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Abstract: Diffractive optical elements are ultra-thin opti-
cal components required for a variety of applications
because of their high design flexibility. We introduce a
gradient-based optimization method based on a step-
transition perturbation approach which is an efficient
approximation method using local field perturbations due
to sharp surface profile transitions. Step-transition
perturbation approach be available to calculate the
gradient of figure of merit straightforwardly, we imple-
mented optimization method based on this gradient. This
fast and accurate inverse design creates binary (2-level)
diffractive elements with small features generating the
wide angle beam arrays. The results of the experimental
characterization confirm that the optimization based on
the perturbationmethod is valid for 1-to-117 fan-out grating
generating beam pattern of linear array.

Keywords: diffractive optical elements; fan-out gratings;
gradient-based optimization; inverse design; step-transi-
tion perturbation approach.

1 Introduction

Diffractive optical elements (DOEs) are used for a variety of
optical systems because of their compact size, high design
flexibility, and ease ofmass production. A good example of
this type of device is fan-out grating, often also referred to
as diffractive beam-splitter which creates multi spots by
deflecting an incident light into different diffraction orders.

Applications of fan-out elements include multi-focal mi-
croscopy [1, 2], camera calibration [3], optical system
distortion measurement [4], optical interconnects [5], and
structured light projectors [6, 7]. In particular, wide angle
DOEs are used in promising field of applications [7–9] with
recent progress in fabrication technology realizing nano-
scale features. When only small diffraction angles are
required, the iterative Fourier transform algorithm (IFTA)
[10–12] based on the thin element approximation (TEA) [13]
is widely and successfully used for the design of the
microstructure surface of the DOEs. However, this
approach suffers from several severe shortcomings and is
no more valid when larger angles are required [14]. One of
themost severe problems is the insufficientmodeling of the
light field transmission through the DOE by the TEA [15]. A
precise modeling can be obtained by rigorous electro-
magnetic diffraction theory, such as rigorous coupled-
wave analysis (RCWA) [16–18]. However, the use of para-
metric optimization based on the rigorous analysis is often
computationally heavy because the gratings with many
parameters are leading to high-dimensional optimization
problems. To overcome this limitation, we employ
gradient-based algorithms [19] based on the step-transition
perturbation approach (STPA) [20]. In gradient-based
optimization of optical elements, within the overall
design parameter space, one iteratively searches the
maximum or minimum point based on calculated gradient
[21, 22].

STPA enables rapid approximate calculation of
diffraction intensity of wide angle DOEs, which is an
approximate method based on local field perturbations
generated by sharp transitions of the surface profile of dif-
fractive elements. We can describe analytically the gradient
of diffraction efficiency with respect to the design variables
of optical elements using STPA. It thus is feasible to calcu-
late the gradient straightforwardlywith accuracy asmuchas
the approach based on the rigorous electromagnetic
diffraction theory if most of the features of the structure are
bigger than the wavelength of the incident light.

Here, we introduce a design approach based on STPA
for wide angle DOEs, yielding improvements in the uni-
formity of the created patterns while maintaining the total
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diffraction efficiency. We have focused our efforts on
designing binary (i.e., 2-level) micro-structures because
they are most easy to fabricate and thus obviously are very
attractive for optical systems.

A schematic of DOE generating linear spot array is
shown in Figure 1(a). In order to obtain a starting condi-
tion for our optimization, a one-dimensional (1D) dif-
fractive fan-out DOE is designed by TEA-based IFTA (see
Figure 1(b) inset). Figure 1(b) present the performance of
this initial grating as a function of diffraction angle.
Obviously, the performance of this initial fan-out element
is very unsatisfactory with respect to uniformity even
when the maximum diffraction angle is over 7°. We then
apply our method to optimize large-angle 1D diffractive
beam splitters but also compare to the results from
parametric optimization based on RCWA. We measured
the performance of fabricated samples based on the
optimized designs and compared to calculated diffrac-
tion efficiency using RCWA simulation. Based on this
analysis, we can show the excellent strengths of our
design method.

2 Inverse design methods

An important aspect of the optimization process is the
parametrization used to describe the shape of the optical
elements, which can significantly affect the performance
and computational cost. Figure 1 illustrates an example of
a 1D binary phase grating profile with 2K transitions in
position xk within a single grating period. We use these
positions of transition points as the set of design parame-
ters x = [x1,…,xk,…,x2k] and define the figure ofmerit (FOM)
to optimize DOEs creating diffraction pattern with uniform
intensity distribution:

F(x) = ∑
M

m=−M
[ηm(x) − ηobj]2 (1)

where F represents the difference between the calculated
diffraction efficiency ηm and the target diffraction effi-
ciency ηobj in diffraction orders. The gradient of the FOM
with respect to transition positions ∇xF is crucial in deter-
mining the search direction to optima. For example, if the
total number of transitions 2K is large, itmay easily become
computationally heavy to calculate the gradient by RCWA
analysis. The STPA, however, allows expressing the vari-
ation for a diffraction efficiency with respect to transition
positions as an analytical solution so that it can calculate
the gradient straightforwardly.

It has been reported by T. Vallius et al. [20] that in fact
the approximated method based on local field

perturbations from sharp step-transitions enables rapid
calculation of diffraction patterns of DOEs in the non-
paraxial domain. The perturbations are observed in the
field distribution directly after sharp vertical transitions
of binary gratings. The TEA calculation, however, yields a
constant amplitude and phase. This omission of pertur-
bations in TEAmakes computing inaccurate gratings with
wavelength-scale structures, i.e., the gratings creating the
wide angle arrays. Thus, we can accurately calculate the
diffraction efficiency using themodel which combines the
TEAwith field disturbances caused by sharp transitions in
the surface profile calculated by RCWA. We define the
field perturbation behind the kth sharp transition located
at the point xk in the surface profile as

pk(x) = {UR
k(x) − UT

k (x) if  |x| < ΔT

0 elsewhere
(2)

Figure 1: (a) The surface profile of a grating structure in a single
period. (b) Uniformity of 1-to-117 diffractive beam splitter designed
by TEA-based IFTA as a function of maximum diffraction angle when
the grating period Λ decreases. The uniformity error and normalized
root-mean-square error (NRMS) calculated using Eqs. (9) and (10).
The dashed lines indicate the uniformity values calculated based on
TEA. The insets show the layout of the single unit cell with total 60
transition points.
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where UR
k(x) and UT

k(x) are field calculated by RCWA and
TEA, respectively and ΔT is the truncation parameter that is
chosen 10λ in the calculations [20]. In Figure 2(a), (b), the
amplitude and phase of the field distribution directly after
an isolated step transition determined by TEA and RCWA is
presented. The field perturbations of binary gratings
consist of only two kinds of oscillation corresponding to
left-side and right-side transition point in a ridge. There-
fore, the constructed field behind binary gratingwithmany
transition points is described by the x-axis shifts of the two
field perturbations p1 (x) and p2 (x) in the following
expression:

U(x) = UT(x) + ∑
2K

k=1
pk(x)

= UT(x) + ∑
K

k=1
p1(x − x2k−1) + ∑

K

k=1
p2(x − x2k)

(3)

where 2K is the total number of the transitions. The
amplitude and phase of the field perturbation of right-side
of a ringe p2 (x) is represented in Figure 2(c), (d). The
diffraction amplitude of mth order in far field is given by
mth Fourier coefficient of U (x) as

Am = 1
Λ
∫
Λ

0

U(x)exp( −i2πmx/Λ) dx
= Tm + Dm

(4)

where Λ is the grating period and Tm and Dm is the Fourier
coefficient of the field calculated by TEA and a field
perturbation contribution, respectively.

Tm = 1
Λ
∫
Λ

0

UT(x)exp(− i2πmx/Λ)dx (5)

Dm = Pm ∑
K

k=1
exp (− i2πmx2k−1/Λ)

+P−m ∑
K

k=1
exp (− i2πmx2k/Λ) (6)

where the Fourier coefficient Pm of field perturbation p1 (x)
is expressed as

Pm = 1
Λ
∫
Λ

0

p1(x)exp(− i2πmx/Λ) dx (7)

The Fourier coefficient of p2 (x) is P−m in Eq. (6) because
the p2 (x) is an even function ofp1 (x).We foundDm in Eq. (6)
using the Fourier shifting theorem [23]. Up to here, T.
Vallius et al. claimed that this is an efficient computation
method compared with the calculation of RCWA to the

entire profile. Once the Fourier coefficient of the step-
transition perturbation Pm and P−m is calculated and no
further RCWA calculations are necessary.

We furthermore focus on the fact that this Fourier-
domain contribution from step transition Pm don’t contains
explicit dependence on transition point xk. This point
is highly useful when calculating the gradient of diffrac-
tion efficiencies with respect to transitions positions

∇xF = [∂F
∂x1
,⋯, ∂F

∂xk
,⋯, ∂F

∂x2K
] to optimize the structures. To

find these derivatives, we apply chain rule when differen-
tiating the FOM F (x):

∂F
∂xk

= ∑
M

m=−M

∂F
∂ηm

⋅
∂ηm

∂xk

= ∑
M

m=−M

∂F
∂ηm

⋅
∂|Tm + Dm|2

∂xk

(8)

where the first term ∂F
∂ηm

is easily calculated by using Eq.
(1) and the second term ∂|Tm+Dm |2

∂xk
is also expressed by an

analytical equation because because Pm and P−m don’t
include the dependence on the position of transition
point xk. Additional details on this are described in
the Appendix. It is feasible to calculate the gradient
straightforwardly with accuracy as much as the approach
based on the rigorousmethod ifmost of the features of the
structure are bigger than the wavelength of the incident
light. The obtained gradient was used in optimization
based on the limited-memory Broyden-Fletcher-Gold-
farb-Shanno (L-BFGS) algorithm [24, 25].

3 Simulation results

Using the proposed optimization approach, we can design
various multi-spot array generators. In general, diffractive
beam splitter creating larger number of spots require more
complex structure, i.e. gratings with many features. To
verify our method is valid in high dimensional optimiza-
tion problems, we show the optimization results of fan-out
grating generating many spots, for instance, 1-to-117 dif-
fractive beam splitter.

To evaluate DOEs, we use two different metrics which
are uniformity error (UE) and normalized root-mean-
square error (NRMS) σ.

UE = ηmax − ηmin

ηmax + ηmin

(9)
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σ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
M

∑(ηm − ηobj
ηobj

)2

√√
(10)

where ηmax and ηmin represent the maximal and minimum
diffraction intensity and ηm is diffraction efficiency in or-
ders and ηobj is target diffraction efficiency and M is the
total number of diffraction orders. Lower values of both UE
and NRMS indicate less residual variance so that our
objective is to minimize UE and NRMS of a DOE design
given uniform diffraction efficiency distribution.

To apply the optimization method, we prepared sur-
face profiles of 1D fan-out grating designed by IFTA. The
fused silica (SiO2) was selected as the material. The
refractive index of SiO2 is assumed as n2 = 1.46. Transverse
electric (TE)-polarized (i.e., E-field component along the y-
axis) monochromatic light with a wavelength of λ = 633 nm
is an incident plane wave from the substrate side with
normal incidence angle. The depth of the grating was
selected as d = 692 nm and the grating period is 200 µm.
Thus, the maximal diffraction angle of 1-to-117 diffractive
beam splitter are about 11° at 58th order from 0th order.

To optimize these 1-to-117 diffractive beam splitters, we
use our figure of merit as in Eq. (1) with the uniform in-
tensity distribution of target efficiency ηobj and find the
local optima using the L-BFGS algorithm with the gradient
calculated based on STPA. The uniformity of beam array

created by elements designed from IFTA based on TEA,
followed by optimization, are plotted in Figure 3 with
different metrics. We also plot together with the uniformity
of final design after gradient-based optimization based on
RCWA, in this case, the gradient calculated by brute-force
approaches. In otherwords, normally around 60 times (i.e.,
the number of transition points 2K + 1) RCWA simulation is
required in an iteration during the optimization. We
compared the optimized results by gradient-based on STPA
and RCWA. For an accurate comparison, all diffraction
efficiencies of final designs are calculated by RCWA. In
most cases, the uniformity of these final elements is
significantly improved and the uniformity of final design
optimized based on STPA are as good as those of optimized
based on RCWA. However, the performance of optimiza-
tion based on STPA is much better than based on RCWA in
terms of computation effort. The simulation and optimi-
zation steps were written using MATLAB scripts, and the
optimization process took less than 20 s using gradient-
based optimization by STPA, while taking over 6 h using
gradient-based optimization by RCWA on a machine with
3.60 GHz clock rate and 32 GB RAM. During the optimiza-
tion, the diffraction pattern for calculating UE and NRMS
were evaluated with RCWA solver RETICOLO [26].

To observe the changes of the FOM and transition po-
sitions during the optimization, we represent one opti-
mized 1-to-117 diffractive beam splitter in Figure 4.

Figure 2: The amplitude (a) and phase (b) of the electric field in TE-polarization and behind the sharp vertical surface profile with a transition
point corresponding to a phase delay of π radians calculated by RCWA (red line) and TEA (blue dotted line). The corresponding perturbations in
Eq. (2) are shown in (c) and (d).
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Figure 4(a) shows the merit function as a function of the
optimization iterations. The figure of merit converged well
and the algorithm found the optimum point after 190 iter-
ations. Through the optimization, the change of all tran-
sition positions of the structure is plotted in Figure 4(b).
The total number of transitions is 66 and the average
change of transition points is around 300 nm after opti-
mization. The simulated diffraction efficiency distributions
of DOEs after optimization is shown in Figure 4(c). We
calculated the total diffraction efficiency, UE, and NRMS of
optimized diffractive beam splitters. The total diffraction
efficiency of 117 spots of optimized DOE is 77.35% and UE

from 38.68 to 10.79% and NRMS from 12.16 to 04.18%,
through gradient-based optimization using STPA. The
surface profile of optimized design which has critical
dimension (CD) (i.e., minimum feature size) is 700 nm and
fill factor is 51.16% is represented in Figure 4(c) inset.

4 Experimental results

The diffractive beam splitters were fabricated by direct
laser writing to obtain SiO2 binary surface relief structures.
The elements are optically characterized using a

Figure 3: The uniformity of final elements (10
in total) obtained using gradient-based
optimization by RCWA and STPA from initial
TEA-based IFTA designs with different met-
rics: (a) UE, (b) UEwithout zero-th order, and
(c) NRMS. The gradient-based on RCWA
calculated by Brute-force search. The equal
uniformity values of initial and optimized
elements are indicated by the black dash
line.

Figure 4: Theoretical analysis of 1-to-117 diffractive beam splitters. (a) the plot of the figure of merit over the course of the optimization
process. (b) The variation of transition positions after optimization. The dash lines indicate the transition positions in the single grating
period. (c) the calculated efficiency of diffractive beam splitter after optimization. The surface profile of the optimized element in the inset.
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TE-polarized 636 nm wavelength beam from a diode laser.
We detect the diffracted light beams using a mobile single-
pixel detector with a high dynamic range. In Figure 5, a
detector with a pinhole aperture is mounted on a trans-
lation stage under computer control. By scanning the de-
tector to the center of each of the spots, it is possible to
measure the power contained in each of the spots, i.e.
diffraction orders in the output array.

To focus on both the simulation and experiment to
facilitate a quantitative comparison, we applied loss
caused by Fresnel reflection from the interface between air

and SiO2 substrate to simulate the overall efficiency of
DOEs. The comparison between theoretical and experi-
mental diffraction efficiencies are presented in Figure 6.
We represent the total diffraction efficiency, UE, and NRMS
of simulated and measured one in Table 1.

The experimental data show that the DOE operates
with high-performance. The UE and NRMS of beam split-
ters are 21.42 and 8.07%, respectively. For an accurate
comparison between theoretical and measured results, we
analyze the correlation of these data using mean absolute
percentage deviation (MAPD) as a ratio defined by the
formula:

MAPD = 1
M

∑
⃒⃒⃒⃒⃒⃒⃒⃒
ηSm − ηE

m

ηS
m

⃒⃒⃒⃒⃒⃒⃒⃒
(11)

Figure 5: Schematic of equipment used for diffractive array
measurements.

Figure 6: Experimental characterization of 1-to-117 diffractive beam splitter. (a) experimental data (orange star) from profile optimized base
on STPA and the simulated data (blue bar). (b) difference between experimental and simulated data in orders.

Table : Comparsion with the simulated and experimental proper-
ties of the -to- beam splitters. The simulated efficiency take
into account the loss from Fresnel reflection in the air-SiO substrate
interface.

Simulated Measured

Total efficiency (%) . .
UE (%) . .
NRMS (%) . .
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where ηS
m, η

E
m are simulated and experimental efficiency in

(m)th diffraction orders and M is the total number of
diffraction orders. The MAPD of 1-to-117 beam splitters are
calculated to the 8.15%, which shows excellent reproduc-
ibility of the simulated results in a quantitative manner.
The only noticeable deviation in the measurement is a
small mismatch of diffraction efficiency in a few orders due
to minor fabrication errors. In general the diffraction effi-
ciency in orders often strongly depends on the errors in
fabrication processes, e.g., etching depth, feature width,
slope steepness, and feature rounding. Nevertheless, the
fabricated samples based on optimized design overall
display experimental performances which are better than
the theoretical performances of initial designs before
optimization.

5 Conclusion

In summary, we utilized the STPA in optimizing the op-
tical elements, which is able to create wide angle dif-
fractive optical elements at a very low computational
cost. We explored properties of the optimization method,
such as efficient computation for the gradient of the
target function with respect to transition positions with
Fourier-domain local field perturbation. As a case study,
we applied gradient-based optimization with STPA to 1–
117 beam splitter with a non-paraxial diffraction angle,
i.e., maximal diffraction angle is 11° from the center,
respectively. The optimized beam splitter show a
considerable improvement of uniformity while main-
taining the initial diffraction efficiency. The experimental
results obtained by the illumination of the fabricated
optical elements using a laser of 635 nm wavelength with
a normal incidence have been compared with the nu-
merical results. Numerical simulation and experimental
results were found to be in good agreement and our
optimization method can be considered proven to be an
effective design tool for wide angle diffractive beam
splitters.
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Appendix

In order to calculate the gradient of figure of merit in Eq.
(8), we calculated the derivatives of the diffraction
efficiencies

∂ηm
∂xk

.

∂ηm

∂xk
= ∂|Tm|2

∂xk
+ ∂|Dm|2

∂xk
+ ∂T∗

m  Dm

∂xk
+ ∂Tm  D∗

m

∂xk
(12)

where the diffraction efficiency ηm is a function with
respect to transition point xk in binary grating. Thuswe can
partially differentiate each term of ηm with respect to xk.
when m ≠ 0, we can express the derivatives as

∂|Tm|2
∂xk

= 2Φ2
m(C1m  C′

1m + S1m  S′1m) (13a)

∂|Dm|2
∂xk

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|Pm|2(C2m  C′
m + S2m  S′m)

+ 2R(PmP
∗
−m)(C3m  C′

m + S3m  S′m)
−2I(Pm  P∗

−m)(S3m  C′
m − C3m  S′m),

for k = 1, 3,⋯, 2K − 1

|P−m|2(C3m  C′
m + S3m  S′m)

+ 2R(Pm  P∗
−m)(C2m  C′

m + S2m  S′m)
−2I(Pm  P∗

−m)(C2m  S′m − S2m  C′
m),

for k = 2, 4,⋯, 2K

(13b)

∂T*
m  Dm

∂xk
+ ∂Tm  D*

m

∂xk
=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2Φm [R(Pm)(C1m  C′
m + C2m  C’

1m + S1m  S′m + S2m  S’1m)
+ I(Pm)(C1m  S′m − S1m  C′

m − Cm
2  S

’
1m + S2m  C’

1m)
+R(P−m)(C3m  C’

1m + S3m  S’1m)
+ I(P−m)(S3m  C’

1m − C3m  S’1m)],
for k = 1, 3,⋯, 2K − 1

2Φm[R(P−m)(C3m  C’
1m + C1m  C′

m + S3m  S’1m + S1m  S′m)
+ I(P−m)(S3m  C’

1m + C1m  S′m − C3m  S′1m − S1m  C′
m)

+R(Pm)(C2m  C’
1m + S2m  S’1m)

+I(Pm)(S2m  C’
1m − C2m  S’1m)],

for k = 2, 4,⋯, 2K

(13c)

where

Φm = sin(Δϕ/2)/πm (14a)

C1m = ∑
2K

k=1
(−1)k  cos(2πmxk/Λ) (14b)
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S1m = ∑
2K

k=1
(−1)k  sin(2πmxk/Λ) (14c)

C2m = ∑
K

k=1
cos(2πmx2k−1/Λ) (14d)

S2m = ∑
K

k=1
sin(2πmx2k−1/Λ) (14e)

C3m = ∑
K

k=1
cos(2πmx2k/Λ) (14f)

S3m = ∑
K

k=1
sin(2πmx2k/Λ) (14g)

C′
1m = −2πm

Λ
(−1)k  sin(2πmxk/Λ) (14h)

S′1m = 2πm
Λ

(−1)k  cos(2πmxk/Λ) (14i)

C′
m = −2πm

Λ
 sin(2πmxk/Λ) (14j)

S′m = 2πm
Λ

 cos(2πmxk/Λ). (14k)

The Δϕ is the difference between phaseϕ1 andϕ2 which
are the phase of an electric field in the air and dielectric
material, respectively and 2K is the number of transition
point in structure. The Fourier coefficients Pm and P−m of
field perturbation are given by Eq. (7), which are constant
values with respect to transition point xk. Thus the values
R(Pm), R(P−m), I(Pm), I(P−m), R(PmP*−m) and I(PmP*−m)
also constant with respect to transition point xk.

If m = 0, the derivatives of the diffraction efficiency in
zero order is expressed as

∂η0
∂xk

= −4Q′(1 − 2Q) sin2(Δϕ/2)
−8K ⋅R(Pm) sin(Δϕ/2) sin(ϕs/2)Q′

+ 8K ⋅ I(Pm) sin(Δϕ/2) cos(ϕs/2)Q′

(15)

where Q = ∑2K
k=1(−1)k  xk, Q′ = (−1)k

Λ , and ϕs = ϕ1 + ϕ2. There-

fore, we can express the gradient of diffraction efficiency
with respect to transition points based on STPA as an
analytical solution.
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