
Fluid and combustion dynamics
in dual-mode scramjets

Gyu Sub Lee1 and Tonghun Lee2*
1Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL,
United States, 2Department of Mechanical Science and Engineering, University of Illinois at Urbana-
Champaign, Urbana, IL, United States

Burgeoning technological advancements in practical and efficient hypersonic

flight is intertwined with the research and development of airbreathing

hypersonic propulsion, specifically dual-mode scramjet (DMS) engines. Due

fundamentally to the lack of complete understanding and adequate modeling

of the fluid dynamics and combustion processes present in DMSs, a large

volume of academic works has been established towards characterizing the

physical phenomena present in these engines. Significant differences in flame

topologies, fluid interactions, and pressure profiles between scram and ram

combustion are observed across these experimental and computational works.

A focus on the dynamics responsible for combustion mode transition, choking

and the propagation of the pseudoshock, is made, as is a discussion on the

theoretical underpinning of the mechanisms behind flow choking and

important choking thresholds. Further insight into the fundamental

mechanisms and fluid and combustion physics present in DMSs may

improve future designs and operability of dual-mode scramjet engines.
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Introduction

Scramjets perform at an enhanced specific impulse compared to rocket-powered

vehicles over a broad range of hypersonic flight Mach numbers (Curran, et al., 1996).

Dual-mode scramjets (DMS), which can operate in both ram and scram combustion

modes, extend the operability of a single engine platform to essentially two (Liu et al.,

2019a), allowing for the design of efficient single-stage hypersonic aircraft that opens the

arena for practical long-haul hypersonic transportation of goods and even passengers.

Figure 1 depicts a schematic of a generic DMS flowpath.

A large volume of academic works has been established towards characterizing the

physical phenomena present in these engines. The scope of this review is an overview of

the investigations into the critical operational regimes of the dual mode scramjet, with a

focus on the transition between ram and scram modes. The key phenomena relevant to

dual mode scramjet operation can be categorized within the following overarching

concepts:

1. Ram/scram combustion and mode transition
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2. Choking mechanisms and thresholds

3. Combustor-isolator and pseudoshock dynamics

This overview encompasses experimental and numerical

results across the literature and includes efforts to establish

the theoretical underpinning for the fluid dynamics salient to

mode transition.

Ram/scram combustion and mode
transition

A DMSs ram mode combustion is engaged at the lower

hypersonic corridor (Mach 5–7) while a smooth transition to

scram is engaged as the aircraft accelerates beyond this range

(Qingchun et al., 2017). While both modes serve to impart the

same effect of increasing the flow total enthalpy by means of heat

addition, the flow and flame topologies have been observed to be

quite distinct. In general, the flame regions of scram mode

combustion have been observed to be thinner and more

uniformly distributed along the combustor flowpath than

those of ram mode combustion (Baccarella et al., 2019). In

particular, the flame front of ram mode combustion tends to

be more vertical (flow transverse), with more agglomerated and

spatially distinct flame regions (Fotia, et al., 2013).

In scram mode, rates of fluid mixing and chemical reaction

compete against the limited residence time of the combustor

throughflow. The limiting mechanism for sustained combustion

in scram mode is the turbulent mixing between the injected fuel

and air (Yang, et al., 2010; Liu, et al., 2020). It is observed that

increasing injected fuel equivalence ratio (φ) results in a more

corrugated, dynamic, and broader flame front indicative of

greater levels of turbulent mixing and enhanced combustion.

This can be explained by the penetration of the fuel jets; if

oriented transverse with respect to the combustor flow, at higher

φ, thus higher jet momentum, the fuel jet penetrates deeper into

the crossflow. This allows for the mixing to occur deeper in the

high momentum core combustor flow, improving the turbulent

mixing which, with the higher overall fuel concentration,

promotes larger and more developed turbulent flame

structures, as seen in the first two images of Figure 1A

(Baccarella et al., 2021).

During ram combustion andmode transition, the flow passes

through a fluid structure known as a pseudoshock as coined by

Matsuo et al. (1999) which is comprised of a series of shocks (and

attendant shock-boundary layer interactions, or SBLI) followed

by a region of viscous dissipation (Ikui, et al., 1974). A defining

feature of the pseudoshock is a virtual throat that transitions the

flow from supersonic to subsonic. As theMach number decreases

across this transition the static temperature and pressure

increase, increasing the chemistry rates. Penetration of the

fuel jets becomes more effective due to the reduction of the

combustor flow momentum flux. Lastly, the reduced flow

velocity results in longer flow residence times. These

conditions promote more complete and localized combustion,

resulting in flame structures that are fuller across the span of the

flowpath. This characteristic enables unambiguous optical

tracking of the pseudoshock in mode transition experiments,

which can be identified by a “ball of flame” that effectively

consumes the limiting combustion reactants and propagates

upstream during transition. While typically mode transition

due to increased equivalence ratio is understood to occur

from scram to ram conditions, certain fuel compositions may

yield transition and dual-mode combustion (where large regions

of subsonic combustion interact with a supersonic core flow)

without the clear establishment of sustained supersonic

combustion, as observed by Landsberg, et al. (2021) in mode

transition experiments employing endothermically cracked

n-DodecDane surrogate fuel. This is attributed to deviations

in ignition delay and reactivity due to differences in chemical

pathways of different fuel compositions, which is supported by

scram blowoff limits of different ethylene-methane mixtures

experimentally determined by Nakaya, et al. (2019). It should

be noted that in many experimental studies on DMSs, some level

of flow vitiation may occur due to propagation of dissociated,

excited, or radical species generated by the high temperatures

present in the facility plenum prior to expansion. This flow

vitiation can play a role in the mode transition dynamics and

FIGURE 1
Generic dual mode scramjet flowpath.
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flame stabilizationmodes, where the presence of these species can

dramatically influence ignition and flameholding characteristics

of a fueling configuration (Hash, 2022).

Practical DMSs use wall-mounted cavity flameholders to

enhance the ignition and flame stability performance (Ben-Yakar,

et al., 2001; Huang et al., 2018; Liu et al., 2019b). The reactions

generated in the low-speed cavity recirculation zone or cavity shear

layer produce the generation of heat and combustion radicals that

greatly reduce the chemical induction time for the fuel-air mixing

regions further downstream in the combustor (Liu, et al., 2020). This

is especially important in scrammodewhere the ignition delay of the

fuel air mixture in the core flow can exceed the residence time of the

flow. The archetypes of cavity-assisted flame stabilization are shear

layer-stabilized combustion, recirculation stabilized flame, and jet-

wake stabilized flame. While cavity shear layer-stabilized and

recirculation zone stabilized combustion have been observed

during sustained scram combustion, jet-wake stabilized flames

are typically only seen in ram cases where near-jet mixing and

subsonic flows provide a condition favorable for near-jet flame

anchoring. In certain cases, a lifted-jet flame stabilization may occur

in ram mode where φ is below that for a jet-wake stabilized

combustion (Fotia, et al., 2013). An addendum to this generality

is the near-jet flame anchoring of a cavity fuel injector during scram

mode, where the cavity recirculation region provides the high

temperatures and residence time of hot products and radicals in

the vicinity of the fuel jet mixing layer necessary to induce sustained

near-jet combustion (Baccarella et al., 2020). Furthermore, in a

computational study employing a two-stage injection scheme, Cao,

et al. (2021) were able to achieve cavity-assisted jet wake flame

stabilization in an ethylene-fueled scramjet; this demonstrates a link

between injection scheme, stable combustion modes and locations,

and overall combustor performance.

Wall static pressure measurements can be used to indicate

ram or scram DMS operation. Peak combustor pressures for ram

mode can be two to three times higher than those for scrammode

(O’Byrne et al., 2000; Frost et al., 2009; Liu et al., 2019a).

Moreover, static pressure profiles have been observed to be

steeper for ram combustion, with the pressure rise often

beginning further upstream in the isolator region (Fotia, et al.,

2011). In a DMS with fuel injection near the start of the

combustor, the combustor pressure profile can be positively

skewed towards the start of the combustor during ram (Yan,

et al., 2014). In a combustor flowpath with little to no area

divergence, the ram combustor pressure tends to decrease

towards the end of the combustor due to the increasing Mach

number of the subsonic flow; conversely, the pressure rise for

scram cases typically increases more gradually and achieves the

highest pressures near the exit of the combustor (Liu et al.,

2019c). Large quasi-steady fluctuations in the combustor

pressure profile are a feature of scram mode, since these

pressure fluctuations are an indication of shock and expansion

wave reflections on the flowpath walls (Shen, et al., 2020).

Choking mechanisms and thresholds

The process by which scram to ram transition occurs in a

DMS is called choking, thus named due to the attendant

formation of a sonic point in the flowpath. The formation

and upstream propagation of the pseudoshock are identified

as the primary fluid phenomena associated with choking. While

the qualitative aspects of pseudoshock behavior have been

characterized, the dynamics and true catalyst for choking in a

DMS is not fully understood or agreed upon in the literature. The

mechanisms responsible for flow choking have been identified as

heat release, mass addition, friction, and flow blockage. Due to

the complex and coupled effect these influences have on the flow,

an accurate analytical model predicting the onset of choking has

not been established.

Producing the high enthalpy flows necessary for high-speed

combustion ground tests often requires a prohibitive investment in

specialized facilities. Many low-enthalpy choking studies use the use

of pure mass addition or actuated physical blockage (such as

movable ramps or plugs) as the means of choking. Mass

addition is an attractive representation of the choking

mechanisms present in a combustion experiment due to the

similar fluid interactions between the injection jet and crossflow

(Im et al., 2016). Baccarella et al. (2021) performed a comparison

between mass addition and combustion heat release induced

choking for identical high enthalpy inflow conditions and found

that although the two mechanisms exhibited similar isolator flow

dynamics, the pseudoshock in the combustor during mode

transition exhibited different qualitative characteristics, such as a

more distinct shock train in the combustion case, in addition to

differences in propagation dynamics.

In reacting scramjet studies, it is understood that combustion

heat release plays a dominant role in the choking process (Im,

et al., 2018. ; Baccarella et al., 2019). In practice, the means of

initiating mode transition and controlling the advancement of

the pseudoshock has been the global φ. Increasing the fueling rate
drives the flow towards thermal choking (Larsson et al., 2015). At

some φ, a fully-developed pseudoshock is developed and the

choking/mode transition process is engaged in earnest. Further

addition of heat advances the pseudoshock upstream until it has

settled into the isolator and the entire combustor is subsonic,

indicating ram mode (Qingchun et al., 2017). The 1-D analogy

for heat release-induced choking is Rayleigh flow, whereby a

choked condition is achieved at the limit of maximum heat

addition for a given inflow condition. Laurence et al. (2013)

compared their results for a transient combustion induced

choking of the HyShot II flowpath to an unsteady Rayleigh

flow analytical model. It was determined that heating beyond

the Rayleigh flow choked condition could be achieved for an

upstream propagating normal shock (which models the

pseudoshock). However, an issue with this theoretical analysis

is the requirement of a persistently propagating shock which runs

counter to the establishment of a quasi-steady pseudoshock
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position and ram mode. It is unlikely that the true Rayleigh

choking limit can be achieved in the flowpath since the choking

limit would be immediately succeeded by a readjusting normal

shock and subsequent inlet unstart (a critical failure mode of a

DMS). This normal shock would never be realized due to the

presence of the boundary layer, which serves to spread out the

pressure rise. It should be noted that choking thresholds based on

φ are geometry specific and dependent on mixing and

combustion efficiencies, which are difficult to measure

experimentally and may contribute to the departure of an

experimentally validated DMS design from analytically derived

predictions. Finally, as assessed by Fotia and Driscoll (2011), the

effect of injection induced blockage, mass addition, and heat

release are not easily decoupled and each non-negligibly

contribute to the choking event.

Large flow separation regions can accompany choking

induced by flow blockage (J. Wagner, 2008; H. J. Tan, 2009).

Im and Do (2018) discuss the role of the flow separation as a

means of flow constriction and a necessary component of non-

reacting choking processes, and argue that such flow area change

is unnecessary for thermal choking due to the large pressure rise

associated with heat release. However, it can be shown that even

cases of thermal choking the flow must also undergo fluidic

confinement through the boundary layer (or some form of fluidic

area change) in order to establish a thermal throat in a constant

area combustor or duct. Using the 1-D relation for mass flow

rate, and relating the choked conditions of the inflow and outflow

conditions, the following relation is readily derived:

A2
*

A1
*
� Pt1

Pt2

���
Tt2

Tt1

√
where subscripts 1 and 2 represent inflow and outflow conditions

respectively,A* is the critical (sonic) area,Pt is total pressure, and

Tt is total temperature. In the case of heat release, A2
* will always

increase due to losses in total pressure and increasing total

temperature until it grows to the geometric area of the duct;

at this point the flow is globally thermally choked. Additional

heat release or total pressure loss of any kind is unsustainable

beyond this condition since the geometric area must always

exceed the critical area (regardless of scram or ram

operation). Thus, in order to have a feasible thermal throat as

in ram combustion, an aerodynamic throttle must manifest at the

sonic location. This explanation is supported in a discussion by

Laurence, et al. (2015), who speculated that the heat-release in the

constricting stream-tube of the combustor-arrested pseudoshock

is partially responsible for the local thermal choking below the

global Rayleigh heating threshold. This analysis and discussion

highlight the role of both the boundary layer and the rise of

entropy in flow choking.

Combustor area divergence is used as a means of delaying the

onset of combustion-induced choking and extending the fueling

range of a DMS. The effect of a diverging section in scram mode

is the relief of the combustor pressure rise. This serves to delay

the formation of boundary layer separation and ultimately the

pseudoshock. The following differential equation derived using

Shapiro’s 1-D relations (Shapiro Ascher, 1953) express the

competing effect area change has with heat release, friction,

and mass addition on the flow Mach number:

dM2

M2
� 1 + γ−1

2( )M2[ ]
M2 − 1

2
dA

A
− 1 + γM2( ) dTt

Tt
− γM2( ) 4Cfdx

D
− 2 1 + γM2( ) dw

w
[ ]

where A is the flowpath area, Cf is the coefficient of friction,D

is hydraulic diameter, and w is mass addition. For both

subsonic and supersonic flows, the influences of heat and

mass addition and friction drive the Mach number towards

unity while positive area change induces the reverse effect. If

the 1-D representation of choking corresponds to inlet

unstart, combustor area divergence can be used to delay

the unstart condition for both ram and scram modes and

extend the operability of the DMS and its robustness to critical

failure. An effort to model flow choking using Shapiro’s 1-D

relations was conducted by Smart (Smart, 2010; Smart, 2015).

Using a pressure diffuser relation posed by Orthwerth (2001)

and the Korkegi separation criterion (Korkegi, 1975), Smart

was able to model boundary layer separation and

reattachment that leads the pseudoshock.

Combustor-isolator and
pseudoshock dynamics

A DMS isolator shields the inlet from the combustion

pressure rise and provides real estate for the shock structures.

Combustor-isolator dynamics play an important role in the

operation of DMS particularly in ram mode, where the

propagation of the pseudoshock in the isolator produces

either an ideal combustor condition or inlet unstart.

The isolator shock train, or series of reflecting oblique/

normal shocks, serves as a source of compression and as a

mechanism for distributing the pressure rise associated with

the downstream combustion. As the combustor pressure rise

increases, the shock-boundary layer system in the isolator adjusts

with a thickening of the boundary layer and shock train

confinement. Shock train unsteadiness in the isolator can be

attributed to both local SBLI and a response to acoustic forcing

via the subsonic portion of the boundary layer from pressure

fluctuations in the combustor (Lin, et al., 2010). During ram, the

pseudoshock resides in the isolator, and the acoustic forcing

effect is especially significant due to the greater amplitude of

the combustor pressure fluctuations which can be easily

communicated upstream along the length of the shock

train via the large subsonic regions of the pseudoshock.

Recent experimental works by Hunt, et al. (2019)

demonstrate the source of shock train unsteadiness to be
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a combination of acoustic waves generated by local

separation bubble instabilities, convection of separation

bubble shear layer vortices, and the acoustic feedback

from the backpressure source. Backpressure feedback was

observed to have a strong effect on the motion of the leading

shock of the shock train. A study by Su, et al. (2016) found a

close relationship between the frequency of the simulated

backpressure oscillations, the location of the leading shock,

and phase of the shock train motion. Kato, et al. measured a

noticeable alteration of the dominant flame fluctuation

frequency during ram mode with the presence of a cavity

flameholder and noted the role of the cavity as an acoustic

source (Kato, 2021). Le et al. (2008) experimentally observed

dramatic differences in the spectral characteristics of the wall

pressure measurements upstream and downstream of the

leading shock, corroborating the significant role that the

leading shock has on the acoustic feedback between the

combustor and isolator. This study also highlights the

possible use of pressure frequency history analysis as a

means of unstart detection and mitigation, as opposed to

more traditional pressure amplitude thresholding methods.

The length of the shock train in the isolator is governed by the

overall pressure rise across the pseudoshock. Walthrup and Billig

(1973) developed a model to predict shock train length as a

function of pressure rise and the state of the inflow boundary

layer. Emami et al. (1995) note that the isolator should be of

sufficient length to contain the entire shock train during ram

combustion or risk incomplete flow diffusion or inlet unstart. In a

recent computational study, Fiévet and Raman (2018) observed

effects of vibrational non-equilibrium on the shock train

structure of a pseudoshock and found that the overall length

of the shock train increased due to the latency of the N2

vibrational temperatures and corresponding pressure rise

compared to a thermally perfect gas model. These factors

should be considered to establish a geometric constraint to a

well-designed DMS isolator for a given flight condition (Fiévet,

et al., 2019).

The structure of the shock train and flow confinement is

primarily dependent on the inflowMach number (Tamaki, et al.,

1969), ranging from highly confined X-type shocks at high Mach

numbers (Tamaki, et al., 1971), λ-type shocks at moderate

supersonic Mach numbers (Tamaki, et al., 1970), to normal

shock trains with reduced boundary layer growth at low

supersonic Mach numbers (Carroll, et al., 1992). The structure

and large-scale dynamics of the shock train was also shown to be

dependent on the cross-sectional geometry of the isolator. In a

recent study by Baccarella et al. (2021) shock train dynamics were

observed in an axisymmetric isolator at both high and low

enthalpy conditions. Large-scale self-sustained shock train

oscillations were accompanied by transitions from X-type to

λ-type configurations, with mechanisms of shock train

contraction, swallowing, and extension attributed to local SBLI

and aerodynamic throttling/nozzling effects, shown in Figure 2B.

A study by Lee et al. (2020) observed a bimodal shock train

structure in a rectangular isolator that transitioned between

primary and secondary X-type shock structures originating

FIGURE 2
Instantaneous flow and flame visualization of DMS combustor and isolator dynamics (image sequences are top to bottom). (A)OH PLIF images
of combustor choking (Baccarella et al., 2021). (B)CO2 planar laser Rayleigh scattering (PLRS) images of axisymmetric isolator shock train oscillations
(Baccarella et al., 2021). (C) CO2 PLRS of rectangular shock train dynamics (Lee et al., 2020).

Frontiers in Aerospace Engineering frontiersin.org05

Lee and Lee 10.3389/fpace.2022.1058038

https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2022.1058038


from the top/bottom walls and sidewalls of the isolator

respectively, shown in Figure 2C. A power spectral analysis of

the time-resolved pressure measurements of both experiments

highlighted a strong peak in the frequency content of the

axisymmetric shock train dynamics, while no such peak was

evident in the rectangular case. It was reasoned that the SBLI and

acoustic response of the shock train experienced destructive

interference between the two modes of the rectangular shock

train, while the dynamics were amplified in the

axisymmetric case.

Conclusion

This short overview provides a contemporary snapshot of the

work and understanding of the fluid and flame dynamics in

DMSs across high-fidelity simulations and experiments in

addition to the theoretical background that governs these

physics. The qualitative distinctions between the two modes

and the important thresholds and mechanisms are explored

through the literature. The authors humbly hope that the

current overview captures the spirit of scientific inquiry that is

represented across the works presented, and that it contributes to

better insight into the rich and fascinating physics that manifest

in high-speed combustion and propulsion.
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