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This study presents a novel approach for achieving high-quality and large-scale
microscopic ghost imaging by integrating deep learning-based denoising with
computational ghost imaging techniques. By utilizing sequenced random speckle
patterns of optimized sizes, we reconstructed large noisy images with fewer
patterns while successfully resolving fine details as small as 2.2 μm on a USAF
resolution target. To enhance image quality, we incorporated the Deep Neural
Network-based Noise2Void (N2V) model, which effectively denoises ghost
images without requiring a reference image or a large dataset. By applying the
N2Vmodel to a single noisy ghost image, we achieved significant noise reduction,
leading to high-resolution and high-quality reconstructions with low
computational resources. This method resulted in an average Structural
Similarity Index (SSIM) improvement of over 324% and a resolution
enhancement exceeding 33% across various target images. The proposed
approach proves highly effective in enhancing the clarity and structural
integrity of even very low-quality ghost images, paving the way for more
efficient and practical implementations of ghost imaging in microscopic
applications.
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1 Introduction

Microscopy has transformed scientific research by enabling visualization of micro- and
nanoscale structures, which is essential for biological studies and disease research. However,
traditional optical microscopy is fundamentally limited by the Abbe diffraction limit,
restricting achievable resolution (Abbe, 1873). While reducing the illumination wavelength
and increasing the numerical aperture can improve resolution, imaging biological samples
at the nanoscale requires XUV wavelengths (10–100 nm), which can damage samples and
suffer from high absorption losses and limited optical components.

To overcome these challenges, ghost imaging (GI) has emerged as a promising
technique. GI reconstructs images using correlated measurements from spatially
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separated detectors, making it attractive for lensless imaging and
applications requiring low radiation doses. Originally developed
with quantum entangled photons (Pittman et al., 1995), GI has since
been demonstrated with classical light sources, broadening its
applicability (Abouraddy et al., 2001; Bennink et al., 2002).

Advancements in computational techniques and single-pixel
detectors have further enhanced GI. Computational ghost
imaging (CGI) uses compressed sensing (CS) and reconstruction
algorithms to recover images from fewer measurements (Shapiro,
2008; Katz et al., 2009), enabling lensless imaging in environments
where traditional optics are impractical, such as with XUV sources.
Despite using only, a single-pixel detector, CGI has enabled rapid
computational imaging (Welsh et al., 2013). Simplified holography
processes have also expanded the potential for 3D imaging and
microscopy (Clemente et al., 2013).

Recent progress has extended GI into the x-ray and XUV
regimes, including demonstrations with conventional x-ray
sources (Yu et al., 2016; Pelliccia et al., 2016; Zhang A-X. et al.,
2018), XUV free-electron lasers (Kim et al., 2020), and x-ray phase-
contrast GI (Olbinado et al., 2021). Our recent work has enabled
microscopic ghost imaging with a tabletop XUV source (Oh et al.,
2025), and other studies have shown high-resolution GI of
microscopic objects (Sun et al., 2019; Vinu et al., 2020; Dou
et al., 2020). Techniques such as imaging at megahertz switching
rates with cyclic Hadamard masks (Hahamovich et al., 2021) and
novel phase microscopy approaches have significantly improved
imaging speed and reduced system complexity (Zhao et al., 2023).

Nevertheless, many CGI methods rely on traditional pattern-
based approaches, such as Hadamard and Fourier transforms, which
require a large number of illumination patterns to achieve high
resolution. For example, capturing Extended Graphics Array (XGA)
resolution images (1,024 × 768 pixels) requires over 1.5 million
patterns with the differential Hadamard method and over 3 million
with the 4-step Fourier method (Duarte et al., 2008; Zhang et al.,
2017; Gibson et al., 2020), resulting in long acquisition times and
heavy computational loads. In contrast, our previous work with
sequenced speckle illumination demonstrated that GI
reconstruction is possible with significantly fewer patterns (Oh
et al., 2023). In this study, we adopted sequenced speckle as the
illumination strategy for our experiments to validate its effectiveness
within the proposed framework.

Despite recent advances in deep learning for ghost imaging,
existing approaches have notable limitations. Traditional deep
learning methods typically require extensive training datasets,
including paired low-resolution and reference images, which are
often difficult to obtain in practical microscopic settings (Lyu et al.,
2017; Wang et al., 2019; Hu et al., 2020). More recent methods, such
as ghost imaging with deep neural network constraints (Wang et al.,
2022), employ untrained networks and compressed sensing to
reconstruct images directly from measurement data. However,
these approaches still face significant challenges: they cannot fully
exploit the spatial information inherent in speckle patterns, and they
demand large volumes of measurement data and considerable
computational resources. These limitations hinder the practical
application of high-resolution, high-quality ghost imaging,
especially when rapid or resource-efficient imaging is required.

To address these limitations, we introduce a denoising
algorithm based on Noise2Void (N2V) (Krull et al., 2019), a

deep learning method that requires only a single noisy image for
training, eliminating the need for reference images. By
combining ghost images obtained from random speckle
patterns with the N2V model, we achieve high-quality, high-
resolution images with fewer patterns and minimal
computational resources. The N2V framework is built on the
U-Net architecture (Ronneberger et al., 2015; Wu et al., 2024;
Komatsu and Gonsalves, 2020; Jia et al., 2021), which is well-
suited for image restoration and denoising, especially with
limited training data.

We evaluated the quality of denoised images using Rayleigh,
Abbe, and Sparrow criteria, and investigated how speckle pattern
size affects microscopic ghost image quality. Our results reveal a
clear relationship between speckle size and image resolution,
demonstrating the effectiveness of our approach for efficient,
high-quality microscopic ghost imaging.

2 Experimental setup and
measurement principle

2.1 Experimental setup

Figure 1 illustrates the experimental setup. The experiments
were conducted using a DMD-based CGI setup—specifically the
VialuxTM DLP V-Module V4100 board—which is capable of
projecting sequenced speckle patterns at a rate of 50 frames per
second. To enhance the randomness and diversity of the
illumination, we employed sequenced speckle patterns with
varying sizes. The DMD features a 0.7-inch diagonal array
comprising 1,024 × 768 micromirrors, each with a pitch of
13.6 μm. A beam expander was used to illuminate the entire area
of the DMD. The reflected light was directed through a positive lens
(focal length = 125 mm) and then focused onto the object via an
objective lens. For magnification, we used ZEISS A-Plan objectives
with ×40 magnification (NA = 0.65, focal length = 4.1 mm, infinity-
corrected). According to the Rayleigh criterion, the spatial
resolution of the objective is 0.61λ/NA, which yields
approximately 0.6 µm for a 632.8 nm He–Ne laser wavelength.
The light transmitted through the object was collected by a focusing
lens and measured by a bucket detector (Thorlabs, PDA36A-EC),
which recorded the total transmitted intensity.

During the experimental procedure, sequential patterns were
displayed on the DMD. The reconstructed ghost image was obtained
by correlating the intensity signals detected by the bucket detector
with the random speckle patterns displayed on the DMD. To
validate the feasibility and performance of the CMGI technique,
a USAF 1951 resolution target was used, featuring the smallest line
width of 2.2 μm.

2.2 Principle of measurement

We utilize a DMD to generate pre-designed speckle patterns of
specific sizes, which are then projected onto the target as speckle
patterns denoted by In(x, y). It is important to note that the bucket
detector records the total intensity, Sn, of the light transmitted by the
object. The object image, G (x, y), can be reconstructed by
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calculating the second-order correlation function (Abouraddy et al.,
2001; Oh et al., 2023) between the intensity distribution, In,
illuminated onto the target, and the total intensity, Sn, recorded
by the bucket detector, as shown in Equation 1. Here, N represents
the total number of patterns used in each experiment.

G x, y( ) � 1
N

∑
N

n�1
In x, y( ) − 〈I〉( )Sn x, y( ) (1)

2.3 Noise2Void Ghost Imaging
(N2VGI) algorithm

In this study, we propose a Noise2Void-based Ghost Imaging
(N2VGI) framework to denoise reconstructed ghost images using a
self-supervised U-Net architecture. Although U-Net was originally
developed for biomedical image segmentation (Ronneberger et al.,
2015), its encoder–decoder design with skip connections is highly
effective in preserving spatial information. In ghost imaging, the
reconstruction can reflect the illumination pattern; since we employ

sequenced speckle illumination, the resulting images contain locally
uncorrelated speckle noise—the kind of random variation that N2V
can learn to remove.

While more advanced architectures such as U-Net++,
ResUNet, Attention U-Net, Pix2Pix, MSGU-Net, and GA-
UNet (Zhou et al., 2018; Zhang Z. et al., 2018; Oktay et al.,
2018; Isola et al., 2017; Cheng et al., 2024; Kaur et al., 2021) have
demonstrated superior performance in supervised or data-rich
environments, they generally rely on clean ground truth data,
complex training pipelines, and greater computational resources-
requirements incompatible with our self-supervised setting,
which operates on single noisy ghost images without access to
clean references. In contrast, U-Net serves as the fundamental
baseline architecture for image denoising and restoration tasks.
Its simple yet powerful encoder–decoder structure with skip
connections has been widely validated across diverse
applications, making it the standard reference point for both
performance and efficiency. U-Net is computationally efficient,
converges quickly, and performs reliably even in unsupervised or
self-supervised noise modeling with limited data (Wu et al., 2024;

FIGURE 1
Experimental setup for computational microscopic ghost imaging enhanced with a neural network. A collimated beam from a He-Ne laser (λ =
632.8 nm) is shaped by lenses L1 and L2 before being directed towards a Digital Micromirror Device (DMD). The DMD, controlled by a computer,
generates a sequence of speckle patterns. These patterns are focused by lens L3 (f = 125 mm) onto an objective lens (f = 4.1 mm, NA: 0.65), which
illuminates the USAF-1951 resolution target. Light transmitted through the target is collected by a bucket detector, producing an intensity signal. This
signal, along with the corresponding DMD patterns, is fed into a ghost imaging algorithm, specifically a Noise2Void Ghost Imaging (N2VGI) network. The
N2VGI network is trained using a single reconstructed ghost image to reconstruct a less noisy ghost image of the target. The dimensions of the
reconstructed image are 768 × 1,024 pixels. Mirrors M1 and M2 are used to direct the beam within the setup. P1: pinhole, L4: lens.
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Komatsu and Gonsalves, 2020). Therefore, U-Net was selected as
the most practical and effective choice, providing an optimal
balance between simplicity, computational cost, and robust
denoising performance under our experimental constraints.

The U-Net architecture used in our model is configured with a
kernel size of 3, a network depth of 3, and an initial filter size of 32.
This configuration facilitates multi-scale feature extraction, allowing
the network to effectively learn complex noise distributions and
improve image fidelity. The training dataset comprises non-
overlapping patches of size 24 × 24 pixels, extracted from the
input images. To evaluate generalization and mitigate overfitting,
1,000 patches are reserved for training, and the remainder are used
for validation.

During training, batch normalization is applied to stabilize
convergence. The loss function is defined as mean squared error
(MSE), aiming to minimize reconstruction errors. The N2V
manipulator is implemented using a median-based masking
strategy, which replaces selected pixels with the median of their
local neighborhood to prevent identity learning. The model is
trained for 25 epochs with a batch size of 16. For noise
estimation, 50% of the pixels in each patch are randomly
selected, with a neighborhood radius of five pixels used to define
local context during training.

Once the model is trained, as detailed in Table 1, it is
integrated into an iterative reconstruction process to refine
ghost images. Given a noisy ghost image G, the N2V model
generates an estimated clean image L by identifying and
suppressing noise. The residual noise component F is then
computed F = G–L and further refined through a proximal
operator, which applies soft-thresholding to enforce sparsity
and enhance noise separation (Parikh and Boyd, 2014).

To improve robustness, the refined noise estimate is iteratively
averaged with previous estimates, yielding an updated noise estimate
R. The final reconstructed ghost image is obtained by subtracting the
refined noise estimate from the original input. We empirically
evaluated convergence thresholds in the range ε = 0.3–0.6 and
found that ε = 0.5 offered the best balance between denoising
quality and original feature preservation. Consequently, the
iterative process continues until the convergence

parameter—defined as the ratio of the noise-suppressed image
norm to the original image norm—falls below ε = 0.5 or the
maximum iteration limit is reached.

This approach effectively enhances ghost image reconstruction
by leveraging deep-learning-based self-supervised denoising while
preserving fine structural details. The integration of N2V with
iterative refinement provides a robust noise suppression
mechanism, improving the quality and reliability of reconstructed
images in quantum and computational ghost imaging applications.
Figure 2 shows the workflow of the N2VGI algorithm.

2.4 Speckle size measurement and image
quality evaluation criteria

To measure the speckle size, we employ a fast cross-correlation
algorithm. This algorithm calculates the cross-correlation between
consecutive input fields and then fits a Gaussian function to the
cross-correlation result. The width and height parameters obtained
from the Gaussian fitting provide information about the speckle size.
The average speckle size within the input field is estimated based on
the pitch size (13.6 μm) of the DMD used in the experiment. Using
this methodology, we generated a total of 20 random patterns with
varying speckle sizes ranging from 30 to 275 μm.

For a quantitative assessment of reconstructed image quality, the
Structural Similarity Index (SSIM) is employed as a metric to
evaluate the similarity between the reconstructed image and the
reference image while considering luminance, contrast, and
structural information. The SSIM is calculated using the
following formula (Wang et al., 2004), as shown in Equation 2.

SSIM x, y( ) � 2μxμy + C1( ) 2σxy + C2( )
μ2x + μ2y + C1( ) σ2x + σ2y + C2( )

(2)

Here, μx and μy represent the mean intensity values of images x
and y, respectively, while σ2x and σ2y denote their variances. The
term σxy represents the covariance between the two images. The
constants C1 and C2 are small values included to prevent
instability when the denominators are close to zero. By
evaluating the SSIM, the quality of the reconstructed images
can be effectively compared and assessed based on their
structural similarity to the reference image, offering a
perceptually relevant measure of image fidelity.

Figure 3 presents the resolution measurement of a ghost image.
To evaluate the resolution of the ghost image in relation to changes
in speckle size, we used the USAF resolution target as the object and
measured the resolution based on the spatial resolution of the line
pairs. The resolution value R is calculated using the following
equation (Oh et al., 2023), as shown in Equation 3.

R � 2 p2 − p1( )
W2 +W1

(3)

where p1 and p2 are the positions of the two peaks, andW1 andW2

are their respective widths. As shown in Figure 3, we outlined three
lines and obtained an object profile through Gaussian fitting of
these lines. To quantitatively evaluate the resolution value, we
compare our approach R to the following criteria:

TABLE 1 N2VGI Algorithm: Applying the Noise2Void (N2V) model to
enhance reconstructed ghost images, leveraging a U-Net architecture to
capture and reduce noise. The stopping criterion is defined by the epsilon
(ε) threshold set at 0.5.

Input: G(x, y): Single noisy ghost image.
1 Initialize:
• Generate training and validation patches of the specified shape.
• Configure the N2V model with predefined parameters and initialize it.
• Train the N2V model using the generated training and validation patches.

2 while p < ε or until the maximum number of iterations is reached:
• Save the current noise estimate: F_old = F _ new
• Predict noise using the model: L = model.predict(G)
• Compute the initial noise map: F = G - L
• Normalize the noise map by setting the minimum to zero: F = F – min(F)
• Update the noise map using a proximal operator: F_new = proxa(F)
• Average the new and old noise estimates: F_update = (F_old + F_new) / 2
• Subtract the updated noise map from the original image to update the residual:
R = G – F_update
Update the image: G = R

• Calculate the convergence parameter p = ‖L‖1 / ‖X‖1
• if p < ε, the loop terminates.

3 Return: Final enhanced image G
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• Rayleigh Criterion: Applies when the central maximum of one
Airy disk coincides with the first minimum of another. This
corresponds to an R value of 0.5.

• Abbe Criterion: Determined by the full width at half
maximum (FWHM) of the two overlapping Airy disks.
This corresponds to an R value of 0.41.

• Sparrow Criterion: Observed when the overlapping Airy disks
exhibit no discernible difference in their superimposed
intensities across the entire resolution distance. This
corresponds to an R value of 0.38.

The R value serves as a measure of resolution for the
reconstructed images. Specifically, a resolution value exceeding
R > 0.5 indicates that the image surpasses conventional criteria
(Advanced Microscopy, 2025). By comparing the R values, we can
effectively assess the quality and resolution of the ghost images
obtained through our method.

3 Experimental results

3.1 Microscopic ghost imaging

Figure 4 depicts the reconstructed microscopic ghost images for
various object targets, with line widths ranging from 15.6 µm to

2.2 µm. These images were captured using a ×40 objective lens,
resulting in a magnification range from 21.6 to 83.2. All images
demonstrate sufficient spatial resolution, with the three lines clearly
discernible to the naked eye.

In Figure 4b, we present the quantitative resolution R values
obtained by averaging 10 line-out sections per image. Images 5–1,
6–4, 7-3, and 7-6 all exhibit R values above the Rayleigh limit of 0.5,
and, apart from case 6–2, every image exceeds the Abbe limit of
0.41. Case 6–2 corresponds to a 7 µm line width and the lowest
effective magnification (~21.6×), which decreases the sampling
interval in the line-out analysis and leads to an underestimated R
value. In contrast, all other cases benefited from higher effective
magnifications, yielding R values that surpass conventional
resolution criteria.

3.2 Exploring the influence of speckle size on
microscopic ghost imaging

To further explore these effects, experiments were conducted by
projecting random speckle patterns of known sizes onto resolution
targets. Figure 5 shows this experimental result.

The upper section of Figure 5 illustrates the reconstructed
ghost images for speckle sizes from 30 µm to 210 μm,
demonstrating that larger speckles improve contrast but

FIGURE 2
Denoising workflow of the N2VGI algorithm. The process begins with a single noisy ghost image G. The Noise2Void (N2V) model generates a
predicted image L, which serves as an estimate of the clean image. The noise component F is extracted by computing the difference between the input
image and the predicted image. This noise estimate is then refined using a proximal operator to suppress residual artifacts while preserving structural
details. The refined noise estimate is iteratively subtracted from the input image, producing an updated ghost image R with progressively reduced
noise. The iterative process continues until the convergence condition p <  is satisfied or the maximum iteration limit is reached, ensuring an optimal
balance between noise suppression and image fidelity.
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reduce sharpness. The lower section presents SSIM and R value
curves, showing that increased speckle size enhances SSIM while
diminishing R value. This trade-off arises because larger speckles
reinforce low-frequency information—boosting overall image
fidelity—whereas smaller speckles preserve high-frequency
details essential for fine resolution. To balance these effects,
an appropriate speckle size should be chosen to match the
object’s spatial scale: use smaller speckles when maximum
resolution is required and larger speckles when image contrast
is paramount. Furthermore, following our earlier work on mixed-
scale speckle illumination (Oh et al., 2023), a multiscale
approach—projecting speckles of varying sizes sequentially or
in combination—can simultaneously capture both high- and low-
frequency content, thereby maximizing resolution and SSIM in a
single dataset.

3.3 Enhancing GI quality through N2VGI
algorithm optimization

We utilized the N2V model to enhance the image quality of GI by
optimizing the experimental setup and speckle size in the initial
reconstructed GI. In all reconstructed GI cases, we conducted
10,000 iterations. The number of patterns used is 10,000 for the
random speckle pattern, which is only 0.6% of the patterns used in
the differential Hadamardmethod and only 0.3% of the patterns used in
the 4-step Fourier method. All reconstructed ghost images have a
dimensional size of XGA, same to DMD (1,024 × 768). Initially, we
divided the training and validation datasets with a single noisy image
based on patch parameters. The patch size, determined by the average
noise size of the reconstructed ghost image and the image’s dimensions,
played a crucial role in determining the most optimal modelling

FIGURE 4
Microscopic Ghost Imaging. (a) Reconstructed ghost images obtained using random speckle patterns with 10,000 iterations for various resolution
targets with line widths ranging from 15.6 μm to 2.2 μm. Even the target with the smallest line width (2.2 μm) was well reconstructed. (b) presents the R
value for the USAF target alongside image quality criteria. The R value serves as a measure of resolution, with higher values indicating better resolution.

FIGURE 3
Resolution Measurement. Gaussian fitting is performed on line-outs of the noisy image to determine the resolution of two peaks. The separation
between the peaks (p2 − p1) and their widths (W1 and W2) are used to compute the resolution. To find the width at each peak in the normalized dataset,
draw a straight line at the point that sets the Full Width at Half Maximum (FWHM) as the standard, and determine the width through the two points where
the straight line intersects the baseline.
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FIGURE 5
Impact of Speckle Size on Reconstructed Ghost Image. (a) illustrates the reconstructed images obtained using varying speckle sizes for resolution
targets 7–1, 7-3, and 7–6. The impact of speckle size on the quality and resolution of the reconstructed ghost image is evaluated. (b) demonstrates the
relationship between speckle size and two key metrics: The Resolution (R) and the Structural Similarity Index (SSIM). As speckle size increases, the R value
exhibits a decreasing trend, indicating reduced resolution, while the SSIM value initially increases but plateaus beyond a specific threshold.

FIGURE 6
Denoising Noisy Ghost Images with the N2VGI Model. (a) compares the reconstructed image with the denoised image using the N2VGI model. The
application of the N2VGI algorithm consistently enhances image quality in all cases. (b) The R value, ameasure of resolution, is compared between GI and
N2VGI. After applying the N2VGI algorithm, all images surpassed the resolution threshold defined by the Rayleigh standard. On average, the R value in all
images subjected to the N2VGI algorithm was approximately 33% higher than the average R value in the initial GI. For image 5-6, the R value
increased by approximately 78% compared to its previous value. (c) Similarly, the Structural Similarity Index (SSIM) value improved for all images after
applying the N2VGI algorithm. The SSIM value, which quantifies structural fidelity relative to the ground truth, showed significant improvement,
demonstrating the effectiveness of the N2VGI approach in preserving fine image details while suppressing noise.

Advanced Optical Technologies frontiersin.org07

Oh et al. 10.3389/aot.2025.1583836

https://www.frontiersin.org/journals/advanced-optical-technologies
https://www.frontiersin.org
https://doi.org/10.3389/aot.2025.1583836


parameters. Through iterative experiments, we developed an effective
denoising N2V model. Subsequently, employing the N2VGI algorithm
outlined in Table 1, we conducted iterative refinement until achieving
the desired level of denoising. Figure 6 illustrates the impact of our N2V
algorithm on individual images, with all images demonstrating a
substantial reduction in noise, confirming the efficacy of our approach.

In Figure 4, only four images surpassed the resolution threshold of
0.5, defined by the Rayleigh standard. However, after applying the
N2VGI algorithm, all images exceeded the Rayleigh criteria. On
average, the R value in all images subjected to the N2VGI algorithm
was approximately 33%higher than the average R value in the initial GI.
For image 5-6, the R value increased by approximately 78% compared
to its previous value. When considering SSIM, the application of the
N2VGI algorithm resulted in an increase in SSIM values for all images,
with the average SSIM value across all targets increasing by 324% in
N2VGI compared to GI. For image 7-3, the SSIM increased by
approximately 854% compared to the original image.

Additionally, we conducted an experiment on GI reconstructed
with 2000 iterations to validate the algorithm’s applicability to cases
with extremely low image quality. Figure 7 presents the GI obtained
with a low number of iterations and the results when the N2VGI
algorithm is applied to the images.

Figure 7 displays a low-iteration GI alongside an image enhanced
with the N2VGI algorithm. The average R value of denoised images

increased by approximately 63% compared to GI. In terms of SSIM, the
average value increased by approximately 247% compared to the
original images. While the algorithm notably improved the image in
noisy regions, it is evident that some information was lost in the
denoised image due to the limitations of the original data. Nonetheless,
theN2VGImodel demonstrates its effectiveness in enhancing even very
low-quality GI images.

4 Conclusion

In conclusion, we demonstrated microscopic ghost imaging by
optimizing both lens position and speckle size, achieving a smallest
resolvable line width of 2.2 µm—well beyond conventional Rayleigh
criteria. Our investigation revealed that as speckle size increases,
resolution decreases while SSIM improves for certain target widths,
with an optimal speckle scale maximizing both metrics. By combining
speckle-based CGI with our self-supervised Noise2Void (N2VGI)
U-Net algorithm, we successfully denoised images reconstructed
from as few as 2,000–10,000 speckle patterns (under 1% of the
patterns required by differential Hadamard or 4-step Fourier
methods), without any reference images or large training sets.
Despite this drastic reduction, N2VGI consistently delivered high-
quality XGA-resolution (1,024 × 768) reconstructions using less

FIGURE 7
Denoising Noisy Ghost Images with the N2VGI Model for Low-Iteration GI. (a) This panel compares the reconstructed image with fewer iterations
(2000) versus the denoised image from theN2VGImodel. The application of the N2VGI algorithm consistently enhances image quality in all cases. (b) The
R value comparison shows an increase in the denoised images by approximately 63% compared to GI. (c) Similarly, the overall SSIM value was increased in
compared to the original images. While the image improved notably in noisy regions after applying the algorithm, some information was lost in the
denoised image due to the limitations of the original image.
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computational resources. Because N2VGI relies on single-image
training, there is a risk of overfitting to speckle-specific noise, which
may degrade performance under low-contrast or highly correlated noise
conditions. Future work will address these limitations by incorporating
regularization techniques, multi-image strategies, and broader dataset
validation to further improve robustness and extend applicability to
light-sensitive biological imaging.
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