂ (.35, .5) ↑ Assort ♂ (.2, .35) -

↓ CU Initiation Age - - - - - -

↓ CU Initiation Age * Sex - ↓ Assort ♂ (.35, .5) - - ↓ Assort ♂ (.1, .2) -

↓ Abstinence ↑ Assort (.01) ↑ Assort (.35, .5) - - - -

Thresholds are indicated in parentheses. Global Efficiency (Eglob), Assortativity (Assort), cannabis use (CU), Positive relationship (↑), negative relationship (↓), male (♂), female (♀).

Baacke et al. 10.3389/fradm.2025.1549771
4 Discussion

CU peaks during late adolescence into young adulthood, a

period of significant ongoing neurodevelopment. Prior work has

suggested subtle effects of chronic CU on functional connectivity

during adolescence, especially in the VAN, FPCN, DMN, and

DAN, though seed-based findings have been inconsistent across

networks. Our study aimed to expand upon this work by

examining the impact of regular CU on brain network

connectivity, utilizing both network based statistics (NBS) and

network topology approaches, in adolescents and young adult

cannabis users after a period of three weeks of monitored

abstinence. We also examined whether sex moderated these findings.

Using an NBS approach, we found that increased past-year CU

was linked with increased subnetwork of edges at multiple thresholds

(.3, .325, .35, .375), and these primarily included between-network

edges from the VAN, DMN, Somatomotor Network, and FPCN.

This finding is consistent with the general pattern observed in the

network topology analysis, finding subtle relationships between

CU patterns and network outcomes in the VAN, Somatomotor

network, and FPCN, and less so in the DMN. The subnetwork

consistently comprised primarily of right-hemisphere structures,

representing the first evidenced lateralization of the impact of CU

on brain connectivity. Though we could not examine sex

differences in the NBS approach, the exploratory regression

analyses demonstrated primary male vulnerability in the VAN,

FPCN and Somatomotor networks. This hyperconnectivity,
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especially in the right hemisphere, may suggest cannabis-related

subtle differences in sex-related hemispheric connectivity

asymmetry during middle to late adolescence (125). These

differences may underlie cannabis-related reduced cognitive

performance in right-hemisphere associated tasks that require

visuospatial and visuo-motor integration, including visuospatial

function (126), psychomotor sequencing ability (98, 127–129),

spatial working memory (127, 130–135), complex visuospatial

attention (98, 129, 130, 135–141), and motor-based cognitive

control (98, 132, 133, 137, 138, 140, 142–144). Further,

hyperconnectivity between the VAN and the other networks could

represent a higher-likelihood of switching between network states

(145), a process which is known to be associated with cognitive

task performance (146). On the other hand, the increased

connectivity associated with past-year cannabis use might

represent a more disorganized connectome as a result of

dysregulation of CB1 receptor density. This is supported by the

high representation of the ACC in the subnetwork of

hyperconnectivity associated with past-year CU. The high density

of CB1 receptors in the ACC may make it particularly prone to

dysregulation through heavy cannabis use, which is supported by

prior research that has demonstrated reduced rACC volume linked

with reduced emotional discrimination (173), blunted BOLD

response during fearful face processing (174), and

hyperconnectivity between bilateral rACC, left amygdala and left

insula at rest (70) in regular cannabis using adolescents and young

adults. Thus, additional research is needed to specifically examine
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the impact of regular cannabis use on ACC development during the

critical stage of adolescent development.

In an exploratory follow-up analyses, we also aimed to examine

effects of more nuanced cannabis use characteristics and potential

sex differences on brain network topology in the whole brain,

VAN, DAN, FPCN, Somatosensory network and DMN in

adolescents and young adults. Notably, due to the large number of

statistical tests, none of the comparisons of interest survived FDR

correction for multiple comparisons despite medium to large

effect. Still, we believe the pattern of results, emphasizing threshold

values and effect sizes, are worth reporting in order to support

replication. We found that at the group level, CU was not

significantly linked with network outcomes. However, more

nuanced exploratory analyses found preliminary evidence that

increased past-year CU was associated with greater Eglob in the

FPCN (.35 threshold), though this was a small effect size

( f2 = .11). Shorter abstinence from CU was associated with greater

assortativity on the whole-brain level (.01 threshold, f2 = .32) and

within the VAN (.35 and .5 thresholds, f2 = .28, .29). Further, in

later onset cannabis users, increased past year use was linked with

increased assortativity at the whole brain level (.01, f2 = .32).

Preliminary sex-dependent findings were also revealed; increased

past year CU was associated with Eglob in the FPCN in males only

(.35 and .5, f2 = .43, .74). We also found links between increased

past-year CU and greater assortativity in the Somatomotor

network in males across two thresholds (.2, .35, f2 = .43, .74).

Interestingly, we found that earlier regular CU onset was

associated with decreased assortativity in the VAN (thresholds

of.35 and .5; f2 = .13, .27) and Somatomotor network (thresholds

of .1 and .2; f2 = .21, .18) in male cannabis users, suggesting

reduced connectivity in this subset of male users. While the

directionality of these effects were consistent across thresholding

levels, the findings were not consistently significant across

thresholding levels. This is in contrast to findings such as those

found by Nestor et al. (82), which were global in nature and were

consistent across thresholding levels. This differential finding may

be due to characteristics of the sample, as their study was almost

entirely comprised of male participants and exclusively included

youth being treated for CUD following roughly 12 h of abstinence,

while ours included a community sample of recreational users

with a range of use (weekly to daily) and following a minimum of

three weeks of monitored abstinence (with average >30 days).

Still, taken together, these preliminary findings generally

support the main NBS findings demonstrating patterns of

hyperconnectivity associated with increased severity of use,

especially in male user and early onset users. The VAN underlies

stimulus-driven attention processes, many of which are negatively

associated with cannabis use (83, 147, 148). The NBS analyses in

which significant associations between CU frequency and brain

network activity were identified were primarily driven by past-

year use, rather than lifetime use. This is fairly consistent with

other attention based neurocognitive dose-dependent findings

(67, 83, 99). Interestingly, in the exploratory analyses, at more

lenient thresholds (.35 and .5) and when accounting for total

past-year use and earlier age of onset, shorter periods of

abstinence in this case were linked with greater assortativity in
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the VAN. Thus, acute recovery of function reported in other

analyses (73, 108, 149–151) may not explain the reduced

assortativity in the male early onset users observed here. Prior

analyses have not strongly associated the Somatomotor network

with CU, but not many analyses have tested for sex-dependent

effects and included relatively small sample sizes. The increased

VAN and FPCN connectivity strength and lower assortativity in

the Somatomotor network in males with risky cannabis use

patterns may suggest male vulnerability to cannabis-effects,

especially in these frontal-parietal and temporal-frontal networks

(99). These findings suggest that nuanced cannabis markers may

be linked with whole brain, VAN, FPCN, and Somatomotor

network connectivity strength and hierarchical structure and

results were dependent upon dose of exposure, age of onset, and

sex of the user. As stated above, results did not survive

correction for multiple comparisons; given the low power of this

subset of participants, additional studies are needed with larger

sample sizes that include a range of cannabis characteristics in

order to replicate findings. Additionally, future studies conducted

in a large, sex-balanced sample utilizing repeated neuroimaging

during a period of monitored abstinence are needed to further

characterize these cannabis-related sex differences in network

topology recovery of function.

The preliminary evidence of sex differences in associations

between CU patterns and ICN global efficiency and assortativity

may be due to sex differences in brain maturation rates. As males

develop later than females, they may be particularly sensitive to

heavy CU during middle adolescence in terms of functional

frontoparietal, frontotemporal and Somatomotor development and

synaptic refinement. The eCB system dynamically shifts in function

throughout development, with some processes like presynaptic

signal modulation from the PFC to the hippocampus and amygdala

do not mature until late adolescence, especially in boys (152). CB1

receptor density tends to be at its highest prior to this shift (153).

Early CU initiation may also interrupt the eCB system’s other

functions (e.g., synaptic pruning & myelination) which may have

more long-term impacts on the organizational structure of brain

networks. The network specificity may represent a particular

sensitivity of certain networks to eCB system modulation or may be

due to sex differences in terms of which networks underwent this

refinement during a person’s peak CU. The lower assortativity in

early vs. late CU males in the Somatomotor network and the VAN

may indicate that eCB functioning in these networks had already

shifted from the more long-term organizational effects to more

neuromodulatory effects. The result is that early CU males display

less organized brain network structures, similar to what would be

expected from younger individuals. However, it is important to

note that the low number of female participants in the late CU

initiation group may have prevented meaningful comparisons

between females in the early and late CU initiation groups and

between males and females who initiated CU later in life. Thus,

longitudinal studies examining the relationships between

endogenous eCB circulating levels (154), detailed cannabis use

patterns, and brain network topology development are needed to

further characterize the impact of escalating use on functional

activity patterns across development in boys and girls.
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These findings should be considered carefully in the context of

our sample characteristics and potential limitations. Our

participants were healthy young adults who were willing to abstain

from CU for at least 2 weeks, limiting the generalizability to

clinical populations, younger adolescents, or older adults. The

resting-state scan was also only eight minutes which is lower than

some recommend (155), but still long enough to attain

replicability (156); still, longer scan time collection may result in

more robust or reproducible findings. These analyses were cross-

sectional in nature and cannot account for causality; though dose-

dependent findings were reported, premorbid differences may

predict more severe cannabis use trajectories. Prospective,

longitudinal studies will need to replicate findings. Further, given

the relatively small sample size of cannabis users and resulting low

statistical power, future studies should expand the network-based

analytical framework with a large sample of cannabis users with

diverse use characteristics to evaluate the generalizability of these

findings. The current sample participants had a range of

abstinence; repeated, longitudinal MRI studies examining recovery

of function over a more controlled range are needed. Because of

the large shift in availability of cannabis products in recent years,

more nuanced characterizations of CU (e.g., method of

consumption, cannabinoid content, potency) will be necessary to

address additional predictors of cannabis-related effects (157–160).

Particular care should be taken to include female participants and

evaluate sex differences, as females are typically underrepresented

in CU research (161) and demonstrate differential cannabis use

patterns. Future studies should further examine the impacts of sex

steroid hormones, particularly estradiol, should also be considered

given their interaction with CB1 receptors (92, 162, 163), eCB

levels (164–166), and CU outcomes (167–170).

Primary results revealed that, as a group, healthy cannabis-using

adolescents and young adults who had abstained from CU for at

least 2 weeks did not differ from non-using youth. The most

consistent finding was that increased past-year cannabis use was

associated with a distributed pattern of hyperconnectivity,

particularly with regions with high CB1 receptor density like the

ACC, and exploratory analyses revealed that effects may also be

dependent upon age of regular cannabis use onset length of

cannabis abstinence, and sex of the user. However, network

topology results did not emerge consistently across all thresholding

levels evaluated and were no longer significant after FDR

correction for multiple comparisons, suggesting a larger sample

size is needed to replicate findings related to cannabis use

characteristics. In male users, age of regular CU initiation

appeared to be associated with hierarchical brain network

structure, a potential index of functional brain development. This

could indicate that CU during adolescence could have subtle

impacts on brain function, especially in male early onset, heavy

cannabis users. These findings reinforce the need to restrict access

and discourage use among developing adolescents. Further, these

findings highlight the critical need to attend to sex differences in

the eCB system, its role in adolescent neurodevelopment, and CU

outcomes. Large-scale longitudinal studies are needed to further

characterize the impact of nuanced cannabis use patterns on brain

development of functional networks across development. These
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findings add to the growing literature that cannabis-related effects

are likely nuanced, complex, and require large samples with

diverse cannabis characteristics in order to examine interactions

between factors [see (85)].
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