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The advent of X-ray Free Electron Lasers (XFELs) has opened unprecedented
opportunities for advances in the physical, chemical, and biological sciences.
With their state-of-the-art methodologies and ultrashort, and intense X-ray
pulses, XFELs propel X-ray science into a new era, surpassing the capabilities
of traditional light sources. Ultrafast X-ray scattering and imaging techniques
leverage the coherence of these intense pulses to capture nanoscale structural
dynamics with femtosecond spatial-temporal resolution. However, spatial and
temporal resolutions remain limited by factors such as intrinsic fluctuations and
jitters in the Self-Amplified Spontaneous Emission (SASE) mode, relatively low
coherent scattering cross-sections, the need for high-performance, single-
photon-sensitive detectors, effective sample delivery techniques, low parasitic
X-ray instrumentation, and reliable data analysis methods. Furthermore, the high-
throughput data flow from high-repetition rate XFEL facilities presents significant
challenges. Therefore, more investigation is required to determine how Artificial
Intelligence (AI) can support data science in this situation. In recent years, deep
learning has made significant strides across various scientific disciplines. To
illustrate its direct influence on ultrafast X-ray science, this article provides a
comprehensive overview of deep learning applications in ultrafast X-ray
scattering and imaging, covering both theoretical foundations and practical
applications. It also discusses the current status, limitations, and future
prospects, with an emphasis on its potential to drive advancements in fourth-
generation synchrotron radiation, ultrafast electron diffraction, and attosecond
X-ray studies.
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1 Introduction

The ability to capture ultrafast dynamics far-from-equilibrium with angstrom to
nanometer spatial resolution has revolutionized the fundamental findings of physical,
chemical, and biological sciences (Lindroth et al., 2019). X-ray free-electron lasers (XFELs)
have turned the once-theoretical dream of capturing ultrafast phenomena at nanoscale
resolutions into a practical reality (Pellegrini, 2016). As a groundbreaking light source,
XFELs enable the creation of molecular movies, offering unprecedented insights into the
fundamental interactions of matter at previously inaccessible temporal and spatial scales.
These state-of-the-art facilities generate extremely intense, ultra-short X-ray pulses,
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allowing researchers to investigate electron and nuclear interactions
on timescales as short as tens of femtoseconds. Since the operation of
the world’s first hard X-ray free-electron laser at the Linac Coherent
Light Source (LCLS) of SLAC National Accelerator Laboratory
(Emma et al., 2010), XFELs have been utilized across nearly all
fields of natural science. Applications span biological imaging,
protein crystallography, femto-chemistry, condensed matter
physics, and atomic, molecular, and optical (AMO) science
(Bostedt et al., 2016).

In the early years, methods adapted from synchrotron sources
and optical lasers—such as imaging, spectroscopy, scattering, and
crystallography—were integrated into the XFEL community.
Among these, lensless imaging techniques, particularly coherent
diffraction imaging, have attracted significant attention due to their
potential for achieving high-resolution images (Gaffney and
Chapman, 2007; Miao, et al., 1998). When coupled with the
ultrafast capabilities of XFELs, these methods have propelled
imaging into an entirely new era (Chapman et al., 2006; Miao
et al., 2015). A notable method is single-particle imaging (SPI)
(Aquila et al., 2015). This technique relies on coherent diffraction
and operates on the principle of “diffraction before destruction”
(Neutze et al., 2000). SPI has emerged as a powerful approach for
determining native structures, and it has been successfully applied to
imaging a wide variety of targets, including biological viruses
(Ekeberg et al., 2015; Seibert et al., 2011), bacteria (Kimura et al.,
2014), organelles (Gallagher-Jones et al., 2014; Hantke et al., 2014),
clusters (Bostedt et al., 2008; Gorkhover et al., 2016), aerosols (Bogan
et al., 2010; Loh et al., 2012), self-assembled structures (Sun et al.,
2018), and nanoparticles (Clark et al., 2015; Clark et al., 2013; Xu
et al., 2014). The best spatial resolution achieved for reproducible
objects is around 3 nm (Ayyer et al., 2021). In the field of time-
resolved research, topics such as thermal and nonthermal melting
(Ferguson et al., 2016; Ihm et al., 2019; Jung et al., 2021), as well as
light-matter interactions (Gorkhover et al., 2012), have been
particularly prevalent. Recent advances, including the
establishment of high-repetition-rate XFEL facilities such as the
European XFEL (Decking et al., 2020), LCLS-II/LCLS-II-HE (Zhou
et al., 2021), and SHINE (Huang et al., 2021), have enabled the rapid
collection of high-throughput diffraction data, greatly enhancing
experimental efficiency. However, the high throughput data
generated presents significant challenges, particularly in data
processing. Moreover, processing time-resolved datasets to
construct quasi-particle movies requires complex steps. These
include pattern recognition, filtering, orientation determination,
and phase retrieval. Traditional data-processing methods often
struggle to handle these tasks efficiently.

In this context, machine learning (Baldi et al., 2002; Jordan and
Mitchell, 2015), particularly deep learning (LeCun et al., 2015), has
emerged as a powerful tool for addressing these challenges. Recent
breakthroughs in artificial neural networks have sparked widespread
interest across diverse sectors, including academia, industry, and
beyond. Deep learning excels at identifying complex patterns in
large datasets. Combined with increased computational power and
the availability of big data, it has become a transformative tool in
scientific research. In particular, deep learning has made significant
strides in image processing, surpassing traditional methods in tasks
such as object recognition and classification (Farabet et al., 2013;
Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; Ioffe and

Szegedy, 2015; Tompson et al., 2014). This rapid evolution has led to
a surge of interest and investment in deep learning, creating new
opportunities for its application in diverse fields, including ultrafast
scattering and imaging.

This overview provides a comprehensive outline of deep
learning applications in ultrafast X-ray scattering and imaging. It
explores both the theoretical foundations and practical
implementations of deep learning techniques, focusing on their
potential to revolutionize the analysis of XFEL data. The paper is
organized into three sections: (1) A brief introduction to the core
theory and key concepts of deep learning, including an overview of
common models used in image processing and analysis; (2) A
discussion of how deep learning can be applied to process and
analyze XFEL data, outlining its advantages and challenges; and (3)
An evaluation of the strengths and limitations of these methods,
along with potential directions for future research. By addressing
these aspects, the paper aims to demonstrate the significant impact
of deep learning on ultrafast X-ray scattering and imaging,
encouraging further exploration in this interdisciplinary area.

2 Foundations of machine learning and
neural networks

2.1 Machine learning

Machine learning focuses on developing computational
techniques that learn patterns from data to build predictive
models. These mathematical models are trained through
parameter optimization using input-output examples, enabling
them to generalize to new datasets. The training process involves
iterative refinement guided by validation set performance, followed
by final evaluation on test data simulating real-world applications.
Three primary paradigms govern this field: “supervised learning”
dominates current practice by training models on labeled datasets
for pattern recognition tasks; “unsupervised learning” identifies
inherent structures in unlabeled data through clustering and
feature extraction; while “reinforcement learning” employs trial-
and-error environmental interactions to optimize goal-oriented
behaviors, exemplified by DeepMind’s AlphaGo systems (Silver
et al., 2017).

2.2 Artificial neural networks

Artificial neural networks (ANNs), inspired by biological neural
systems, were introduced in the 1980s (Feldman, et al., 1988;
Lippmann, 1987). These networks consist of interconnected
nodes structured into layered architectures, including input,
output, and variable hidden layers (Rosenblatt, 1958). Based on
connection patterns, ANNs are categorized as “feedforward
networks” (Figure 1 with unidirectional data flow for static
input-output mapping, or “feedback networks” that use cyclic
connections to achieve dynamic equilibria through iterative
processing. Perceptron is a common feedforward network
(Rosenblatt, 1958), while examples of feedback networks include
the Hopfield net (Hopfield, 1982) and Kohonen self-organizing
maps (Kangas, et al., 1990; Kohonen, 1990).
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The ANN employs a learning process to train the network by
adjusting weights to desired values. Learning falls into two main
categories: supervised learning and unsupervised learning. In
supervised learning, a training set with input-output examples is
provided to adjust weights and minimize output errors. The training
set must be representative of the model for effective learning. Once
trained, the network can be used when it produces desired outputs.
Unsupervised learning, on the other hand, does not use target
outputs and focuses on identifying patterns in input data alone.
Different types of networks require specific learning processes.

While ANNs have long been valued for their ability to solve
complex problems, their practical use was historically limited by
computational costs and training challenges. Recent advancements
in big data, GPU processing, and improved algorithms have elevated
ANNs to a dominant position in machine learning. These
developments have spurred rapid progress, influencing broader
AI research. Today, ANNs excel at modeling nonlinear
relationships, offering superior fault tolerance, speed, and
scalability through parallel processing, outperforming traditional
regression methods.

2.3 Deep feedforward networks

Deep learning has transformed artificial intelligence through
multi-layered neural networks capable of autonomous pattern
recognition (LeCun et al., 2015). While backpropagation
(Hopfield, 1982) established foundational weight adjustment
mechanisms, limitations like local optima and overfitting
persisted. A breakthrough occurred with Hinton’s layer-wise
greedy learning (Hinton et al., 2006), which combined
unsupervised pre-training for feature extraction with supervised
fine-tuning, leveraging big data to mitigate overfitting and improve
convergence.

Critical technical advances enabled deeper architectures: “ReLU
activation functions” (Nair and Hinton 2010) overcame vanishing

gradients through non-saturating derivatives; “convolutional layers”
(Krizhevsky et al., 2012; Lecun and Bengio, 1995) automated spatial
feature learning, eliminating manual engineering. These innovations
allowed networks to progressively abstract hierarchical
representations through pooling and specialized layers,
establishing end-to-end learning frameworks.

2.4 Convolutional neural networks

Convolutional Neural Networks (CNNs) are specialized
architectures designed to efficiently process image data by
preserving spatial relationships. Unlike traditional feedforward
networks, which inefficiently connect all nodes across layers,
CNNs employ structured layers (Figure 2): “convolutional layers”
extract features using parameterized filters (O’Shea and Nash, 2015),
reducing learnable weights through weight sharing; “activation
layers” introduce non-linearity to feature maps (Klabjan and
Harmon 2019); and “pooling layer” down-sample features by
aggregating small grid regions into single outputs (Sun et al.,
2017). Additionally, CNNs enhance performance through
techniques like “dropout regularization”, which randomly
deactivates neurons during training to prevent overfitting (Baldi
and Sadowski, 2014), and “batch normalization”, which
standardizes activation maps to accelerate convergence and
reduce sensitivity to parameter initialization (Ioffe and Szegedy,
2015). Together, these components and techniques improve training
efficiency, robustness, and overall model performance.

Modern CNN architectures combine these components in
increasingly complex ways to optimize performance for specific
image-oriented tasks. Popular CNN architectures include LeNet
(Lecun, et al., 1998), AlexNet (Krizhevsky et al., 2012), ResNet (He
et al., 2020), and VGG (Simonyan and Zisserman, 2014), each
building on ideas and insights from previous architectures to
push the state-of-the-art in image processing. Implementing
CNNs is typically done using frameworks like TensorFlow, Keras,

FIGURE 1
A typical three-layer feed-forward network architecture. Circular shapes represent neurons organized into layers, with a series of linearly arranged
blue solid circles forming the input layer, blue hollow circles representing the hidden layer, and black solid circles representing the output layer.
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or Pytorch, which are built on NVIDIA’s CUDA platform and are
actively developed in the machine learning research community.

2.5 Important architectures in deep learning

The advancements discussed in the preceding sections have
significantly enhanced signal, image, video, and audio processing, as
elaborated earlier. While a comprehensive overview of all
developments is beyond the scope of this document. In the
following section, we will briefly touch upon select advanced
network architectures that we consider to have had, or will have,
a notable impact on the processing of ultrafast X-ray imaging data.

Autoencoders (Hinton and Salakhutdinov 2006, Vincent et al.,
2008) are used for unsupervised learning and data compression. The
main purpose of an autoencoder is to learn a compressed, lower-
dimensional representation of the input data, and then reconstruct
the original input data from this compressed representation. An
autoencoder consists of an encoder network and a decoder network.
The encoder network compresses the input data into a latent
representation, while the decoder network reconstructs the input
data from this compressed representation.

U-Net (Ronneberger et al., 2015) is a deep learning architecture
designed for image segmentation tasks. It features a symmetric
encoder-decoder structure with skip connections, making it
particularly effective for high-resolution image segmentation. The
U-Net architecture consists of an encoder that captures the
contextual information of the input image and a decoder that
generates the segmentation output. The skip connections between
the encoder and decoder help preserve fine details and prevent
information loss by connecting feature maps from different levels.
U-Net has demonstrated remarkable performance in various image
segmentation tasks, especially in scenarios with limited training data
and the need for high-resolution segmentation results. Its simple yet
efficient architecture has made U-Net a classic model in the field of
image segmentation. Originally proposed in 2D, it has since been
applied to 3D as well.

Generative adversarial networks (GANs) are a type of deep
learning framework introduced by Ian Goodfellow (Goodfellow

et al., 2014). GANs consist of two neural networks, the generator
and the discriminator, trained simultaneously through a competitive
process. The generator creates new data instances based on random
noise input, aiming to produce data indistinguishable from real data.
The discriminator evaluates generated data instances, distinguishing
them from real data. During training, the generator and
discriminator engage in a minimax game. The generator strives
to produce realistic data to deceive the discriminator, while the
discriminator attempts to distinguish between real and generated
data. GANs have been used in various applications such as image
generation (Karras et al., 2017; Radford et al., 2015), image-to-image
translation (Isola et al., 2017; Zhu et al., 2017), and style transfer
(Gatys et al., 2016; Johnson et al., 2016), showing success in
generating high-quality data samples.

Google’s Inception Network, also known as GoogLeNet (Ioffe
and Szegedy, 2015), is a deep convolutional neural network
architecture developed by Google researchers in 2014. It is
designed to achieve high accuracy in image classification tasks
while being computationally efficient. The main highlight of the
Inception Network is the introduction of the “inception block,”
which allows for parallel computation of convolutions and pooling
operations. By incorporating multiple parallel convolutional
operations of different sizes (such as 1 × 1, 3 × 3, 5 × 5) and
max pooling within the inception block, the network can capture
features at various scales and resolutions simultaneously. In 2014,
the Inception Network won the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC), demonstrating its effectiveness
in image classification tasks. Since then, the Inception architecture
has been widely adopted and adapted for various deep learning
applications, including object detection, image
segmentation, and more.

ResNets, or Residual Networks (He et al., 2016), were
developed by researchers to enable training of very deep
neural networks effectively. The key innovation of ResNet is
the use of residual connections, or shortcut connections. It allows
gradients to flow more easily through the network. By
introducing residual blocks, ResNets address the issue of
vanishing gradients in deep networks. The concept of residual
learning in ResNets involves learning the residual mapping

FIGURE 2
Illustration of the Convolutional Neural Network (CNN) architecture, with the blue-highlighted layers representing the feature extraction process.
These convolutional and pooling layers automatically identify hierarchical patterns within the input data, which are subsequently processed by fully
connected layers for prediction.
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between input and output, rather than the direct mapping. This
approach enables the training of very deep neural networks with
hundreds or even thousands of layers. ResNets have been widely
adopted in various deep learning tasks, such as image
classification and object detection, and have achieved state-of-
the-art performance on benchmark datasets.

YOLO (You Only Look Once) (Redmon et al., 2016) is a real-
time object detection system proposed by Redmon et al., in 2016. It
is known for its speed and accuracy in detecting objects in images or
videos. YOLO adopts a single neural network that predicts bounding
boxes and class probabilities directly from full images in one
evaluation. This approach eliminates the need for multiple region
proposals and extensive post-processing, making YOLO faster and
more efficient than traditional object detection systems. The YOLO
architecture divides the input image into a grid and predicts
bounding boxes and class probabilities for each grid cell. YOLO
has been widely used in various applications, including autonomous
driving, surveillance, and image analysis. Its ability to provide real-
time object detection with high accuracy has made YOLO a popular
choice in the field of computer vision.

3 Machine learning and deep learning
application

3.1 Image classification

In ultra-fast imaging and scattering experiment setups, a
succession of identical single particles will be intercepted by
intense X-ray pulses to capture diffraction snapshots before each
particle is destroyed. However, several challenges and complications
often arise during this process. Firstly, the synchronization between
particle injectors (DePonte et al., 2008; Kirian et al., 2015; Sierra
et al., 2012) and X-ray pulses is often imperfect, leading to a mix of
blank shots and successful exposures. Injected particles may also
vary in composition, containing none, one, or multiple target
particles, while contamination can introduce snapshots of other
species. Fluctuations in beam intensity, incomplete particle
exposure, and detection artifacts, such as saturation and charge
bleeding, further complicate the data (Figure 3). These factors create
large, heterogeneous datasets with blank frames, mixed-species
snapshots, and noise, making it challenging to isolate single-

FIGURE 3
(A) SPI experiment setup. (B) Blank pattern. (C–D) Multiple particles. (E) Diffraction data of a single particle of an icosahedral virus. The first step in
data analysis is to identify single-particle datasets within the massive dataset that can be used for reconstruction. Reproduced with permission from (Liu
et al., 2019).
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particle hits. Snapshots of identical single particles are important for
three-dimensional structure retrieval, but their scarcity severely
restricts experimental efficiency.

Initially, single-particle data classification was manually
implemented. However, in many cases, especially with high
repetition rate free-electron lasers, data volumes exceeding 106/
h posed significant challenges for data classification. In 2011, C.
Yoon et al. presented an unbiased, accurate, and computationally
efficient method for classifying experimental X-ray diffraction
snapshots without relying on templates, specific noise models,
or user-directed learning (Yoon et al., 2011). The approach utilized
spectral clustering, a kernel-based Principal Component Analysis
(PCA) method (Ham et al., 2004), which leveraged nonlinear
correlations in the dataset across various length scales to
classify snapshots. The results demonstrated a 90% agreement
with manual classification. In 2015,S. A. Bobkov et al. applied PCA
and support vector machine (SVM) (Cortes and Vapnik, 1995)
algorithms to the simulated and measured single particle imaging
data sets (Bobkov et al., 2015). This approach relies on
constructing a feature vector using parameters that reflect the
underlying diffraction physics. These parameters capture the
relationship between a particle’s real-space structure and its
reciprocal-space intensity distribution. While both methods
demonstrate accurate clustering of the simulated data, only the
SVM algorithm allowed to classify different biological species in
the experimental data set. In 2019, J. Liu et al. presented two
supervised template-based learning methods for classifying SPI
patterns (Liu et al., 2019). The Eigen-Image and LogLikelihood
classifiers can quickly find the best-matched template for a single-
molecule pattern within milliseconds and can be easily parallelized
to match the XFEL repetition rate, allowing for on-site processing.
These methods demonstrate stable performance on different types
of synthetic data and were tested on a real mimivirus dataset
(Arslan et al., 2011; Seibert, et al., 2011), achieving a classification
accuracy of 0.9.

These custom-defined algorithms are developed with significant
effort to approximate the specific features associated with an
individual specimen so they can be effective to some extent.
Nevertheless, when encountering diverse experimental conditions,
these methods may struggle to generalize effectively. Researchers
must carefully consider the advantages and disadvantages of
utilizing generic machine learning classification methods as
opposed to custom algorithms in order to determine the most
appropriate approach for their research requirements.
J. Zimmermann et al. presented the use of a deep neural network
(Resnet 18) as a feature extractor for wide-angle diffraction images
of helium nanodroplets (Figure 4), showcasing its effectiveness in
sorting and classifying complex diffraction patterns (Zimmermann
et al., 2019). The deep neural networks outperformed previous
algorithms and provided valuable assistance in post-processing
large amounts of experimental imaging data.

At the same time, two supervised algorithms based on the
convolutional neural network (CNN) and graph cut (GC)
framework were introduced to SPI data classification (Shi et al.,
2019; Yin and Tai, 2017). The performance of these algorithms have
been compared to the DM manifold embedding method (Giannakis
et al., 2012; Giannakis et al., 2012) in PR772 virus particles (Coetzee
et al., 1979). The results demonstrated that the common subset
formed by the consensus of three methods might be less biased
towards any particular conformational state. In 2021, Ignatenko
et al. employed the fast object detector networks YOLOv2 and
YOLOv3 to classify SPI data (Ignatenko et al., 2021). They
compared the classification results of the two networks with
different depth and architecture by applying them to the same
SPI data with varied data representation. In the next year, they
introduced two CNN configurations optimized for maximizing
F1 score and high recall, respectively, and combines them with
expectation-maximization (EM) selection and size filtering
techniques (Assalauova et al., 2022). The introduction of CNNs
streamlines the reconstruction pipeline (Figure 5), enables real-time

FIGURE 4
Schematic visualization of a convolutional neural network used for image classification. Reproduced with permission from (Zimmermann
et al., 2019).

Advanced Optical Technologies frontiersin.org06

Hu et al. 10.3389/aot.2025.1546386

https://www.frontiersin.org/journals/advanced-optical-technologies
https://www.frontiersin.org
https://doi.org/10.3389/aot.2025.1546386


pattern classification, and enhances control over experiment
duration in SPI experiments.

While supervised learning solutions based on artificial neural
network (NN) models scale linearly, they necessitate a large number

of labeled examples from data collected during beamtime and
additional time for model training, thus preventing real-time
classification. In 2023 C. Yoon et al. introduce SpeckleNN
(Figure 6), a unified embedding model (Wang et al., 2023) for

FIGURE 5
CNN based SPI workflow. SPI workflow. Black arrows indicate the typical steps in SPI data analysis (Assalauova et al., 2020). Blue arrows show the
implementation of CNN-based single-hit diffraction-pattern classification (Ignatenko et al., 2021). Red arrows show the modified workflow for CNN-
based classification prior to the particle size filtering step. In the initial SPI data analysis workflow, Ivan et al. incorporated a CNN architecture for diffraction
image classification. This method, in conjunction with various filtering techniques, resulted in a higher accuracy single-particle dataset, thereby
improving the resolution of 3D reconstruction. Reproduced with permission from (Assalauova et al., 2022).

FIGURE 6
Triplet network architecture for model training. Three input examples (anchor, positive and negative) are propagated through the triplet NN
simultaneously. Anchor and positive share the same label, thus forming amatching pair. In contrast, anchor and negative do not share the same label, thus
forming an opposing pair. The three CNNs and FC layers share the sameweights in the triplet network. After examples are embedded to a lowdimensional
vector space, a triplet loss function is used to simultaneously maximize similarities between matching embeddings and minimize those between
opposing embeddings. A side-by-side comparison of three embeddings in a triplet are annotated at the upper right corner. Reproduced with permission
from (Wang et al., 2023).
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real-time speckle pattern classification with limited labeled examples
that can scale linearly with dataset size. This method achieves few-
shot classification on new, unseen samples. It performs robustly
even with only a few dozen labels per category and can handle
significant missing detector areas. Without the need for extensive
manual labeling or even complete detector images, this method also
showcases the great potential of deep learning in real-time high-
throughput SPI experimental data classification. In the same year,

J. Zimmermann introduced a Resnet50-D-based self-supervised
contrastive projection learning method to find the semantic
similarity in single-particle diffraction patterns (Zimmermann
et al., 2023), achieving a dimensionality reduction producing
semantically meaningful embeddings that align with
physical intuition.

Beyond single-particle classification, deep learning has found
applications in other ultra-fast experimental data classifications. For

FIGURE 7
The network architecture used for phase recovery by Cherukara et al. (A) depicts the initial structure used for 2D data in 2018 (Cherukara et al., 2018)
(B) shows the improved network structure in 2020 (Chan et al., 2020) Reproduced with permission from (Chan et al., 2020; Cherukara et al., 2018).

FIGURE 8
Diagram of the neural network structure of the AutoPhaseNN model. (A) The model consists of a 3D CNN and an X-ray scattering forward model.
The 3D CNN utilizes one convolutional encoder and two deconvolutional decoders. (B) The X-ray scattering forward model includes numerical
diffraction modeling and image shape constraints. It extracts amplitude and phase from the output of the 3D CNN to form a complex image.
Subsequently, the estimated diffraction pattern is obtained by performing Fourier Transform on the estimate of the real-space image. The
estimation in (B) is used to optimize the loss function in (A). Reproduced with permission from (Yao et al., 2021).
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example, in SAXS image classification, Convolutional Neural
Networks (CNNs) and Convolutional Autoencoders have been
employed (Wang et al., 2017). In defect classification, a 3D CNN
was developed and trained to rapidly and accurately classify defects
in nanocrystals of common face-centered cubic (fcc) transition
metals (Lim et al., 2021). To further enhance defect identification
efficiency, a novel data generation mechanism, termed “smart
continual learning,” was introduced, surpassing previously
published approaches (Yildiz et al., 2024). In femtosecond
crystallography, three weakly supervised CNN models were
utilized to identify SFX frames with crystal diffraction (Xie et al.,
2023). Additionally, an unsupervised deep learning framework was
developed for automated classification of relaxation dynamics in
X-ray photon correlation spectroscopy. This approach requires no
prior physical knowledge of the system, demonstrating its potential
for analyzing experimental data (Horwath et al., 2024).

3.2 Phase retrieval

Single-particle imaging involves capturing the coherent X-ray
diffraction intensity of particles in reciprocal space to determine
their internal complex structure (Bielecki et al., 2020; Chapman and
Nugent, 2010; Walmsley, 2015; Xiong et al., 2014). The phase

information corresponding to this intensity is lost during
measurement. To recover this missing phase information,
iterative phase retrieval methods (Elser, 2003; Elser et al., 2007;
Fienup, 1982; Gerchberg, 1972; Luke, 2005) alternate between
detector and object spaces, applying constraints iteratively. Except
for special cases of ill-posed structures, a unique reconstruction
result can be expected in two or three dimensions, depending on the
known symmetries of the Fourier transform.

However, these iterative phase retrieval methods typically
require numerous iterations to converge to a confident solution,
making them time-consuming and sensitive to factors like the initial
guess of X-ray intensity phase, assumed support boundaries, and
algorithm (Gao et al., 2021; Marchesini, 2007; Shechtman et al.,
2015). Studies (Huang et al., 2010; Marchesini et al., 2003; Wang Z.
et al., 2020) have highlighted the importance of correctly
determining the support for convergence. While methods like
“shrink-wrap” (Marchesini et al., 2003) support and adaptive
support (Wang Z. et al., 2020) have been proposed, they still
necessitate a substantial number of iterations to converge.
Moreover, for structured nanoscale particles with complex phase-
shifting domains, such as those in superconductors or catalysts,
iterative methods struggle to provide high-confidence solutions due
to their multi-center diffraction patterns. Consequently, the
challenge of obtaining reliable unique solutions to the phase

FIGURE 9
Schematic illustration of the complex-valued neural network for phase retrieval. (A) Architecture of the C-CNNmodel. (B) Convolutional operation
for complex number. (C) Pipeline of the unsupervised learning for real experimental data. The output of the pre-trained model on synthetic data is
employed as the starting point, and the training is continued with a Fourier transform constraint on experimental data. Reproduced with permission from
(Yu et al., 2024).
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problem limits the effectiveness of iterative phase retrieval methods
in single-particle imaging experiments.

Efforts have been made to overcome the issues caused by time-
consuming and computationally expensive phase retrieval
algorithms. In 2018, Cherukara et al. introduced CDI NN
(Figure 7A), a pair of deep deconvolutional networks capable of
predicting structure and phase in the real space of a 2D object from
its far-field diffraction intensities (Cherukara et al., 2018). The
network required two separate training stages, one for learning
the mapping from 2D diffraction patterns to real-space structure
and another for phase mapping. Trained CDI NN can quickly
convert diffraction patterns into images within milliseconds on a
standard desktop machine, enabling real-time imaging without the
previous constraints of being time-consuming and computationally
expensive. Building on this success, 2 years later, they proposed 3D-
CDI-NN (Chan et al., 2020), a deep convolutional neural network
and differential programming framework designed for 3D nanoscale
X-ray imaging (Figure 7B). They enhanced the network architecture
by introducing a novel design comprising one encoder and two
decoders. In this updated network, the input consists of 3D intensity
data, while the output includes both amplitude and phase
information. This new architecture shifts the mapping pattern
from a one-to-one mapping to a one-to-two mapping, allowing
for the establishment of a comprehensive mapping relationship

between the input data and the two output datasets through a
single training process.

In 2021, I. Robinson et al. achieved the reconstruction of
amplitude and phase information from the 2D diffraction
modulus in reciprocal space with high accuracy and speed using
a similar one2two-network architecture (Wu et al., 2020).
Furthermore, in response to the challenge of achieving a distinct
inversion of experimental data amidst noise, they proposed to
overcome this limitation by integrating a similar network
architecture to 3D intensity phase retrieval (Wu et al., 2020).
Additionally, the model can refine predicted outcomes using
transfer learning and learn missing phases in an image solely
through minimizing a suitable ‘loss function.’ Demonstrations
have shown significantly improved performance with
experimental Bragg CDI data compared to traditional iterative
phase retrieval algorithms.

However, such deep learning models require vast amounts of
labeled data, which can only be obtained through simulation or
performing computationally prohibitive phase retrieval on
hundreds of or even thousands of experimental datasets. In 2021,
Y. Yao introduced an unsupervised learning method named
AutoPhaseNN (Yao et al., 2021) (Figure 8) to tackle the
requirement for extensive labeled data. Using 3D nanoscale X-ray
imaging (specifically Bragg Coherent Diffraction Imaging or BCDI)

FIGURE 10
(A) The network structure for k-space denoising is based on a U-Net design, comprising an encoder and a decoder. Skipped connections exist
between the encoder and decoder layers, and convolution operations are replaced by partial convolutions. (B) In the comparison of denoising results, it is
evident that the deep learning denoising method, as opposed to Gaussian smoothing, preserves more details and closely resembles the true image. The
reconstruction results also indicate an improvement in the reconstructed data after deep learning denoising compared to the original data.
Reproduced with permission from (Lee et al., 2021).
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as an example, AutoPhaseNN is a deep learning-based approach
that tackles the phase retrieval problem without requiring labeled
data. By incorporating the physics of the imaging technique into the
model during training, AutoPhaseNN can invert 3D BCDI data
from reciprocal space to real space in a single step. Once trained,
AutoPhaseNN is around one hundred times faster than traditional
iterative methods while producing similar image quality.

Later, Ian et al. further improved the network architecture (Yu
et al., 2024). They noted that most previous studies used real-valued
neural networks for phase retrieval problems, treating the amplitude
and phase (or real and imaginary) information of a sample as two
separate outputs with weak physical connections between them.
Building on this observation, they introduced complex-valued
operations in a CNN architecture (Figure 9) to better capture the
relationship between phase and amplitude. The complex-valued
neural network based approach outperforms the traditional real-
valued neural network methods in both supervised and
unsupervised learning manner.

3.3 Diffraction pattern denoising

Achieving high resolution for small biological structures, such as
proteins, viruses, is challenging because it requires a low background
and a high hit rate. Photons scattered from the sample delivery’s
residual driving gas and optical instruments will add a background
signal that is often comparable in strength to the signal originating
from sample. The presence of experimental noise in largely
fluctuating diffraction data poses practical challenges that impede
consistent phase recovery.

Deep networks have also been applied in image denoising (Liang
and Liu 2015; Xu et al., 2015), which is an important branch of image
processing technologies. Deep learning has also been applied for
image denoising in the field of ultrafast imaging. In 2021, C. Song
et al. implemented a k-space CNNmodel (Figure 10) to address this
issue (Lee et al., 2021). The network utilizes a U-Net architecture,

where the decode layers have skipped connections with
corresponding encode layers, and convolution operations are
replaced by partial convolutions. Despite being a fully data-
driven network, this model demonstrates excellent performance
in improving image quality. The model effectively handles noise
in coherent diffraction patterns, enhancing phase retrieval
performance for single-pulse diffraction patterns obtained from
XFEL experiments without requiring any prior object information.

Bellisario et al. also introduced U-Net network pipeline that
aims to restore diffraction intensities to tackle the challenges posed
by noise and masks (Bellisario et al., 2022). The method was
compared with a low-pass filtering algorithm based on
autocorrelation constraints. Results show a significant
improvement in mean-squared error when masks were used,
with demasking effective for masks smaller than half the central
speckle size. This model demonstrates competitiveness in data
processing and real-time restoration of diffraction intensities
using deep learning. Preprocessing enhances orientation recovery
reliability, especially for datasets with limited patterns, using the
expansion-maximization-compression algorithm.

Additionally, regarding CDI phase retrieval, ambiguity is
observed, leading to inconsistencies in the retrieved images under
different initial conditions. Various guiding methods have been
utilized to enhance the reliability of retrieval algorithms (Chen
et al., 2007; Chou et al., 2003; Chou and Lee, 2002). To enhance
robustness, the regularization-by-denoising framework and a
convolutional neural network denoiser were leveraged to
introduce prDeep (Metzler et al., 2018). Through simulations,
prDeep exhibits noise resilience and can accommodate a variety
of system models.

Moreover, the recommendation of utilizing free log-likelihood
as an unbiased metric for CDI and the successful application of
eigen-solution analysis through singular value decomposition
(SVD) on datasets to reduce ambiguity have both been shown to
be effective strategies (Favre-Nicolin et al., 2020). Later in 2024, A
mixed-scale dense network architecture based on the Noise2Noise

FIGURE 11
(A) Side shows a schematic diagram of the network structure for reconstructing low-resolution structures of samples from SAXS data (He et al.,
2020), while (B) illustrates the network structure for extracting sample parameters from SAXS curves. Reproduced with permission from (Molodenskiy
et al., 2022).
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approach was proposed to denoise CDI images and mitigate
ambiguity (Chu et al., 2024). This approach has the potential to
enhance the quality of CDI reconstruction, providing benefits such
as high-resolution output images from a trained network and rapid
transformation from noisy to clear images.

3.4 Shape and orientation recovery

For reproducible targets, small-angle X-ray scattering (SAXS)
patterns can be used with conventional algorithms to reconstruct
three-dimensional structures. A new algorithm based on a deep
learning method for model reconstruction from SAXS data was
presented (He et al., 2020) (Figure 11A). Later, Molodenskiy et al.
proposed a method (Figure 11B) for primary SAXS data analysis.
This approach predicts molecular weight and maximum
intraparticle distance directly from experimental data with higher
accuracy and better robustness against simulated experimental noise
compared to existing methods (Molodenskiy et al., 2022).

However, short-lived or non-reproducible objects lack of the
multiple images required for three-dimensional reconstruction.
Wide-angle scattering provides partial three-dimensional

information (Barke et al., 2015; Langbehn et al., 2018; Rupp
et al., 2017) but presents a more complex inversion challenge
(Raines et al., 2010; Wang et al., 2011; Wei, 2011). The key
obstacle is developing a rapid reconstruction method for effective
single-shot structure characterization.

Wide-angle scattering differs from small-angle scattering in two
main ways: the projection approximation is invalid due to the
longitudinal wavevector component, and materials with non-
unity refractive indices require consideration of multiple factors.
Solving the full three-dimensional scattering problem using
methods like FDTD, DDA, or MSFT allows for the description of
wide-angle scattering patterns based on a nanoparticle’s geometry
model (Gessner and Vilesov, 2019; Langbehn et al., 2018). Deriving
the geometry from these patterns is highly complex due to the lack of
a straightforward inversion method.

In 2020, T. Stielow et al. utilized the Resnet architecture
(Figure 12A) with augmented theoretical scattering data to
accurately and rapidly reconstruct wide-angle scattering images
of individual icosahedral nanostructures (Stielow et al., 2020).
Their results show that a network trained only on theoretical
data can effectively analyze experimental scattering data. Image
processing is completed in milliseconds, significantly faster than

FIGURE 12
The network architecture for reconstructing sample information using WAXS. (A) Shows the network structure used for 2D reconstruction in 2020,
utilizing ResNet as the network architecture and Crossentropy as the loss function. (B) Presents the enhanced network structure introduced in 2021,
incorporating the physical process of sample diffraction as prior information to optimize the loss function. Reproducedwith permission from (Stielow and
Scheel, 2021). Copyright American Physical Society and SciPris.
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direct optimization methods. The next year, they developed a
physics-informed deep neural network (Figure 12B) which can be
used to reconstruct complete three-dimensional object models of
uniform, convex particles on a voxel grid from single two-
dimensional wide-angle scattering patterns (Stielow and Scheel,
2021). In classical supervised learning, the loss function is based
on the binary cross entropy between the network prediction and the
target entry for each data pair. In contrast, the loss function of the
physics-associated network is computed in the scatter space, not the
object space. This is done by simulating the scattering pattern of
both the network prediction as well as the target object, and
calculating their mean-squared difference (scatter loss). To
enforce the binary nature of the object model, an additional
regularization function (binary loss) is applied to the prediction.

4 Future perspectives and challenges

In this review, we have summarized the current advancements
and trends in the application of deep learning for ultrafast X-ray
imaging. Specifically, we focused on its effectiveness in image
classification, phase retrieval, and denoising, areas where deep
learning algorithms have shown significant promise. The ability
of deep learning to address the challenges posed by big data,
leveraging AI-driven features, has significantly accelerated and
improved the efficiency of scientific data processing. Moreover,
the AI techniques employed require minimal prior domain-
specific knowledge, making them highly adaptable. As a result,
state-of-the-art architectures from fields such as computer vision
can be seamlessly transferred and tailored to the ultrafast X-ray
imaging domain. Nevertheless, there are still several aspects that
need further refinement to fully harness the potential of deep
learning for ultrafast X-ray imaging applications.

4.1 Data

Deep neural networks require large datasets to perform
effectively. This poses a significant challenge in fields like
ultrafast X-ray imaging, particularly with high-repetition-rate
free-electron lasers that produce millions of images per second.
The large volume of high-throughput data makes data labeling both
expensive and labor-intensive. To address this issue, several
potential solutions are available.

4.1.1 Data augmentation
By applying transformations, intensity adjustments, noise

addition, and operations like cropping or padding to images, the
dataset can be expanded. This method increases the diversity of the
data, helping the model to learn more generalized features, thereby
enhancing its robustness. However, in the context of experimental
data, a neural network trained on fixed settings may struggle to
adapt to different scenarios not explicitly represented in the
training dataset.

4.1.2 Transfer learning
Transfer learning involves pre-training a network on a data-rich

task and then transferring the learned weights to a new task,
leveraging similarities between domains (Figure 13). A common
practice is to pre-train on large datasets such as ImageNet, as the
features learned in the initial layers of the network are often
transferable to other tasks. This not only provides a better
starting point but also improves the network’s robustness,
particularly when fine-tuning on smaller, domain-specific
datasets. Well-known deep learning models, like ResNet and
U-Net, are pre-trained on large datasets and then directly applied
to ultrafast imaging data. These models, trained on general data, are
adapted to the specific nature of ultrafast imaging data.

FIGURE 13
Conceptual diagram for transfer learning.
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4.1.3 Combination of simulated and real data
In some cases, combining simulated and real data can be

effective. By initially training on simulated datasets and then
fine-tuning with a small amount of real experimental data, the
network can achieve good performance even with limited data. Pre-
training the model on offline simulated data before applying it to
real-time experimental data allows for real-time interpretation of
ultrafast imaging data via deep learning techniques. However, the
success of neural networks is highly dependent on the quality of the
training data. Paired training sets typically contain fixed input-to-
label mappings, which set an upper limit on the network’s learning

capacity. If the distribution of the simulated training data differs
significantly from real-world data, the network’s ability to generalize
will be compromised.

4.2 Interpretation

The deep learning for phase recovery were divided into two
class, “network-only” and “network-with-physics” strategies (Wang
et al., 2024). The “network-only” category can be further classified
into “data-driven” and “physics-driven” networks. In a “physics-

FIGURE 14
Diffraction patterns for human aurora A catalytic domain (PDB 4zs0; Kilchmann et al., 2016), logarithmic scale color map. Orange is used in the top
row to highlight masked pixels. (A) A simulated diffraction pattern with a two pixel-wide mask. (B) A simulated diffraction pattern with a 10 pixel-wide
mask. (C) A simulated diffraction pattern with a 15 pixelwide mask. (D–F) U-Net demasked output. (G) Simulated diffraction intensities without a mask.
Reproduced with permission from (Bellisario et al., 2022).
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driven network”, physical constraints are typically integrated into
the loss function. In contrast, “network-with-physics” refers to the
integration of network with physical processes, where each training
iteration of the network corresponds to an iteration of the physical
process itself. This classification framework is also applicable to the
networks discussed in this paper.

As highlighted in the previous section, networks used for
ultrafast imaging evolve from simple “data-driven networks” to
more advanced “physics-driven networks”. Researchers are
actively working to bridge the gap between the opaque nature of
purely data-driven approaches and the underlying physical
processes that govern the system.

However, these networks do not incorporate physical processes
into network, and the training process lacks interpretation. The
primary advantage of this approach lies in its simplicity and
efficiency. Given the wide variety of deep learning architectures
available for image processing tasks, users can easily design models
by configuring the input and output layers and selecting or defining
appropriate loss functions. During training, large datasets are
processed, and millions of parameters are optimized to learn
complex relationships within the data. It is challenging to
understand the meaning of the features extracted by individual
layers and the implications of internal parameters on the overall
model performance. This lack of transparency complicates the
identification of failure causes, hindering targeted optimization
efforts. In such cases, the process may seem driven by chance, as
it is difficult to predict success or failure based on physical principles
before model construction, or to identify clear avenues for
improvement post-failure.

Since light propagation can be described through physical
models, the experimental process can be simulated numerically.
This enables the use of a “network-with-physics” approach, where
the training process is integrated with physical iterations. Several
models already employ this approach for deep learning-based phase
recovery (BaoShun and QiuSheng, 2022; Wang C. J. et al., 2020; Wu
et al., 2022; Yang et al., 2022; Zhang et al., 2021). In these models,
diffraction intensity is not the sole input; fixed or latent vectors are
also incorporated. Each training iteration of the network is
accompanied by a corresponding physical iteration. This
integration of physical processes into the network training
enhances interpretability and provides clearer insights into the
model’s behavior, facilitating more informed optimization.

4.3 Reliability

Although research on deep learning-based denoising methods in
this field remains limited, existing studies have demonstrated that
deep learning can improve the reconstruction of sample structures
from noisy data. Even so, it is important to note that the effectiveness
of deep neural networks in reconstructing “real images” from noisy
or incomplete data has its limitations. As the signal-to-noise ratio
drops and the amount of missing data grows, the difference between
network-reconstructed images and the ground truth tends to
increase. This highlights a fundamental limitation of even
advanced deep learning techniques in recovering information
that is not captured by the underlying hardware imaging system.
The region highlighted in red in Figure 14 clearly illustrates this.

Therefore, integrating data with hardware parameters and
optimizing deep learning models based on diffraction or
scattering physical models represents a promising direction for
future research. The performance of neural networks in
recovering missing data indicates that, despite their significant
potential and efficiency, black-box models trained on large
datasets lack the integration of physical knowledge. As a result,
these models cannot guarantee the accuracy of their output results.

Given these challenges, it is equally crucial to develop physics-
informed networks that integrate physical principles into the
training process and network architecture, thereby providing
greater physical interpretability. Furthermore, in practical
scenarios, where the true values of data obscured by noise or
missing information are unknown, there is a clear need to
develop evaluation methods that assess the reliability of the
network’s inference results.

4.4 Efficiency

Deep neural network architectures are computationally efficient,
often outperforming many state-of-the-art algorithms. Their
computational cost at inference time is typically lower than
traditional methods. This runtime advantage comes at the
expense of high computational costs during training, which can
be time-consuming, even on GPU clusters. By optimizing problem
domains and training setups, this efficiency can be leveraged to
reduce runtime at the expense of extended training time.

5 Conclusion and outlook

The integration of deep learning into ultrafast X-ray scattering
and imaging represents a transformative advancement, effectively
addressing challenges in data processing, phase retrieval, denoising,
and classification in XFEL experiments. Researchers have made
substantial advances in high-throughput data processing, real-
time pattern recognition, and nanoscale structural reconstruction
by taking advantage of AI-driven approaches. These advancements
enable the investigation of intricate physical phenomena with
greater effectiveness and precision compared to traditional methods.

Notable challenges still persist. Deep learning models continue to
rely heavily on big datasets, and the mismatch between simulated and
experimental data frequently restricts their applicability in practical
applications. Furthermore, the interpretability of many network
topologies remains inadequate. This highlights the need for physics-
informed designs that incorporate domain knowledge to enhance
model reliability and robustness. Future research should prioritize
creating data-efficient algorithms, integrating physical principles into
AImodels, and enhancing the interpretability of deep learningmethods.

As the field evolves, the synergy between deep learning and
ultrafast X-ray science holds immense potential to drive
breakthroughs across disciplines such as biology, materials
science, and chemistry. This progress underscores the critical
importance of interdisciplinary collaboration, where expertise in
AI, physics, and domain-specific knowledge converges to address
some of the most complex challenges in ultrafast imaging and
scattering.
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