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Background: Tendencies to increase the mean size of dental images and the
number of images acquired daily makes necessary their compression for efficient
storage and transferring via communication lines in telemedicine and other
applications. To be a proper solution, lossy compression techniques have to
provide a visually lossless option (mode) where a desired quality (invisibility of
introduced distortions for preserving diagnostically valuable information) is
ensured quickly and reliably simultaneously with a rather large compression ratio.

Objective: Within such an approach, our goal is to give answers to several
practical questions such as what encoder to use, how to set its parameter
that controls compression, how to verify that we have reached our ultimate
goal, what are additional advantages and drawbacks of a given coder, and so on.

Methods:We analyze the performance characteristics of several encodersmainly
based on discrete cosine transform for a set of 512 × 512 pixel fragments of larger
size dental images produced by Morita and Dentsply Sirona imaging systems. To
control the visual quality of compressed images and the invisibility of introduced
distortions, we have used modern visual quality metrics and distortion invisibility
thresholds established for them in previous experiments. Besides, we have also
studied the so-called just noticeable distortions (JND) concept, namely, the
approach based on the first JND point when the difference between an image
subject to compression and its compressed version starts to appear.

Results: The rate-distortion dependences and coder setting parameters obtained
for the considered approaches are compared. The values of the parameters that
control compression (PCC) have been determined. The ranges of the provided
values of compression ratio have been estimated and compared. It is shown that
the provided CR values vary from about 20 to almost 70 for modern coders and
almost noise-free images that is significantly better than for JPEG. For images
with visible noise, the minimal and maximal values of produced CR are smaller
than for the almost noise-free images. We also present the results of the
verification of compressed image quality by specialists (professional dentists).

Conclusion: It is shown that it is possible and easy to carry out visually lossless
compression of dental images using the proposed approaches with providing
quite high compression ratios without loss of data diagnostic value.
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1 Introduction

Imaging systems have become a conventional tool for getting
valuable diagnostic information in medicine (Guy and Ffytche,
2005; Prince and Links, 2006; White and Pharoah, 2014; Suetens,
2017). They are used in ophthalmology, gastroenterology, dentistry,
and other areas (Baghaie et al., 2015; Jayachandran, 2017; Federle
et al., 2018). Due to the increase in spatial resolution, acquired
images are usually quite large and their size often exceeds 1 MB
(Anthony Seibert, 2020; Sridhar et al., 2022). This relates to medical
images of different types including dentistry (Mohammad-Rahimi
et al., 2023), which is of prime attention in this paper. The large size
of images causes problems in their storage (Slone et al., 2000;
Johnson et al., 2009; HBC, 2023) and/or transferring via
communication lines in telemedicine (Fornaini and Rocca, 2022).
This leads to the necessity to carry out efficient image compression
(Koff and Shulman, 2006; Sanchez Silva, 2010; Flint, 2012).

Archiving and compression of medical images have a long story.
Twenty years ago, many specialists insisted that only lossless
compression could be applied (Fidler and Likar, 2007; Suapang
et al., 2010; Liu et al., 2017). The problem of lossless compression is
that the attained compression ratio is usually small and this does not
satisfy specialists that exploit images in practice. After intensive
discussions, it was decided that lossy compression could be used but
only under the condition that compression is near-lossless or
visually lossless, i.e., does not introduce visible distortions and,
thus, does not result in losing diagnostically valuable information
(Kocsis et al., 2003;Wu et al., 2003; Fidler and Likar, 2007; Kim et al.,
2010; Ye et al., 2019).

This has led to studies intended on the design of appropriate
techniques (see Foos et al., 1999; Wu et al., 2003; Fidler and Likar,
2007; Kim et al., 2010; Georgiev et al., 2013; Al-Shebani et al., 2019;
Ye et al., 2019 and references therein). The influence of lossy
compression on image diagnostic properties has been investigated
(Eraso et al., 2002; Lehmann et al., 2006; Braunschweig et al., 2009).
The appropriateness of the idea of visually lossless compression has
been confirmed (Slone et al., 2000; Kocsis et al., 2003). However, a
question was how to provide this in practice. The problem is that the
visibility of distortions depends, at least, on three factors. The first
factor is a used coder and the peculiarities of distortions introduced
by it. As known, JPEG introduces blocking effects (artifacts) (Slone
et al., 2000; Afnan et al., 2023) and this is undesired [similar effects,
but to a lesser degree, can be observed for other coders based on
discrete cosine transform (DCT) (Ponomarenko et al., 2005);
because of this, image deblocking is often used after
decompression]. In turn, wavelet-based coders such as, e.g., JPEG
2000 (Christopoulos et al., 2000) and SPIHT (Kim and Pearlman,
1997) produce ringing artifacts (Punchihewa et al., 2005; Kim et al.,
2010; Zhang et al., 2012) and this is undesired as well. The second
factor is image complexity (Lukin et al., 2022) where, on the one
hand, a simple structure image can be compressed with a larger
compression ratio (CR) without visible distortions, and, on the other
hand, complex structure images are characterized by a better
property of distortion masking (Ponomarenko et al.). The third
factor are viewing conditions (Mikhailiuk et al., 2021).

Then, one possible approach is to determine the maximally
possible CR for a given class of images and a given coder when
distortions are invisible for any image. Such an approach needs

special experiments with observers (experts) carried out in advance
for a rather large set of images typical for a given application (Slone
et al., 2000; Kocsis et al., 2003; Wolski et al., 2018). In addition,
whilst it is easy to set and provide a desired CR for JPEG2000 or
SPIHT, it is not easy to do for JPEG and other DCT-based coders
since CR for them depends on image properties and varies in wide
limits for a given value of parameter that controls compression
(PCC) such as quality factor (QF) for JPEG or quantization step
(QS) for the coder AGU (Ponomarenko et al., 2005) (this will be
shown later). Another drawback of this approach is that there could
be images for which the chosen (recommended) CR produces lossy
compression at the edge of distortion invisibility whilst for other
images there could be a large “reserve,” i.e., a larger CR can be
attained without visual loss of image quality.

Then, another idea arises—we should compress images
adaptively considering their complexity and/or other properties
with control of visual quality (Wu et al., 2003; Lastri et al., 2005;
Ponomarenko et al., 2011; Võ et al., 2011; Ponomarenko et al., 2013).
In Võ et al. (2011), the authors exploit different peculiarities of
masking in heterogeneous image regions, edge/detail
neighborhoods, and textures to appropriately set coder
parameters. In Ponomarenko et al. (2013), the authors show that
noise intensity and image blurriness determine distortion visibility
threshold and, thus, JPEG QF has to be set adaptively. Noise type
and its spatial-spectral properties are taken into consideration in
(Lastri et al., 2005; Ponomarenko et al., 2011) to provide invisibility
of distortions. Correlation between image quality metrics and
distortion visibility threshold has been studied (Kim et al., 2010;
Wolski et al., 2018; Afnan et al., 2023). It has been shown that visual
quality metrics, both widely known and the ones designed recently
(Johnson et al., 2011; Wolski et al., 2018; Afnan et al., 2023) perform
better than conventional peak signal-to-noise ratio (PSNR). Note
that the papers (Lastri et al., 2005; Ponomarenko et al., 2011; Võ
et al., 2011; Ponomarenko et al., 2013) deal with other than dental
types of images. This shows that, on the one hand, the task of
providing visually lossless compression is quite general. On the other
hand, it is worth using experience gained in other areas in the design
of visually lossless techniques for dental image compression.

As it was already mentioned, in providing the desired visual
quality of compressed images, it has become popular to apply visual
quality metrics (Wang et al., 2003; Zemliachenko et al., 2016; Blau
and Michaeli, 2019; Mantiuk et al., 2023). Their benefits compared
to conventional metrics such as mean square error (MSE) and peak
signal-to-noise ratio were confirmed in numerous papers (see
Jayaraman et al., 2012; Ponomarenko et al., 2015a; Matsumoto,
2018 and references therein). Then, it is also assumed that the
distortion visibility threshold for a given visual quality metric is
already established (Ponomarenko et al., 2015a). Hence, the task in
compression of a given image by a chosen coder is to provide a
chosen metric value not worse than the corresponding threshold.
This task can be solved by several practical procedures. One way is to
apply iterative compression (Zemliachenko et al., 2016). This
approach provides accurate solutions, but it might require too
many iterations of compression and decompression leading to
inappropriate time expenses. There are also two ways to reach
the vicinity of the distortion visibility threshold approximately
(with less accuracy). One way is to apply a two-step approach
(Li, 2022; Li et al., 2022) based on the average rate-distortion
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curve obtained in advance, image compression/decompression at
the first step and PCC refining with the final compression at the
second step. Another way is to set a fixed PCC providing, on average,
a slightly better value of the used quality metric than for distortion
invisibility threshold. Both approaches will be further analyzed and
discussed in the remainder part of this paper. The latter one has been
intensively studied in our recent papers (Krivenko et al., 2020;
Krylova et al., 2021; Kryvenko et al., 2022) for three different
DCT-based coders, namely, ADCTC (advanced DCT coder)
(Ponomarenko et al., 2007), AGU-M (Zemliachenko et al., 2016),
and better portable graphics (BPG) (BPG Image format, 2022)
encoders, respectively. It has been shown that by setting a proper
PCC [QS for the ADCTC, scaling factor (SF) for the AGU-M coder,
and parameter Q for the BPG encoder] it is possible to provide the
metric PSNR-HVS-M (Ponomarenko et al.) in the range 40 . . .

46 dB with the mean value equal of about 42.5 dB where distortion
visibility threshold for the metric PSNR-HVS-M is about 41 dB for
noise-free images subject to lossy compression (Ponomarenko
et al., 2015a).

Here it is worth saying that different imaging systems produce
dental images of different quality that also depend on a chosen
imaging mode (Flynn et al., 1996; Huda and Abrahams, 2015;
Abramova et al., 2020). In particular, the system Morita
(Diagnostic and Imaging Equipment, 2020) produces spatially
correlated signal-dependent noise (Abramova et al., 2020) that is
visible, especially in homogeneous image regions. Lossy
compression of noisy images has several specific features (Al-
Shaykh and Mersereau, 1998; Zemliachenko et al., 2015;
Naumenko et al., 2022) including the so-called noise filtering
effect. In our case, we do not need to have the noise filtering
effect due to lossy compression appearing itself to full extent.
Instead, we prefer to have such a compression that does not
allow an observer to see changes (distortions) due to lossy
compression that can be provided under certain conditions
(Ponomarenko et al., 2020) discussed later.

Finally, there is an approach based on just noticeable distortions
(JND) (Liu et al., 2020; Bondžulić et al., 2021; Testolina et al., 2023),
namely, the first just noticeable difference point. The authors of
Bondžulić et al. (2021) state that there is a high correlation between
certain image features and the position of the first JND point (certain
QF value) for JPEG. Then, by calculating such features, it becomes
possible to properly set QF. However, this approach has not been yet
applied to more modern DCT-based coders.

The paper’s contributions consist in the following. First, we
carry out a comparison of the performance of the ADCT, AGU-M,
and BPG coders as well as JPEG for a set of 512 × 512 pixel fragments
produced by the Morita system with setting the fixed values of the
corresponding PCC. Second, we analyze what benefits can be
provided if the two-step approach to providing a desired visual
quality is applied. Third, we test the considered approaches for a set
of image fragments produced by the system Dentsply Sirona where
the noise intensity is less than in images produced by the
Morita system.

The paper is structured as follows. Section 2 describes the
possible modes of image analysis by specialists that determine
requirements for compressed image quality. Image/noise
properties are discussed as well. Section 3 analyzes the approach
to visually lossless image compression based on setting the fixed

PCC for different coders. The results for the two-step approach are
given in Section 3. This section also contains initial data for the
compression based on JND. Section 4 deals with lossy compression
of dental images that are almost noise-free. The results of statistical
verification are presented in Section 4. Finally, the conclusions
are given.

2 Methods

2.1 Methodology of dental image receiving,
analysis and basic mage/noise properties

To understand when lossy compression can be applied and how
it can influence image quality, let us briefly consider a typical
procedure of image acquisition, transferring, and analysis. As an
example, we consider such a procedure for one dental center in
Ukraine although, according to our knowledge, the procedures in
other countries are similar.

The procedure related to patients and X-ray receiving has been
performed at the University Dental Center, at the Department of
Pediatric Dentistry and Implantology of Kharkiv National Medical
University, Kharkiv, Ukraine, after obtaining informed consent
from all patients. All actions in the dental office have been
carried out using the protocols for providing dental care to the
population in Ukraine (www.moz.gov.ua). Orthodontic patients
undergo standard diagnostic procedure which is similar in most
countries (see, for example, American Association of Orthodontists’
instructions given at https://www2.aaoinfo.org/practice-
management/cpg/) and include panoramic and
cephalometric X-rays.

The present study has included only adult (>18 years) patients
referred from general dental practitioners to the University Dental
Center for diagnosis and treatment of orthodontic pathology. A
designated expert committee (composed of the four local dental
clinicians involved in the study) has checked the suitability of
patients for the study, and the inclusion and exclusion criteria in
a predefined clinical examination schedule that was agreed upon in
advance. The successful candidates were scheduled for 30-min
appointments at the University Dental Centre and fully assessed.

In total, 40 patients have been included in the investigation. The
inclusion criteria for the patients were the following: the age is more
than 18, the need for orthodontic treatment, the patients who had
not received it previously, and the patients without acute tooth pain
or acute health problems. The exclusion criteria were as follows: the
non-adult patients (under 18), the patients with acute or chronic
periodontal problems, the patients currently undergoing cancer
treatment, and pregnant women. Thus, the homogenous group of
population was presented that minimized a possible influence of
general factors on X-ray image quality andmade it possible to obtain
the statistically significant results. The personnel included a team of
4 designated registered dental doctors (orthodontists and general
practitioners), all calibrated and trained in advance.

The standard procedure starts with interviewing a patient. Then,
a clinical examination with standard equipment and indicating the
mode of X-ray examination (panoramic X-ray, lateral
cephalography produced by Morita and Dentsply Sirona systems)
is performed. The decision concerning X-ray type is undertaken by a
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dental specialist, both orthodontist and general practitioner. The
decision is undertaken on whether the X-ray is necessary for getting
a correct diagnosis and for adequate treatment planning. According
to the decision, a patient is sent to visit the diagnostic X-ray
laboratory, where he/she is subject to an X-ray examination
according to the indication list. The basic purpose of X-ray
diagnostics is to detect dental pathology, to diagnose orthodontic
pathology, and to indicate proper treatment.

After this, the results of X-ray examination are commonly sent
to a dentist by e-mail [information such as the patient’s name and
sex do not accompany the image(s) in order to protect his/her
privacy]. Just at this stage, a performer of X-ray might use lossy
compression of acquired images or attach uncompressed images
to e-mail.

In our study, we needed images suitable for diagnostics. Because
of this, the “entrance control” has been performed. Four previously
trained dentists have analyzed 65 images produced by the Morita
and Dentsply Sirona systems (40 panoramic X-ray and
25 cephalometric X-ray images). The Clinical Image Quality
Evaluation Chart was used for the evaluation of the quality of
original (uncompressed) images. At the stage of anonymous
image evaluation, 61 images have been recognized as “optimal
for obtaining diagnosis,” 3 have been considered “adequate for
diagnosis,” 1 has been treated as “poor but diagnosable,” and
there were no images classified as “unrecognizable.”

For all such images, the compression declared as visually lossless
should not result in decreasing their diagnostic quality.

Dental images are usually viewed and analyzed by specialists
without applying automatic means of image processing and
interpreting. Just because of this, the original (acquired) and
compressed image visual quality is of prime importance.
Meanwhile, the size of the original images, noise level, and
methodology of image representation and analysis can be
different. These factors determine the requirements to image
visually lossless compression that have to be recalled.

First of all, image size can be quite large and depends on the
imaging system mode. Figure 1 shows image acquired by the Morita
system, panoramic X-ray (Vera-viewepocs 3D R100 J) (Diagnostic
and Imaging Equipment, 2020). The size of the image presented in
Figure 1 is 2761 × 1504 pixels, it occupies a few Megabytes. The
images acquired by the Dentsply Sirona (Orthophos S) have a
slightly smaller size of 2048 × 1087 pixels.

Then, the acquired images can be exploited in a different
manner. First, they can be saved in a clinic depository and/or
passed to a doctor and/or to a patient. Saving in a depository is
desired since a patient or a doctor might need this image later or for
some other purposes. Passing to a patient can be done because the
patient might go to another clinic or another doctor. In both cases,
image lossy compression is possible and even sometimes needed (if a
great number of images are obtained in a laboratory or clinic).
However, it should be visually lossless compression and no visible
distortions should be seen (detectable) in any part of an image of a
large size. Note that lossy compression can be also desired if
communication lines have a limited bandwidth, a user or a clinic
pays for Internet traffic, etc.

Although acquired images or their fragments under interest can
be visualized on screens of very different devices, it is recommended
and common to use laptops and stationary computers (monitors)
with large sizes and appropriate quality screens. Note also that
doctors can look at and analyze images in different scales using the
maximal resolution scale for image fragments under interest.
Because of its large size, a dental image has to be scrolled for
analysis in maximal resolution scale to see the smallest details.

Since it is possible to expect that the monitor type has an impact
on image perception, good screens are mainly used for visualization
and analysis of an image in aggregate or its parts. In our study, the
evaluators used the following monitors: (a) a monitor of laptop
ASUS (15.6″, 1920 × 1080, Full HD, IPS), (b) an HPmonitor (with a
diagonal 27.1″, 1920 × 1080, Full HD, IPS), (c) a monitor of IPad
(diagonal 10.2″, 2160 × 1620, IPS). Since distortions due to lossy

FIGURE 1
Large size image produced by the Morita system.
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compression appear themselves more for the maximal resolution
scale, the doctors evaluated the images visually using the maximum
zooming of images for the aforementioned monitors. Then, we need
to provide visually lossless compression for the maximal resolution
scale for fragments of the size of a few hundred to a few hundred
pixels. Keeping this in mind, we have to carry out analysis
correspondingly, i.e., for image fragments. We have chosen their
size to be 512 × 512 pixels since it is convenient for DCT-based
coders. In addition, such size fragments can be easily and
conveniently placed nearby to each other for comparing the
original and compressed versions according to recommendations
in Testolina et al. (2021). Examples of such fragments taken from the
image in Figure 1 are presented in Figure 2.

As it is seen, image fragments can be of different complexity
where the fragment in Figure 2B contains more details, edges, and
textures compared to a rather simple image fragment in Figure 2A.
Besides, noise can be easily noticed in the latter image, especially in
homogeneous areas having medium intensity. This is not surprising
because of the following reasons. First, for the safety of patients,
X-ray images are low dose and this leads to the presence of quite
intensive noise (Lee et al., 2018). Second, noise is signal-dependent
(Lee et al., 2018; Abramova et al., 2020) and this explains why the
noise is better seen in homogeneous image regions having a larger
local mean. Third, the noise is spatially correlated (Abramova et al.,
2020) and this is one reason why noise is visible—spatially correlated
noise is more visible than white noise of the same intensity.
Meanwhile, noise characteristics also depend on the imaging
mode (Abramova et al., 2020). The most adequate model of the
noise occurred to be σ̂2 � σ̂2μ · I2ij + k̂ · Iij + σ̂2a where σ̂2μ and σ̂2a are
the estimates of multiplicative and additive noise variances,
respectively, k̂ is the estimate of the quasi-Poissonian component
parameter, and Iij denotes image true value in the ij-th pixel. Then,
for a given fragment, equivalent variance can be estimated as

σ̂2eq � σ̂2a + σ̂2μ∑N

i�1∑M

j�1I
2
ij/NM + k̂∑N

i�1∑M

j�1Iij/NM (1)

whereN andM in Eq. 1 define the fragment size. Then, for onemode
of the Morita system operation, σ̂2eq varies from about 10 to
60 depending on fragment mean intensity. For the second mode,
σ̂2eq varies from 30 to almost 200 (for the fragment in Figure 2B)
(Krivenko et al., 2020). In any case, the noise occurs to be visible.

Meanwhile, for images acquired by the Dentsply Sirona system,
the noise is hardly noticed.

2.2 Providing visually lossless compression
by setting the fixed PCC

2.2.1 Used metrics and considered coders
Recall that for a visually lossless approach we need some

adequate visual quality metric and the corresponding distortion
invisibility threshold. Metric adequateness for a given type of
distortion is usually determined by analysis of the Spearman rank
order correlation coefficient (SROCC) between metric values and
mean opinion score (MOS) for image databases that contain images
with the considered type of distortions. The image database TID
2013 (Ponomarenko et al., 2015b) is a good option that contains
images distorted by lossy compression. It has been established that,
for many metrics including PSNR, SROCC exceeds 0.9,
i.e., distortions due to lossy compression are quite adequately
characterized. Meanwhile, there are several metrics for which
SROCC is between 0.96 and 0.97 including PSNR-HVS-M
(Ponomarenko et al.), feature similarity (FSIM) index (Zhang
et al., 2011), mean deviation similarity index (MDSI) (Ziaei
Nafchi et al., 2016), Haar wavelet-based perceptual similarity
index (HaarPSI) (Reisenhofer et al., 2018), and some others

FIGURE 2
512 × 512 pixel fragments of different complexity taken from large size image in (A,B).
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(Wang et al., 2004). For some of them, the invisibility threshold has
been determined. For example, for PSNR-HVS-M, the threshold is
TPHVSM ≈ 40 dB (Ponomarenko et al., 2015a). In turn, for MDSI the
threshold is TMDSI ≈ 0.22 (Li et al., 2022). So, let us rely on the metric
PSNR-HVS-M expressed for 8-bit images as

PSNR −HVS −Mn � 10 log10
2552

MSE −HVS −Mn
( ), (2)

whereMSE-HVS-Mn in Eq. 2 is calculated in 8 × 8 blocks in the DCT
domain taking into consideration two peculiarities of the human
vision system (HVS)—the lower sensitivity of HVS to distortions in
high spatial frequencies than distortions in low spatial frequencies
and masking effect. Similarly to PSNR, PSNR-HVS-M is expressed
in dB and its larger values relate to better visual quality. For additive
white Gaussian noise and similar distortions, PSNR-HVS-M occurs
to be slightly larger than the corresponding PSNR due to the
masking effect. This property can indirectly describe the
properties of distortions introduced by image lossy compression
(Abramova et al., 2023).

In this paper, we consider four DCT-based coders. One of them
is JPEG controlled by quality factor (QF). Smaller QF values are
associated with larger CR and greater introduced distortions.

ADCTC (Ponomarenko et al., 2007) employs a partition scheme
to adapt to image content and uses rectangular shape blocks where
all sizes of block sides are powers of two to ensure the possibility of
using fast DCT algorithms. The coder is not fast since partition
scheme optimization needs some time, the decompression is faster
than compression.

The AGU-M coder uses 32 × 32 pixel blocks and an advanced
algorithm of bit-plane coding of quantized DCT coefficients. In
opposition to the standard AGU (https://ponomarenko.info/#dow),
AGU-M employs different quantization steps for different spatial
frequencies and uses scaling factor (SF, analog of QS) as PCC. The
larger SF results in larger CR and greater distortions introduced.

The better portable graphics (BPG) encoder is a part of the
HEVC video coder and it has several advantages. In particular, the
BPG encoder provides higher CR compared to JPEG and many
other methods for the same quality characterized by PSNR. Its
available versions can operate with data from 8 to 14 bits per
channel. Here, we present the results obtained for the grayscale

BPG version 0.9.8 offered at https://bellard.org/bpg/. The parameter
Q (that can be only integer and varies from 1 to 51) plays the role of
PCC. Its larger values correspond to a larger CR and greater
distortions.

Figure 3 allows comparing the coders’ performance for one
fragment of the dental image. Dependencies for all coders are given
as functions of CR to offer an opportunity to compare the results
(recall that the coders have different PCCs).

Analysis of data in Figure 3 shows the following tendencies.
AGU-M coder produces the best results in the area of interest
(CR=10–15, PSNR-HVS-M>40 dB). The ADCT and BPG encoders
perform closely to AGU-M. JPEG and JPRG2000 produce
significantly worse results. Thus, the plots in Figure 3 explain
one more time why we have paid attention to the analysis of the
ADCT, BPG, and AGU-M in our previous and current studies.
Similarly, according to PSNR, ADCTC is the best for small CR whilst
the BPG encoder is the best for large CR. AGU-M produces results
similar to the ADCT and BPG coders. JPEG and JPEG2000 perform
considerably worse, especially in the area of interest (CR=10–20,
PSNR>35 dB for the three best coders).

2.2.2 The use of fixed PCC for DCT-based coders
Different reasoning can be put into the basis of setting some

fixed PCC for DCT-based coders for the considered application. Let
us start our analysis for the standard JPEG. It is sometimes supposed
that setting QF = 75 practically guarantees that distortions are
invisible (Bondžulić et al., 2023). We have applied JPEG with
QF = 75 to 20 fragments of the size 512 × 512 pixels taken from
the image in Figure 1. It occurred that the minimal andmaximal CRs
are equal to 5.45 and 11.37, respectively. Minimal and maximal
PSNR-HVS-M values are 45.26 dB and 50.65 dB, respectively,
i.e., the difference is about 5 dB. Note that the largest PSNR-
HVS-M is observed just for the fragment having the smallest CR.
These data show that QF can be smaller since there is a reserve for
decreasing the PSNR-HVS-M values.

To see what QF can be set, we have calculated the mean PSNR-
HVS-M for 20 fragments of Morita images compressed by JPEG
with different QF. It follows that mean PSNR-HVS-M equals 40 dB
for QF about 49. However, in this case, there are fragments having
PSNR-HVS-M smaller and larger than 40 dB (approximate

FIGURE 3
Dependences PSNR-HVS-M(CR) for a fragment of dental image in Figure 1.
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threshold of distortion invisibility). Assuming that PSNR-HVS-M
can differ from its mean values by ±2.5 dB, we should set such QF
that provides mean PSNR-HVS-M equal to 42.5 dB. This takes place
for QF = 60.

Thus, we set QF = 60 and determined CR and PSNR-HVS-M
values. The CR values vary from 6.8 to 19.7, PSNR-HVS-M values
vary from 41.2 dB to 44.8 dB. This means that by setting QF = 60 the
requirement to have invisible distortions for JPEG is satisfied.

A similar analysis has been done for three other coders. For
ADCTC it was recommended to set QS = 12 (Krivenko et al., 2020).
In this case, for the same set of 20 image fragments, the mean PSNR-
HVS-M was the same as above (42.5 dB) where PSNR-HVS-M
varied in the limits from 40.5 dB to 45.6 dB (i.e., in slightly larger
interval than for JPEG, this is a drawback) and CR varied from 7.5 to
20.6 (i.e., CR values are larger than for JPEG, this is an advantage).

For the AGU-M coder, we recommended setting SF = 8.8 to have
the same mean PSNR-HVS-M (Krylova et al., 2021). Then, PSNR-
HVS-Mwas in the limits from 41.1 dB to 45.1 dB (this result is better
than for ADCTC) whilst CR varied from 9.4 to 35.0 (both minimal
and maximal values are larger than the corresponding values in the
previous cases).

Finally, for the BPG encoder, the results are the following
(Kryvenko et al., 2022). It was recommended to set Q = 28
(analysis of several dependencies for particular image fragments
presented in Figure 4 shows that this is a correct decision). This led
to PSNR-HVS-M within the limits from 41.8 dB to 45.9 whilst CR
varies from 8.6 to 16.2. This is slightly worse than for the
AGU-M coder.

Note that, since Q for the BPG encoder can be only an integer
and Q increasing by unity leads to PSNR-HVS-M reduction by
about 1.5 dB, it is difficult to compare the obtained results to the
corresponding results for other coders. Because of this, here we also
present the results for Q = 29. PSNR-HVS-M varies within the limits
from 40.3 dB to 44.4 dB, CR is from 9.5 to 18.2, i.e., CR has improved
by the expense of a lower visual quality and the performance is at
approximately the same level as for the ADCTC.

Above, we have considered approaches to lossy compression
based on the fixed setting of PCC for the DCT-based coders. Let us
denote them as JPEG-FS, ADCTC-FS, AGU-M-FS, and BPG-FS,
respectively. A common advantage is that no decompression is used

and, thus, the compression procedures are relatively fast (except the
ADCT coder for which partition scheme optimization takes
significant time). Meanwhile, one general conclusion that follows
from the presented results is that, for the fixed PCC, the PSNR-HVS-
M values vary in some limits and this opens a certain room for
further improvement.

In particular, in the paper (Kryvenko et al., 2022), it was
proposed to use the following procedure - apply compression
with Q = 28 at the first step and determine PSNR-HVS-M1 after
decompression. If PSNR-HVS-M1 is within the limits from 41.75 dB
to 43.25 dB, leave the compression result. If PSNR-HVS-M1 is
outside these limits, then calculate Q as Q = 28 + [(PSNR-HVS-
M1 – 42.5)/1.5] where [ ] denotes rounding to the nearest integer.
This provides a mean PSNR-HVS-M of about 42.5 dB and narrower
limits of its variation after the final step. Similar procedures called
two-step can be realized for other coders. They are considered in the
next section.

3 Results

3.1 Two-step providing of appropriate
visual quality

The basic idea of the two-step procedures (Li, 2022; Li et al.,
2022) is the following. For a rather small interval for PCC variation,
dependencies of PSNR-HVS-M on PCC are almost linear and they
are “almost parallel” to each other for particular images. This is seen
well in Figure 4 for the BPG coder if Q is in the interval under
interest (Q from 25 to 33). Then, knowing a metric value for a given
PCC and having some estimate of the derivative of the
corresponding rate-distortion curve, it becomes possible to find a
PCC that approximately corresponds to the desired value of the
considered metric Metrdes.

More in detail, suppose that, in advance (off-line), the average
rate-distortion curve Metrav (PCC) has been obtained. Then, it can
be used for two purposes: first—to determine PCC1, for which
Metrav (PCC) ≈ Metrdes, and, second, to determine M′ =
dMetrav/dPCC. The first step is to compress an image using
PCC1, to decompress it and to determine Metr1. This value can

FIGURE 4
Dependencies of PSNR-HVS-M on Q for the BPG encoder for eight image fragments.
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be smaller or larger than Metrdes and, knowing M′, it is possible to
calculate PCC2 as

PCC2 � PCC1 + Metrdes −Metr1( )/M′. (3)

Note that, in Eq. 3, Metrav is often used instead of Metr1 (Li
et al., 2020a). These two values are the same if PCC can fall into any
value. However, for the JPEG and BPG coders, PCC values can be
only integer and, thus, PCC1 can be only integer too. Then, the
expression (Suetens, 2017) is more general.

Then, assuming the Gaussian distribution of residual errors of
providing Metrdes after the second step, we can set
Metrdes ≈ Metrthr + 3σM where σM is the standard deviation of
residual errors for the two-step method. σM depends on the
following main factors—a metric used and its desired value and a
coder considered. For the metric PSNR-HVS-M, the corresponding
studies have been carried out for the ADCT (Li et al., 2020a) and
BPG (Li et al., 2020b) coders. For ADCTC for PSNR-HVS-Mdes

about 40 dB, σM ≈ 0.55 dB for highly textured images and smaller
for simpler structure ones. So, we can set PSNR-HVS-Mdes =
41.65 dB for the two-step procedure. For the BPG encoder,
σM ≈ 0.6 dB and, thus, it is reasonable to set PSNR-HVS-Mdes =
41.8 dB. Note that in both cases, PSNR-HVS-Mdes is smaller than
the average PSNR-HVS-M (42.5 dB) we provided for the PCC fixed
setting (see previous Section).

The advantages of the two-step approach are that it usually
provides minimal PSNR-HVS-M larger than for the case of the fixed
PCC setting and maximal PSNR-HVS-M smaller than for the fixed
PCC setting. In the first case, this results in smaller probability that
distortions are visible. In the second case, a larger CR is provided.

We have not carried out experiments for JPEG and AGU-M
coders intended to determine σM for them for different PCCs.
However, taking into account the limits of variation of PSNR-
HVS-M for the fixed PCC for average PSNR-HVS-M equal to
42.5 dB reported in the previous Section, it is possible to set
PSNR-HVS-Mdes = 41.65 dB for both JPEG and AGU-M. We
have also checked if this setting is correct by calculating the
residual errors in experiments with the set of dental
image fragments.

Let us start with the results for the AGU-M coder. For the two-
step procedure, SF at the second step is from 8.4 to 11.7, the minimal
PSNR-HVS-N has occurred to be equal to 41.4 dB whilst the
maximal is of about 41.8 dB. This means that the variations of
image visual quality according to the metric PSNR-HVS-M are very
small. CR values are from 11.1 to 38.3, i.e., minimal and maximal
CRs are better than for any other approach considered above.

For the BPG-encoder, the final values of Q are from 26 to 30, the
minimal and maximal PSNR-HVS-M are from 41.8 dB to 43.3 dB
(i.e., the interval is larger than for AGU-M), and CRs are in the limits
from 9.9 to 19.3. In other words, the results are more stable than for the
fixedQ according to PSNR-HVS-M and slightly better according to CR.

The compression parameters for the ADCT coder are the
following. QS at the second step varies in the limits from 11.0 to
16.3, PSNR-HVS-M is in the limits from 41.3 dB to 41.8 dB, and
minimal and maximal CRs are equal to 8.3 and 28.9. Totally, the
results are at the same level as for the BPG encoder and worse than
for the AGU-M coder.

Finally, for JPEG, QF is from 47 to 61, PSNR-HVS-M is in the
limits from 41.3 dB to 41.7 dB and CR varies from 7.9 to 20.4. This
is, in general, worse than for all coders considered above. According
to the case of fixed QF setting (see Section 3), there is a small benefit
in CR values.

Summarizing the results of the two-step procedure, we can
state that it provides more stable values of PSNR-HVS-M (they
are very close to the desired PSNR-HVS-M) and larger values of
minimal and maximal CR. The payment for these improvements
is an increase in computations since more time is spent on image
compression, decompression, and final compression at the
second step.

3.2 JPEG-compression based on JND

Let us first recall some results presented in the papers (Bondžulić
et al., 2021; Bondžulić et al., 2023; Testolina et al., 2023). In
Bondžulić et al. (2023), analysis of QF values for the first JND
point (JNDP1) has been carried out for two image databases
specially designed for this purpose, MCL-JCI and JND-Pano
(panoramic images). Although color image compression has been
studied, the obtained results seem valuable for our case. It has been
shown that PSNR for JNDP1 varies in very large limits—from
27.6 to 46.0 dB for the MCL-JCI database and from 20.9 to
44.7 dB for the JND-Pano database. QF varies from 25 to 70 and
from 38 to 75, respectively. This shows that the adequateness of
PSNR and distortion invisibility threshold for it [about 36 dB
according to Ponomarenko et al. (2015a)] is of doubt. In turn,
PSNR-HVS-M for JNDP1 varies from 36.2 to 48.1 dB for the MCL-
JCI database and from 39.9 to 49.2 dB for the JND-Pano database.
Thus, PSNR-HVS-M is more adequate in characterizing visual
quality (its limits of variation are considerably narrower than for
PSNR) although PSNR-HVS-M and its invisibility threshold are
not perfect.

In Ponomarenko et al. (2020) it has been also shown that, for
noisy images, the difference between the same image contaminated
by the noise of different intensities, becomes visible if intensities
differ by 10%–20%. Then, since we have equivalent variances from
10 to 200 (see Section 2.1), the MSE of distortions introduced by
lossy compression should be from 1 to 20. For images compressed
with MSE = 1, distortions are not seen, they start to be visible for
MSE ≈ 3 in the worst case. Thus, the PSNR of noisy images
compressed in a visually lossless manner can be from
approximately 35 dB–43 dB depending on the noise intensity.
These results are in good agreement with the results reported
above for both databases.

There are approaches to the prediction of QF for JNDP1 (Lin
et al., 2020; Stojanovic et al., 2022). The method (Stojanovic et al.,
2022) is based on exploiting a simple parameter called mean
gradient magnitude (MGM) able to characterize an image to be
compressed. It is shown that the RMSE of such a prediction (PSNR is
predicted for JNDP1 based on MGM) is about 1 dB. MGM can be
defined as:

MGM � 1
NM

∑
∀n,m

1
gmax

�����������������
g2
x n, m( ) + g2

y n, m( ),
√

(4)
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where gmax in Eq. 4 is the maximum magnitude value, gmax =
4.472 for grayscale images with a dynamic range from 0 to 1.

MGM values are in the limits from 0 to 0.17 although they
mainly concentrate in the limits from 0.01 to 0.07. For smaller MGM
that corresponds to simpler structure images without noise, PSNRs
for JNDP1 are larger.Whilst, forMGM ≈ 0.07, PSNRs for JNDP1 are
of about 32 dB, they are of about 42 dB for MGM ≈ 0.01. The
formula for PSNR prediction obtained in Bondžulić et al. (2021) is
the following:

PSNR � 2115.5MGM2 − 377MGM + 46.4,MGM≤ 0.0896
29.58,MGM> 0.0896

{ ,

(5)
where for MGM = 0.0896 the mapping function in Eq. 5 reaches its
minimum value equal to PSNRmin = 29.58 dB.

We have decided to calculate MGM for our 512 × 512 fragments
of Morita images. The MGM values are from 0.031 to 0.071. Then,
PSNR values for JNDP1 should be from 30 dB to 35.5 dB. For each
considered image fragment, a desired PSNR can be provided by the
two-step procedure. For 4 out of 20 test fragments, the difference
between the desired PSNR (recommended by Eq. 5) and PSNR
provided by the two-step procedure exceeded 1 dB—the maximal
difference was equal to 1.3 dB. Then, we have also calculated CR and
PSNR-HVS-M. CR has varied in the limits from 6.4 to 20.3,
i.e., approximately in the same limits as for approaches
considered above. However, problems have arisen with QF and
PSNR-HVS-M of compressed images. QF varied from 16 to 84.
PSNR corresponding to small QF was about 30 dB, which, according
to our experience, is too small. This is confirmed by image fragments
in Figure 5 where original (Figure 5A) image and the corresponding
compressed one (Figure 5B) are represented. Distortions (mainly,
blocking artifacts) are seen in compressed image. Thus, we do not
deal with the desired visually lossless compression.

Meanwhile, there are also fragments that have been compressed
with PSNR in the limits from 38 dB to 42 dB and PSNR-HVS-M
from 44.5 dB to 49.5 dB. For them, no distortions are visible and the
recommended QFs exceed 70. According to previous experience (see
Section 3), smaller QF values can be used while keeping the
introduced distortions invisible.

Thus, we can state that the approach based on JNDP1 prediction
does not perform satisfactorily and, at the moment, cannot be
recommended for practical use. To our opinion, there are several
reasons behind this imperfection. First, there are several factors that
lead to errors in settingQF. They are imperfect dependence of PSNR for
JNDP1 on MGM where some points differ from the fitted curve by a
few dB and the limited accuracy of the two-step approach that provides
the desired PSNR with errors exceeding 1 dB. Second, the fitted curve
(Prince and Links, 2006) has been obtained for color images without
noise and we have used it for grayscale noisy images. Recall here that
PSNR of about 30 dB corresponds toMSE of introduced losses of about
65 (for 8-bit images that we have in our experiments). This means that
MSE is comparable to noise intensity and, thus, it is not surprising that
the introduced losses are visible.

The obtained results do not mean that the approach based on
JNDP1 has no potential for the considered application. However, the
dependence of PSNR (or PSMR-HVS-M) on one parameter or
parameters describing image characteristics has to be additionally
studied and made more accurate.

3.3 Visually lossless compression of almost
noise-free images

As it has been mentioned above, some X-ray imagers produce
almost noise-free images. Example of such images having large sizes
is given in Figure 6. As one can see, noise is not visible.

FIGURE 5
Original (A) and compressed (B) versions of image fragments.
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We have briefly analyzed the rate-distortion characteristics
for fifteen 512 × 512 fragments of almost noise-free images. The
goal for this was to analyze do they differ a lot from the
dependencies earlier obtained for image fragments considered
above. Since for all approaches we need average rate-distortion
curves, let us obtain them and compare them to the previously
used ones. Figure 7 presents the average dependence of PSNR-
HVS-M on QF for JPEG. It is monotonous and almost linear in
the area of interest. The derivative dPSNR-HVS-M/dQF is
practically the same as for the Morita image fragments—about
0.22. This means that, if we would like to provide an average
PSNR-HVS-M equal to 42.5 dB for fixed QF, we can set QF = 55
(for the considered type of dental images).

Let us see, what are the provided compression characteristics
in this case. PSNR-HVS-M values are from 41.9 dB to 42.8 dB,
i.e., in rather narrow interval. CR values are from 14.2 to 24.6,
i.e., both minimal and maximal CRs are larger than the
corresponding ones for the Morita image fragments.

In turn, Figure 8 represents the dependence of PSNR-HVS-M on
SF for the AGU-M coder. Similarly to the dependences in Figure 4, it
is monotonous. The values of average PSNR-HVS-M are slightly

FIGURE 6
Example of large size dental images produced by the Imager Dentsly Sirona (https://www.dentsplysirona.com/en/discover/discover-by-brand/
orthophos-e.html).

FIGURE 7
Dependence of mean PSNR-HVS-M on QF for JPEG for
fragments for almost noise-free dental images.

FIGURE 8
Dependence of mean PSNR-HVS-M on SF for AGU-M for
fragments for almost noise-free dental images.

FIGURE 9
Dependence of mean PSNR-HVS-M on QS for ADCTC for
fragments for almost noise-free dental images.
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larger than for Morita image fragments. If one would like to set a
fixed SF for providing average PSNR-HVS-M about 42.5 dB, then
SF=9.93. Setting this SF leads to the following results: PSNR-HVS-M
varies in the limits from 41.9 dB to 42.9 dB, i.e., in a narrow range,
CR is in the limits from 22.8 to 52.5, i.e., the CR values are
considerably better than for Morita system image fragments. We
associate this with the practical absence of noise. The CR values are
also considerably better (larger) than for the JPEG data given above.

Figure 9 presents the average dependence of PSNR-HVS-M on
QS for the ADCT coder. According to this curve, one has to set QS =
11.98 to provide the average PSNR-HVS-M equal to 42.5 dB. For
this QS used as the fixed setting, the results are the following. PSNR-
HVS-M varies from 41.8 dB to 43.2 dB, i.e., in quite narrow
(appropriate) limits. CR is from 21.4 to 59.2, i.e., they are
comparable to the interval of CR variation for the AGU-M coder.

Finally, we have checked the results for the BPG encoder.
According to the average curve, Q was set equal to 27 to ensure
the average PSNR-HVS-M of about 42.5 dB. As the results,
PSNR-HVS-M values vary from 41.9 dB to 43.0 dB (in
appropriately narrow intervals) and CRs are from 22.4 to 71.6.
This means that, for more complex structure images, CR is
approximately the same as for AGU-M and ADCT coders
whilst, for simple structure images, there is a certain benefit in
CR provided by the BPG coder.

Let us summarize the results given above in this Section. First,
we have checked whether distortions are visible for some fragments
compressed by all four coders providing the average PSNR-HVS-
M = 42.5 dB and have not found such cases. Second, it has been
established that for the fixed values of PCC, the differences in PSNR-
HVS-M values for particular fragments do not differ a lot (the
variation interval widths are about 1 dB). Then, it is possible to
expect that the 2-step procedure is able to provide even narrower
variation intervals. Thus, for the 2-step procedure, we have decided
to set the desired PSNR-HVS-M equal to 42 dB and to check what
results can be obtained in this case for all four coders.

For JPEG, the obtained results are the following. The provided
PSNR-HVS-M varies from 41.6 dB to 42.1 dB, QF values are mostly
equal to 52 although there are a few images for which QF equals
either 51 or 53. The provided CR is from 17.1 to 25.5. The positive
feature is that the variation range for PSNR-HVS-M has decreased.
CR values have slightly increased whilst the mean PSNR-HVS-M
has decreased which can be expected. Taking into account that the
two-step procedure requires two compressions and one
decompression, we do not see an essential difference between
applying the fixed (properly set) QF or using the two-step
procedure for JPEG.

For the AGU-M coder, PSNR-HVS-M varies from 41.96 dB to
42.04 dB, i.e., very high accuracy is provided. SF is from 9.8 to 11.0,
i.e., SF adaptation to image properties takes place. Finally, CR values
are from 23.3 to 58.5, i.e., they are considerably better than for JPEG
and slightly better than for the case of setting fixed SF for the AGU-
M coder (see the corresponding data above).

The coder ADCT has produced similar results. PSNR-HVS-M is
in the limits from 41.97 dB to 42.08 dB, i.e., the desired PSNR-HVS-
M is provided with high accuracy. This is due to the adaptation of QS
to image content—QS varies from 11.8 to 13.5. CR values are from
22.7 to 63.2, i.e., the minimal CR is slightly less and the maximal CR
is greater than for the AGU-M coder.

Finally, the BPG coder produces PSNR-HVS-M in the limits from
41.9 dB to 42.9 dB. As one can see, the providedmean PSNR-HVS-M is
slightly larger than the desired one. This results from the fact that Q can
be only integer. TheQ values for almost all image fragments are equal to
27. CR values are from 22.5 to 58.7, i.e., practically the same as for the
AGU-M coder. No improvement compared to the fixed setting of Q is
offered. This is explained by two reasons. First, the BPG coder produces
quite close values of PSNR-HVS-M for fixed Q that differ from each
other by about 1–1.2 dB, at least, if the desired PSNR-HVS-M are in the
range of interest (40–44 dB). Changing of Q by 1 leads to PSNR-HVS-
M changing by about 1.5–1.7 dB, i.e., by more than the aforementioned
range width. Thismeans that the two-step procedure produces a limited
improvement of accuracy for the considered situation and it is not
worth employing it for the BPG coder.

Summarizing the obtained results, we can state that the use of
the two-step procedure for providing the desired PSNR-HVS-M
offers some benefits for the coders AGU-M and ADCT since the
desired PSNR-HVS-M can be provided with higher accuracy and
this leads to a certain increase in CR. Meanwhile, there are no
obvious reasons to apply the two-step procedure for JPEG and BPG
encoders since the accuracy of providing the desired PSNR-HVS-M
for them does not improve a lot because of setting PCCs as only
integer values.

We have also tested the approach based on MGM calculation,
PSNR prediction and its providing by the two-step method. MGM
values are smaller than for image fragments with visible noise
considered in Sections 3, 4, they are in the limits from 0.012 to
0.026. Then, the predicted PSNRs for JNDP1 are larger—from
38.1 dB to 42.0 dB. They have been provided by the two-step
procedure with errors not exceeding 1 dB. As a result, CRs are
from 23 to 37 (good results), but PSNR-HVS-M are within the limits
from 35.7 dB to 38.7 dB, i.e., below the distortion visibility threshold.
Then, we have checked the compressed image fragments. It has
occurred that for many of them the introduced distortions
are visible.

Figure 10 shows the fragment obtained after visually lossless
compression using the two-step procedure for the four considered
coders (further denoted as JPEG2st, AGU-M2st, ADCT2st, and
BPG2st, respectively). As one can see, it is difficult to find differences
between the compressed images (maybe, the image compressed by
ADCTC is slightly sharper). There is practically no difference
compared to the original image.

Comparing the results presented in this Section for almost
noise-free images to the results for noisy images in the previous
two Sections, the following two conclusions can be drawn. First,
average rate-distortion curves differ a little. Average values of PSNR-
HVS-M for the same PCC for almost noise-free images are slightly
larger for noise-free images (this difference does not lead to any
problem if the two-step procedure is applied). Second, on average,
larger final values of CR are obtained for noise-free images—this is
not surprising, see the results presented in Krivenko et al. (2018).

Above, in the design of visually lossless compression of dental
images and comparison of performance characteristics for different
coders, we have relied on the following. First, the results on the
distortion visibility threshold presented for images in the database
TID2013 (Ponomarenko et al., 2015a) have been taken into account.
Second, we have taken into account the results of verification
experiments earlier carried out for the ADCT, AGU-M, and BPG
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coders with the fixed PCCs described in our papers (Krivenko et al.,
2020; Krylova et al., 2021; Kryvenko et al., 2022). However, the
threshold of distortion invisibility according to the PSNR-HVS-M
metric is approximate and this has been confirmed by experiments
in Bondžulić et al. (2021). Thus, we need to be sure that the proposed
approaches to visually lossy compression do not lead to a reduction
of the diagnostic value of compressed images.

4 Discussion

We have carried out experiments with compressed image
fragments to understand the following: 1) how often a specialist
(dentist) sees the differences between original and compressed

image fragments; 2) do these differences have an impact on the
diagnostic value of compressed images; 3) do the results for the
considered coders differ between each other. Preparing this
experiment, we have taken into account the recommendations
for performing such experiments and previous experience. First,
an observer’s distance to the monitor has to be fixed and it should be
convenient for a particular observer. Second, it is usually enough to
have about 15 s to decide if there are differences in the viewed images
and if are there artifacts in the compressed image (that, in our case,
influence its diagnostic value). Third, the experiment should not be
too long since an observer becomes tired and starts to perform his/
her task improperly. Fourth, between pairs of images following each
other in comparison, there should be a small break (dark screen) “to
remove the previous pair from human memory.”

FIGURE 10
The fragment obtained after visually lossless compression using the two-step procedure for JPEG, CR = 14.7, PSNR-HVS-M = 41.97 dB (A), AGU-M,
CR = 23.5, PSNR-HVS-M = 42.00 dB (B), ADCT, CR = 23.2, PSNR-HVS-M = 42.00 dB (C) and BPG, CR = 26.3, PSNR-HVS-M = 41.37 dB (D) coders.
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Thus, each pair of image fragments was shown for comparison
for 5–20 s and an observer had to press either the button “Identical”
or the button “Different.” In the latter case, the observer had to press
either the button “Appropriate” or the button “Inappropriate”where
the latter means that the distortions introduced by lossy
compression have led to lost diagnostic information. Between the
subsequent pairs, 5-s break with the dark screen was offered. Each
observer has been given 50 pairs of image fragments to be compared.
As a result, the experiment did not last more than 25 min (in fact, no
one experiment lasted more than 22 min with an average duration of
16 min). The fragments have been randomly chosen from the
considered large-size images in advance, compressed, and saved
in the folder used in the experiments. This was done since the
compression and decompression time could be larger than the time
taken for comparison of each pair of image fragments. Note that
compression and decompression time depends on several factors
including the coder used (the largest compression/decompression
time is for the ADCT coder), computer characteristics, and software
realization of a given coder.

The original image fragment was always placed left with respect
to the corresponding compressed fragment. The buttons were put
below the visualized image fragments. Taking into account that each
of the four doctors carried out 50 comparisons, 200 comparisons
have been performed total (for each coder). Thus, the probability
that two image fragments are different (Pd) could be determined. No
considerable difference in the results for different monitors have
been observed. Similarly, no significant difference has been noticed
in the results for doctors participating in experiments. Comparisons
for different coders (and their variants) were done on different days.
The doctors were not told what coder is under study at the current
moment. Each doctor participated in experiments carried out on
different computers. Monitors have been viewed approximately
from the distance 1.6Dv where Dv is the monitor height.

The comparison results for images acquired by the Morita system
are presented in Table 1. In addition to Pd, we give the additional data
that allow comparing the considered approaches to compression: the
range of PSNR-HVS-M values and the range of CR values for the
analyzed image fragments. Keeping in mind that Pd is estimated with
RMSE about 0.02, the conclusions that can be drawn are the following:

1) The fixed setting of the PCC leads to approximately the same
Pd as the two-step approach for a given coder; the difference

for them is in narrower ranges of PSNR-HVS-M variation and
slightly larger minimal and maximal CR values for the two-
step approach;

2) The ADCTC with fixed QS setting and with the use of the two-
step procedure produces slightly smaller Pd, a more thorough
comparison has shown that object edges are preserved by this
coder better than by other considered coders;

3) Wider ranges of CR variation have been observed in
experiments compared to the cases analyzed in previous
Sections; this can be explained by wider variations of image
fragment content (200 fragments have been considered instead
of 15–20 analyzed in previous experiments);

4) Slightly larger CR values have been observed for the two-step
procedure; the largest values took place for the AGU-M coder
although the differences in CR values are not significant.

It is rather important to notice that in none of the cases, the
quality of compressed images for the methods listed in Table 1 was
treated as inappropriate. Meanwhile, we have also tested the
compression procedure for JPEG based on JNDP1. For this one,
Pd is equal to 0.27, i.e., the difference between original and
compressed image fragments has been found considerably more
often. Moreover, with probability of 0.08, the compressed images
were treated as inappropriate, mainly because of visible blocking
effects (artifacts).

Since the results for the fixed setting of PCC and two-step
procedure were close to each other, only the two-step procedure has
been used in experiments for almost noise-free images. The obtained
results are presented in Table 2. The desired PSNR-HVS-M was
equal to 42 dB for all considered coders.

As one can see, the values of Pd are approximately in the same range
as in Table 1 where the best result (the smallest Pd) is again provided by
the ADCT coder. Besides, the ADCT and AGU-M coders provide the
smallest variations of PSNR-HVS-M whilst JPEG and the BPG
encoders are characterized by wider variations (since PCC values for
them can be only integer). No cases when the quality of compressed
images has been considered inappropriate have been detected.

The CR values for three modern coders are significantly larger
than for JPEG and they are considerably larger than 10. The CR
values are also, in general, considerably larger than the CR values in
Table 1 and this can be explained by the fact that images acquired by
the Dentsply Sirona system contain less noise.

TABLE 1 The obtained experimental data for the Morita imager.

Compression approach and its parameters Pd Range of PSNR-HVS-M variation (dB) Range of CR variation

JPEG-FS (QF = 60) 0.165 40.8–45.3 6–22

ADCTC-FS (QS = 12) 0.085 40.3–46.1 7–27

AGU-M-FS (SF = 8.8) 0.140 40.7–45.7 8–39

BPG-FS (Q = 28) 0.150 41.1–46.4 8–23

JPEG2st (PSNR-HVS-Mdes = 41.65 dB) 0.175 41.1–42.0 7–22

ADCTC2st (PSNR-HVS-Mdes = 41.65 dB) 0.075 41.2–42.0 8–37

AGU-M2st (PSNR-HVS-Mdes = 41.65 dB) 0.155 41.3–41.9 10–39

BPG2st (PSNR-HVS-Mdes = 41.8 dB) 0.090 41.0–43.8 9–28
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Thus, we can recommend using PSNR-HVS-Mdes = 42 dB and
the two-step procedure for providing either visually lossless
compression or lossy compression for which introduced
distortions can be hardly noticed and do not affect the diagnostic
value of dental images acquired by modern systems.

5 Conclusion

The task of visually lossless compression of dental images acquired
by two modern systems is considered. The images usually have a large
size and, due to this, it is worth applying lossy compression for their
transferring via communication lines and storage. Three approaches to
visually lossless compression are considered, namely, the use of the fixed
PCC, the use of the two-step compression, and the approach based on
the first just noticeable distortion point. It is shown by experiments
carried out by four qualified dentists for three types of monitors with
200 image fragments used in comparisons that the latter approach is not
perfect at themoment and it produces the largest percentage of situations
when distortions in compressed image fragments are noticeable and able
to negatively affect the diagnostic value of dental images.

For the two former approaches, the compression characteristics
depend on whether the noise is visible or not. For images with visible
noise, the minimal and maximal values of produced CR are smaller
than for the almost noise-free images. Note that in the latter case, the
provided CR varies from about 20 to almost 70 for modern coders
that significantly outperform JPEG (in the sense of larger CR for
approximately the same visual quality and Pd). If one would like to
have smaller Pd than in our experiments, it is possible to increase
PSNR-HVS-Mdes for the two-step approach or to use larger fixed QF
for JPEG and smaller fixed values of SF, QS, and Q for AGU-M,
ADCT, and BPG coders, respectively. However, smaller minimal
and maximal CR values are then produced.

In the future, we plan to consider other modern coders and quality
metrics. Images produced by other dental systems can be studied as
well. Considering the obtained results, it will be interesting to perform
multi-centered research, increase the number of patients and collect
data from dental centers with different geographical locations.
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