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X-ray ptychography is a coherent diffraction imaging technique that allows for
the quantitative retrieval of both the amplitude and phase information of a sample
in diffraction-limited resolution. However, traditional reconstruction algorithms
require a large number of iterations to obtain phase and amplitude images
exactly, and the expensive computation precludes real-time imaging. To solve
the inverse problem of ptychography data, PtychoNN uses deep convolutional
neural networks for real-time imaging. However, its model is relatively simple,
and its accuracy is limited by the size of the training dataset, resulting in lower
robustness. To address this problem, a series of W-Net neural network models
have been proposed which can robustly reconstruct the object phase
information from the raw data. Numerical experiments demonstrate that our
neural network exhibits better robustness, superior reconstruction capabilities
and shorter training time with high-precision ptychography imaging.
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1 Introduction

Ptychography is a technique for coherent diffraction imaging that provides quantitative
phase information of a sample in diffraction-limited resolution (Pfeiffer, 2018). It can image
a large number of thick samples in high resolution without complex sample preparation
while providing the best observation ability and application potential for materials and
biological samples. However, the long time for data acquisition and the expensive
computing resources cost for intensive data processing remain significant obstacles. In
addition, ptychography is widely used in combination with other optical techniques in
various fields such as biomedical (Shemilt et al., 2015; Bhartiya et al., 2021), chemical
(Beckers et al., 2011) and metrology (D’alfonso et al., 2014). In conventional experiments, a
small aperture or other optical device is used to focus the light probe for scanning the
sample. The diffraction pattern at each scanning position is captured by a detector. Adjacent
scanning positions require partial overlap to ensure that the recorded experimental data
contains sufficient information. However, the detector only aquires intensity while phase
information is lost. Therefore, phase retrieval algorithms are needed to recover the phase of
the recorded diffraction pattern and reconstruct the sample structure. Traditional phase
retrieval algorithms are iterative, such as ePIE (Extended Ptychographic Iterative Engine)
(Maiden and Rodenburg, 2009) and DM (Difference Map) (Thibault et al., 2008; 2009),
which require more supporting conditions and computation time to converge and obtain
the real phase information. The inherent principle of these algorithms requires that the
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overlap between adjacent scanning areas in ptychography
experiments should be greater than 50% to obtain better
reconstruction results, increasing scanning time and experimental
data volume, placed higher demands on the radiation resistance of
the sample. The increased amount of data also increases the
computational time of traditional iterative algorithms, which
places higher demands on the computing hardware. To decreases
the computational time, in 2017, Maiden et al. proposed mPIE
(Maiden et al., 2017) based on the idea of momentum gradient
descent algorithm in machine learning. After a certain number of
iterations, the distribution function update formula of the object
under test was added with a momentum term, which significantly
reduced the number of iterations and accelerated the convergence
speed of the algorithm. Kappeler et al. first proposed building
PtychNet (Kappeler et al., 2017) and other models (Nguyen
et al., 2018; Yan et al., 2020) based on Convolutional Neural
Networks (CNN) for the reconstruction of images in Fourier
ptychography (FP). In 2019, Işıl et al. (2019) constructed a new
phase recovery network by combining Deep Neural Networks
(DNN) and the Hybrid Input-Output (HIO) (Fienup, 1978)
algorithm. They embedded the DNN network into the iteration
process of HIO. In 2020, Cherukara et al. constructed the network
PtychoNN (Cherukara et al., 2020), a deep convolutional neural
network, learns the direct mapping from far-field coherent
diffraction data to real-space image structure and phase.
PtychoNN is hundreds of times faster than Ptycholib (Nashed
et al., 2014) because it understands the direct relationship
between diffraction data and image structure and phase.

Therefore, data inversion no longer requires overlap constraints,
which increases the speed of data acquisition and reconstruction by
5 times (Cherukara et al., 2020).

2 Methods

2.1 Neural networks

The network architecture of PtychoNN is designed to allow a
single network to predict both amplitude and phase, thus minimizing
the number of network weights that need to be learned. This network
only uses convolutional and up/downsampling layers (without dense
layers) to keep the number of network weights minimum, improving
the speed of training and prediction (Cherukara et al., 2020).
However, the relationship between the number of network weights
and the speed of network training is not simply linear. Therefore, we
took inspiration from ConvNext V2 (Woo et al., 2023), Squeeze-and-
Excitation Networks (Hu et al., 2018) and developed the W1-
Net model.

Figure 1 shows the architecture of W1-Net.The W1-network
architecture consists of an encoder and two decoders, enabling a
single network to predict both amplitude and phase. In comparison
to PtychoNN,W1-Net primarily focuses on increasing the depth of the
encoder network and introducing residual networks and channel
attention mechanisms. The enhancement of feature extraction
capability and expressive power is achieved through increasing the
network depth. With the increase in network depth, the network can

FIGURE 1
Architecture of W1-Net, a deep convolutional neural network.

Advanced Optical Technologies frontiersin.org02

Xing et al. 10.3389/aot.2024.1474654

https://www.frontiersin.org/journals/advanced-optical-technologies
https://www.frontiersin.org
https://doi.org/10.3389/aot.2024.1474654


learn more complex features. Shallow networks may only capture low-
level features such as edges and textures in images, while deep networks
can learn more abstract high-level features, such as parts and overall
structures of objects. Deep networks capture the inherent structure and
patterns in the data through hierarchical abstraction, thereby enabling
more accurate predictions. The introduction of residual networks aims
to address issues such as gradient vanishing or exploding that may arise
with increasingmodel depth, thereby avoiding degradation problems as
the number of layers increases. By embedding learningmechanisms, the
model captures spatial correlations and improve network performance.
The channel attention mechanism (SE block) adaptively recalibrates
channel-wise feature responses by explicitly modeling
interdependencies between channels. The encoder’s core consists of
a convolutional layer, three downsample layers, four ConvNext blocks
(stacked in a 2:2:4:2 manner), and three SE blocks. The convolutional
layer and downsample layers aim to decrease image size, thereby
reducing computation time and workload. The decoder comprises

upsample and convolutional layers, with bilinear interpolation used
in the upsample layer to reduce computation time and workload.
Additionally, double convolution and batch normalization are
employed to prevent overfitting. To achieve a wider field of view, a
larger kernel size is utilized in the ConvNext block and the first
convolutional layer of the encoder. Furthermore, SE blocks optimize
the weights between channels, and a new activation function is utilized
to improve training results.

3 Experimental results and discussions

3.1 Training configuration

To train and evaluate the W1-Net network, we utilized the
dataset provided by (Cherukara et al., 2020), which consisted of
16,100 triplets of raw coherent diffraction data, real-space

FIGURE 2
Single-shot predictions. (A) Input diffraction at different scan points, (B) predicted by PtychoNN, (C) predicted byW1-Net, (D)Ground-truth.Visually,
our W1-Net achieves better results compared to PtychoNN.

TABLE 1 Amplitude of single-shot predictions.

Scan point Models MSE PSNR (dB) SSIM

P1 PtychoNN 1.014 × 10−4 39.940 0.9803

W1-Net 8.620 × 10−5 40.645 0.9830

P2 PtychoNN 9.769 × 10−5 40.102 0.9792

W1-Net 1.234 × 10−4 39.088 0.9749

P3 PtychoNN 1.045 × 10−4 39.808 0.9831

W1-Net 6.707 × 10−5 41.735 0.9866

P4 PtychoNN 7.311×10–5 41.360 0.9839

W1-Net 8.914×10–5 40.499 0.9806

TABLE 2 Phase of single shot-predictions.

Scan point Models MSE PSNR (dB) SSIM

P1 PtychoNN 0.4118 51.984 0.9719

W1-Net 0.2427 54.280 0.9843

P2 PtychoNN 0.5274 50.910 0.9573

W1-Net 0.3076 53.251 0.9748

P3 PtychoNN 0.5580 50.664 0.9526

W1-Net 0.2730 53.770 0.9819

P4 PtychoNN 0.3093 53.228 0.9777

W1-Net 0.2480 54.186 0.9787
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amplitude, and phase images obtained from the first 100 scans of
an experimental natural material structure conducted on the
X-ray nano-probe beamline at the Advanced Photon Source
26ID. The scanning step was 30 nm over 161 × 161 points,
with a 50% spatial overlap, and the training dataset were split
90–10 into training and validation. The weights of W1-Net were
updated using adaptive moment estimation (ADAM) to minimize

the mean absolute error (MAE) per pixel, with an initial learning
rate of 0.001.

The W1-Net network was trained on PyTorch, using an Intel
Core i7-6700 CPU and an NVIDIA GeForce RTX 3060 GPU. To
evaluate the performance of the model, we compared the
experimental results of PtychoNN and W1-Net, using peak
signal-to-noise ratio (PSNR) (Horé and Ziou, 2010), mean

FIGURE 3
Effect of training data size in amplitude recovery. Images from the left to right show the performance of different models when trained on
progressively fewer training samples.

FIGURE 4
Effect of training data size in phase recovery. Images from the left to right show the performance of different models when trained on progressively
fewer training samples.
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squared error (MSE) (Horé and Ziou, 2010), and structural
similarity index (SSIM) as quantitative indicators for a
comprehensive analysis of the models.

3.2 Experiment results

3.2.1 Single-shot experiment results
Figure 2 shows single-shot examples of the performance of

PtychoNN and W1-Net on data from the test region of the
experimental scan.We can observe that by using our W1-Net
network, we are able to reconstruct the fine details of objects
more completely, especially in terms of reconstructing edge
information. In contrast, the reconstruction results of PtychoNN
lose a lot of edge information. Furthermore, from our data Tables 1,

2, it is clear that W1-Net exhibits higher peak signal-to-noise ratio
(PSNR), structural similarity index (SSIM), and lower mean squared
error (MSE) for these representative scanning points.

These metrics are important standards for measuring the quality
of image reconstruction. A higher PSNR value indicates less noise
difference between the reconstructed image and the original image, a
higher SSIM value indicates higher structural similarity between the
reconstructed image and the original image, and a lower MSE value
means a smaller overall error between the reconstructed image and
the original image.

Because, in the experiment, the detector only obtains the
intensity and loses the phase information, so we pay more
attention to phase retrieval. Therefore, based on these results, we
can conclude that our W1-Net network performs better in
reconstructing object details and edge information, and achieves

TABLE 3 Results of different training epochs.

Epoch Models MSE (Amplitude) MSE (Phase) SSIM(Amplitude) SSIM(Phase)

10 PtychoNN 5.12 × 10−4 0.0910 0.9872 0.9930

W1-Net 4.78 × 10−4 0.0728 0.9879 0.9946

20 PtychoNN 4.00 × 10−4 0.0894 0.9897 0.9929

W1-Net 3.97 × 10−4 0.0753 0.9897 0.9952

40 PtychoNN 4.07 × 10−4 0.0928 0.9894 0.9924

W1-Net 3.96 × 10−4 0.0770 0.9896 0.9946

FIGURE 5
Architecture of W2-Net, a deep convolutional neural network that based on W1-Net.
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FIGURE 6
Architecture of W3-Net, a lightweight and efficient network that based on W1-Net.

FIGURE 7
Different models results. (A): Ground-truth; (B): PtychoNN; (C): W3-Net; (D): W1-Net; (E): W2-Net. Visually, the reconstruction results improve
progressively from left to right.

TABLE 4 Performance comparison of the three models on the same dataset.

Models PSNR (Amplitude)(dB) PSNR (Phase)(dB) SSIM(Amplitude) SSIM(Phase) EVA (Phase)

W1-Net 44.027 59.211 0.9897 0.9941 0.855

W3-Net 43.981 58.959 0.9897 0.9939 0.869

PtychoNN 43.721 58.559 0.9890 0.9930 0.832
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better performance than PtychoNN across multiple metrics of phase
reconstruction.

3.2.2 Effect of training data size on performance
The training of neural networks requires a large amount of

training data and computational resources. The quantity and size of
training samples directly affect the training time and model
accuracy. Therefore, we conducted a performance evaluation of
W1-Net and PtychoNN using the same training data.

The results showed Figure 3, 4 that W1-Net outperforms
PtychoNN in terms of reconstruction quality with the same
training data. Particularly, W1-Net performs well even with fewer
training samples, indicating its better robustness. This allows us to
train W1-Net with less training data, reducing the demand for
computational resources.

3.2.3 Effect of training epochs on performance
Furthermore, a robust network should exhibit relatively positive

test results and faster convergence speed across different
training epochs.

The results showed in Table 3 that W1-Net has lower mean
squared error (MSE) and higher structural similarity index (SSIM)
within the same training epochs. This means that W1-Net can
converge faster during the training process and achieve relatively
positive test results at each training epoch.

In conclusion, our W1-Net network demonstrates better
reconstruction performance, better robustness, and faster
convergence speed with the same training data. This makes it a
promising choice for achieving high-quality image reconstruction in
resource-constrained scenarios.

3.2.4 Scalability of the model
Our results demonstrated that W1-Net outperformed

PtychoNN in terms of accuracy, despite having a larger number
of parameters and model size.Moreover, In addition, we tested the
W2-Net Figure 5 and W3-net Figure 6 models based on W1-Net by
changing the number of filters, the number of stacked blocks and
other minor adjustments.

By replaced Convolution with Depthwise Convolution (Chollet,
2017) and reduced the number of convolutional layers, filters and
ReLu, W3-Net achieved the same reconstruction precision, and the
parameters were only 8.26 percent of PtychoNN. Greatly reduced
inference time from 21.437 ms for PtychoNN to 15.823 ms for W3-
Net and alleviated hardware requirements on real-time
ptychographic imaging.

Under the same data set for 60 epoch, the results shown in the
Figure 7 and Tables 4, 5 showed that the W-series network shows

better reconstruction performance. Additionally, W1-Net
produced fewer noticeable artifacts or blurs, resulting in
faster and more precise data reconstruction. W2-Net shows
superior performance in phase recovery. W3-Net had a faster
training speed and proposed a lightweight and efficient
network model.

4 Conclusion

In this paper, we introduce a series of novel W-Net model
including a lightweight network W3-Net that effectively addresses
the phase and amplitude reconstruction problems in
ptychography. Compared to PtychoNN, our W1-Net model not
only requires less training time but also exhibits superior
reconstruction results. Specifically, our model achieves lower
mean squared error (MSE) and higher structural similarity
index (SSIM) in phase reconstruction. This indicates that our
W1-Net model can accurately recover the phase information of
the images.

Furthermore, our W1-Net model demonstrates higher
scalability. We demonstrate in our study that the W2-Net model
achieves better recovery results when sufficient computational
resources and hardware are available. W3-Net reduced inference
time and hardware requirements on real-time ptychographic
imaging.This further confirms the scalability and adaptability of
the W1-Net model.

In summary, our research presents a novel W-Net model,
namely, W1-Net, for solving the phase reconstruction problems
in ptychography. Compared to traditional PtychoNN methods, our
model offers significant advantages in terms of training time,
reconstruction performance, and scalability. This provides a more
efficient, accurate, and scalable solution for research and practical
applications in the field of ptychography.
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