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The primary motivation for this paper is to quantify the operational benefits

(energy consumption and flight duration) of flying wind-optimal lateral

trajectories for short flights (less than 60 miles) anticipated in the urban

environment. The optimal control model presented includes a wind model

for quantifying the effect of wind on the lateral trajectory. The optimal control

problem is numerically solved using the direct collocation method. Energy

consumption and flight duration flying wind-optimal lateral trajectories are

compared with corresponding values obtained flying great-circle paths

between the same origin and destination pairs to determine the operational

benefits of wind-optimal routing for short flights. The flight duration results for

different scenarios are validated using a simulation tool designed and developed

at NASA for exploring advanced air traffic management concepts. This research

study suggests that for short flights in an urban environment, operational

benefits of the wind-optimal lateral trajectories over the corresponding

great-circle trajectories in terms of energy consumption and flight duration

per flight are dependent on: i) wind field’s spatial variability, ii) wind magnitude,

iii) the direction of route relative to the wind field, and iv) cruise segment length.

The operational benefits observed in realistic flyable wind scenarios are less

than 2.5%; these could be translated to an equivalent of a maximum of 2 min of

cruise flight duration savings in the urban air mobility environment. As expected,

headwinds and tailwinds along the flight route most significantly impact energy

consumption and flight duration.
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1 Introduction

Urban Air Mobility (UAM) can alleviate transportation

congestion on the ground by utilizing three-dimensional (3D)

airspace efficiently, just as skyscrapers allowed cities to use

limited land more efficiently (Uber-Elevate, 2019). The

envisioned concept of UAM involves a network of small

electric aircraft that can enable rapid and reliable

transportation between suburbs and cities and, ultimately,

within cities (Thipphavong et al., 2018; Pradeep, 2019;

Pradeep and Wei, 2019; Uber-Elevate, 2019).

Recently, technological advances havemade it possible to build

and flight test eVTOL aircraft (Bosson and Lauderdale, 2018;

Thipphavong et al., 2018; Pradeep and Wei, 2019). Several

companies, for example, Airbus A3, Aurora Flight Sciences,

EHang, Joby Aviation, Kitty Hawk, Leonardo, Lilium,

Terrafugia, and Volocopter, are pursuing different design

approaches to make eVTOLs a reality (Thipphavong et al.,

2018). Despite various designs, they all have distributed electric

propulsion (DEP) systems in common (Pradeep and Wei, 2019).

However, the low specific energy and nonlinear discharge behavior

of current lithium-ion polymer (Li-Po) battery technology used in

DEP impose constraints on the flight endurance of such aircraft

(Bole et al., 2014). In general, multirotor eVTOLs are a relatively

low cruise speed aircraft compared to winged eVTOL aircraft;

therefore, atmospheric winds play a significant role in their

trajectories. The operational benefits of wind-optimal lateral

trajectories have been extensively studied for commercial

aircraft (Ng et al., 2012; Sridhar et al., 2014; Sridhar et al.,

2015) but not for eVTOLs in the UAM environment.

Therefore, in the current research, the operational benefits of

wind-optimal lateral trajectories are studied in the UAM context.

The focus of the current research is on the trajectories of a

multirotor eVTOL aircraft on short UAM missions (less than

60 miles) (Uber-Elevate, 2019; Uber Air Vehicle Requirements

and Missions, 2020). Therefore, an optimal control model for a

multirotor eVTOL is formulated that includes a wind effect

model to quantify the effect of wind on the trajectory. The

optimal control problem formulated using a lateral dynamics

model and operational constraints, is numerically solved using

the direct collocation method. The primary motivation of the

paper is to quantify the operational benefits using wind-optimal

lateral trajectories for short flights (less than 60miles) anticipated

in the urban environment. Energy consumption and flight

duration flying wind-optimal lateral trajectories in the Dallas-

FortWorth and New Yorkmetropolitan areas are compared with

the corresponding values obtained flying great-circle paths

between the same origin and destination pairs to determine

operational benefits of wind-optimal routing for short flights.

In this research, the concept of operations (CONOPs) of the

multirotor eVTOL aircraft is assumed to be as follows: i) vertical

climb; ii) cruise at a constant altitude along a path between UAM

vertiports in metropolitan areas like Dallas-Fort Worth (DFW)

and New York (NY); and iii) vertical descent. The scope of this

research is focused on the low-altitude (1,600 ft above mean sea

level (MSL)) cruise phase (Verma et al., 2020); therefore, climb

and descent phases have been ignored in the problem

formulation.

The rest of the paper is organized as follows. In Section 2,

the optimal control problem with energy consumption as the

performance index is formulated to generate four-

dimensional (4D) trajectories for a multirotor eVTOL

aircraft. The optimal control model presented includes a

wind model for quantifying the effect of wind on a lateral

trajectory. In Section 3, wind-optimal and great-circle lateral

trajectories generated under different wind conditions are

described. Next, the flight duration results for different

scenarios are validated using the simulation tool designed

and developed at NASA. Finally, the main findings for this

study are summarized in Section 4.

2 Optimal control model

2.1 eVTOL aircraft model

In this research, a quadrotor eVTOL aircraft concept

proposed by Silva et al. (2018), as shown in Figure 1A, is used

to study the effect of wind on a multirotor eVTOL aircraft

trajectory. This eVTOL has six-seater (up to 545 kg payload)

capacity with a long range cruise airspeed (LRC) of 50.4 m/s

(98 kts).

Table 1 lists the aircraft performance data for the lateral

trajectory optimization in cruise phase.

2.2 Flight dynamics and kinematics model

To study the effect of wind on the cruise phase of the

multirotor eVTOL aircraft, a lateral flight dynamics model

(two dimensional in space and one dimensional in time) is

considered. The four lateral states of the model are: λ, τ, V, ψ;

where λ is the latitude, τ is the longitude, V is the true airspeed

(assumed to have only horizontal component during the cruise)

and ψ is the heading angle w. r.t north (Tsuchiya et al., 2009;

Yomchinda et al., 2011). The three control variables of the model

are: the net thrust (T), the rotor tip-path-plane pitch angle (θ)

and the rotor tip-path-plane roll (bank) angle (ϕ). Therefore, the

quasi-steady cruise flight dynamics and kinematics of the

multirotor eVTOL aircraft considering wind in a vehicle-

carried frame of reference are as follows (Erzberger and Lee,

1980; Tsuchiya et al., 2009; Yomchinda et al., 2011; Sridhar et al.,

2015; Weitz, 2015; Pradeep, 2019; Pradeep and Wei, 2019):

dV

dt
� T cos ϕ sin θ −D

m
− dWN

dt
cosψ − dWE

dt
sinψ (1)
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V
dψ

dt
� T sinϕ

m
+ dWN

dt
sinψ − dWE

dt
cosψ (2)

REarth + h( )dλ
dt

� Vcosψ +WN � VGS cos χ (3)

REarth + h( )cos λ dτ
dt

� V sinψ +WE � VGS sin χ (4)

where D is the parasite drag, VGS is the ground speed, χ is the

course, h is the altitude above mean sea level and REarth is the

mean radius of the Earth, andWN andWE are the components of

the wind in north and east directions, respectively. The time

derivative of wind components is assumed to be zero given the

short duration flights in the UAM environment (Thipphavong

et al., 2018; Uber-Elevate, 2019).

For the quadrotor eVTOL aircraft, assuming that the rotors

have negligible interference with each other, the net thrust (T)

produced by the four rotors is given by:

T � ∑4
n�1

Trotor( )n (5)

where (Trotor)n is the thrust produced by the nth rotor. Also,

assuming all the rotors produce the same amount of thrust

FIGURE 1
Multirotor eVTOL aircraft in forward flight.

TABLE 1 Performance data of the eVTOL aircraft (Silva et al., 2018).

Parameter (Unit) Value

Vcruise (m/s) 50.41

R (m) 4.0

Arotor (m
2) 50.26

mass (kg) 2,940

σ 0.055

Cd mean 0.0089

FP 0.97

κ 1.75

Ω (rad/sec) 30.12

Pmax (kw) 494.25
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(Trotor) in cruise phase, the net thrust (T) produced by the rotors

is given by:

T � 4Trotor (6)

2.3 Drag model

The parasite drag (D) on the multirotor eVTOL is calculated

as follows (Silva et al., 2018):

D � 1.1984
ρV2

2
(7)

where ρ is the density of air, which is a function of altitude and

1.1984 is a product of drag coefficient and reference area (Silva

et al., 2018).

2.4 Induced velocity and induced power

Using momentum theory (Heyson, 1975; Hoffmann et al.,

2007; Johnson, 2012), the hover induced velocity (vh) is given by:

vh �
�������
Trotor

2ρArotor

√
(8)

where Arotor is the rotor diVsk area (πR2) and R is the radius of

the rotor.

Consider an isolated rotor in forward motion at true airspeed

(V), with angle of attack (α) between the air-stream and the rotor

disk (tip-path-plane). Using momentum theory in forward flight,

the solution for induced velocity (vi) is given by (Heyson, 1975;

Hoffmann et al., 2007; Johnson, 2012):

vi � v2h����������������������
Vcos α( )2 + V sin α + vi( )2

√ (9)

where the hover induced velocity (vh) on the right-hand side of

Eq. 9 is computed using Equation 8.

Equation 9 is a quartic polynomial that can be analytically

solved for induced velocity (vi). Out of the four roots of the

quartic Eq. 9, the one with real-positive and value lower than

vh is the correct solution for cruise phase. Equation 9 can also

be numerically solved using an iterative technique with initial

guess for vi as vh.

Once vi is computed, the induced power loss of an isolated

rotor (Pinduced rotor) in forward flight is computed as follows

(Johnson, 2012; Johnson, 2015):

Pinduced rotor � κTrotorvi (10)
where the induced power factor (κ) is assumed to be 1.75 (Silva

et al., 2018).

2.5 Power required by the eVTOL aircraft

Based on the quasi-steady flight assumption, the instantaneous

power required in forward cruise flight at a constant altitude is equal

to the sum of the induced power, parasite power, and profile power

as follows (Heyson, 1975; Leishman, 2002; Johnson, 2012; Pradeep,

2019; Pradeep and Wei, 2019):

Prequired � Pinduced + Pparasite + Pprofile (11)

The total induced power loss of the eVTOL aircraft

(Pinduced) is equal to the summation of the induced power

loss of each rotor (Pinduced rotor). Therefore, the induced power

loss of the aircraft is given by Johnson (2012); Silva et al.

(2018):

Pinduced � ∑4
n�1

Pinduced rotor( )n � κ∑4
n�1

Trotor( )n vi( )n (12)

The power required to propel the aircraft forward (the

parasite power loss) at a constant altitude is given by Johnson

(2012):

Pparasite � TV sin α (13)

The profile power loss is calculated from a mean blade drag

coefficient (Cd mean) as follows (Leishman, 2002; Johnson, 2012;

Silva et al., 2018):

Pprofile � ρArotor ΩR( )3σCd meanFP

8
(14)

where Ω is the rotational velocity of the rotor blades, σ is the

thrust weighted solidity ratio, Cd mean is the mean blade drag

coefficient and FP is the function that accounts for the increase of

the blade section velocity with rotor edgewise and axial speed

(Johnson, 2012; Johnson et al., 2018; Silva et al., 2018). However,

FP is assumed to be a constant (see Table 1) in this study because

of cruise at constant altitude and nominal cruise speed.

Therefore, using the equations from (11) to (14), the

instantaneous power required (Prequired) in forward flight is

given by:

Prequired � κ∑4
n�1

Trotor( )n vi( )n + TV sin α

+ ρArotor ΩR( )3σCd meanFP

8
(15)

2.6 Performance index of optimal control
problem

The performance index for the wind-optimal lateral

trajectory optimization problem is constructed as follows:
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J � ∫tf

t0

Prequired( )dt
� ∫tf

t0

κ∑4
n�1

Trotor( )n vi( )n + TV sin α + ρArotor ΩR( )3σCd meanFP
8

⎛⎝ ⎞⎠dt

(16)

where t0 is the initial flight time at the top of climb (TOC) placed

directly above the origin vertiport at the cruise altitude and tf is the

final flight time to reach the top of descent (TOD) placed directly

above the destination vertiport at the cruise altitude.

2.7 Path constraints of optimal control
problem

For a level flight (cruise) in the absence of vertical component of

wind, the net vertical force on the multirotor eVTOL aircraft is zero;

therefore, the following path constraint is imposed on the problem:

T cos ϕ cos θ � mg (17)

where m is the mass of the aircraft and g is the acceleration due to

gravity.

The instantaneous power required (Prequired in kw) is

bounded by the total deliverable power (Pmax) of the

quadrotor eVTOL aircraft (Johnson, 2015; Silva et al., 2018):

Prequired ≤ 494.25 (18)

where Prequired is defined in Equation 15.

2.8 Great-circle path constraint

The course angle (χ) for the great-circle trajectory between

the two waypoints is calculated as follows (Chatterji et al., 1996):

tan χ � sin τ2 − τ1( )cos λ2
sin λ2 cos λ1 − sin λ1 cos λ2 cos τ2 − τ1( ) (19)

where the origin latitude-longitude is (λ1, τ1) and the destination

latitude-longitude is (λ2, τ2). However, to generate a great-circle

trajectory between the two waypoints using the optimal control

framework developed in this research, a path constraint as a

function of the wind components (WN and WE), latitude-

longitude coordinates of the two waypoints and heading angle

(ψ) is required. Therefore, the course angle (χ) needs to be

eliminated from Equation 19.

Using Eqs 3, 4, the heading angle (ψ) required to fly the

course angle (χ) in the presence of the wind is computed as

follows:

tan χ � Vsinψ +WE

Vcosψ +WN
(20)

whereWN andWE are the components of the wind in north and

east directions, respectively.

Equations 19, 20 result in the following relation:

Vsinψ +WE

Vcosψ +WN
� sin τ2 − τ1( )cos λ2
sin λ2 cos λ1 − sin λ1 cos λ2 cos τ2 − τ1( ) (21)

Hence, the path constraint for the great-circle trajectory

between the two waypoints is given by:

Vsinψ +WE( ) sin λ2 cos λ1 − sin λ1 cos λ2 cos τ2 − τ1( )( )
− Vcosψ +WN( ) sin τ2 − τ1( )cos λ2( ) � 0 (22)

3 Numerical study and results

3.1 Optimal control solver

The trajectory optimization problems can be numerically

solved, either using the direct or indirect methods (Betts and

Huffman, 1998). Direct methods typically discretize the

trajectory optimization problem, and convert the original

trajectory optimization problem into a nonlinear program.

On the other hand, indirect methods are characterized by

explicitly solving the optimality conditions stated in terms of

the adjoint differential equations, the maximum principle,

and associated boundary (transversality) conditions (Bryson,

1975). Using the calculus of variations, the optimal control

necessary conditions can be derived by setting the first

variation of the Hamiltonian function to zero. A common

way to distinguish these two methods is that a direct method

discretizes and then optimizes, while an indirect method

optimizes and then discretizes (Betts and Huffman, 1998;

Kelly, 2017).

In this research, PSOPT has been used to solve the optimal

control problem to generate wind-optimal lateral trajectories for

the multirotor eVTOL aircraft. PSOPT is an open-source optimal

control software package written in C++ that uses direct

collocation methods such as pseudospectral methods (Becerra,

2010). Pseudospectral methods directly discretize the original

optimal control problem to formulate a nonlinear programming

problem, which is then solved numerically using a sparse

nonlinear programming solver to find approximate local

optimal solutions. IPOPT is an open-source C++ package for

large-scale nonlinear optimization, which uses an interior point

method (Wächter and Biegler, 2006; Becerra, 2010). IPOPT is the

default nonlinear programming algorithm used by PSOPT.

Approximation theory and practice show that pseudospectral

methods are well suited for approximating smooth functions,

integration, and differentiation, i.e., all of which are relevant to

optimal control problems (Becerra, 2010). Nearly all trajectory

optimization techniques require a good initial guess to begin

the optimization. In the best case, a good initialization ensures

that the solver rapidly arrives at the optimal solution (Kelly,

2017).
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3.2 Wind data

The Rapid Refresh (RR) operational weather prediction system,

available on an hourly basis at 13 km spatial resolution from the

National Center for Environmental Prediction (Benjamin et al., 1998),

has been used to extract the wind data for analysis. The wind data are

extracted for the entire month of January 2019 (i.e., 31 days) during

peak traffic hours in the morning and evening, i.e., i) 7 a.m.–11 a.m.

(local time), and ii) 3 p.m.–7 p.m. (local time) at cruise altitude

(1,600 ft above MSL) in 1-min intervals at grid points equispaced

10 km apart. The grid points cover 104 km2 area at the Dallas-Fort

Worth and New York metropolitan areas of the United States.

3.2.1 Strongest wind
To find the date and local time when the strongest wind (highest

wind speed) occurred: First, the spatial average of wind speed is

computed in 1-min intervals (epochs). Finally, the spatially averaged

wind speeds at each epoch are compared to find the epoch at which

the highest wind speed magnitude occurred.

3.2.2 Highest spatial variability of the wind
Tofind the date and local timewhen the highest spatial variability

of wind speed occurred: First, the spatial average of wind speed is

computed in 1-min intervals (epochs). Next, the standard deviation

of the wind is computed in 1-min intervals as follows:

σwind �
���������
σ2WN

+ σ2WE

√
(23)

where σwind is the standard deviation of the wind at any given epoch,

σWN is the standard deviation of the north component of the wind at

any given epoch, and σWE is the standard deviation of the east

component of the wind at any given epoch. Finally, the standard

deviation of the wind at each epoch is compared to find the epoch at

which the highest spatial variability occurred.

3.2.3 Wind data analysis results
Table 2 and Table 3 show the following wind data analysis

results:

• Date and time results in epoch, UTC, and local time format

for the occurrence of the strongest wind and highest spatial

variability of the wind in the Dallas-Fort Worth (DFW)

and New York (NY) metropolitan areas.

• Statistics of wind fields chosen for the study in the Dallas-

Fort Worth and New York metropolitan areas respectively.

3.2.4 Analytical wind models for case studies
Because PSOPT requires the equations in an analytical form,

the MATLAB curve-fitting Toolbox (2001) is used to obtain

equations for north and east components of the wind, needed in

Eqs 3, 4 for each case study. These equations are approximation

of real wind data as a linear function of latitude (λ) and longitude

(τ), defined in radians.

Table 3 shows wind models obtained using MATLAB

Toolbox (2001) for different wind scenarios in the DFW and

NY metropolitan areas. In general, R-square is a goodness-of-fit

measure for linear regression models. R-square measures the

strength of the relationship between the linear regression model

and the dependent variable on a convenient 0 to 1 scale (Toolbox,

2001). For the four wind models shown in Table 3, R-square

values are observed between 0.91 and 0.95.

3.3 Test apparatus

NASA’s Future Air Traffic Management (ATM) Concepts

Evaluation Tool (FACET), designed and developed over the last

20 years, provides a flexible simulation environment for the

exploration, development and evaluation of advanced ATM

concepts (Bilimoria et al., 2001). FACET models four-

dimensional (4D) aircraft trajectories in the presence of winds

using round-earth kinematic equations. Aircraft can be flown

along flight plan routes or great-circle routes as they climb, cruise

and descend per their aircraft-type performance models.

Performance parameters of the aircraft are obtained from a

data look-up table. Therefore, a look-up table is created for

the multirotor eVTOL aircraft based on the performance data

TABLE 2 Occurrence of the strongest wind and highest spatial variability of the wind in the Dallas-Fort Worth (DFW) and the New York (NY)
metropolitan areas.

Occurrence DFW NY

Strongest Wind

Epoch (seconds) 1,547,906,400 1,548,342,000

UTC 19 January 2019 14:00 Zulu 24 January 2019 15:00 Zulu

Local Time 19 January 2019 8:00 a.m. (CST) 24 January 2019 10:00 a.m. (EST)

Highest Spatial Variability of the Wind

Epoch (seconds) 1,548,198,000 1,548,000,000

UTC 22 January 2019 23:00 Zulu 20 January 2019 16:00 Zulu

Local Time 22 January 2019 5:00 p.m. (CST) 20 January 2019 11:00 a.m. (EST)
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of the conceptual multirotor eVTOL proposed by Silva et al.

(2018). The flight duration results of the optimal control

framework using PSOPT solver are validated using the

neighboring-optimal wind routing algorithm (Jardin and

Bryson, 2001) implemented in FACET. FACET

implementation performs a bi-linear interpolation in spatial

and temporal dimensions on the available gridded wind data.

3.4 Metrics to measure operational
benefits

The following two metrics are used to compute operational

benefits of flying wind-optimal lateral trajectory compared to

great-circle trajectory for a given origin and destination.

3.4.1 Energy savings
The energy savings (%) associated with flying the wind-

optimal lateral trajectory compared to the great-circle

trajectory is computed as follows:

Energy Savings (%) � EnergyGreat−Circle − EnergyWind−Optimal

EnergyGreat−Circle
100

(24)
where EnergyWind-Optimal and EnergyGreat-Circle are energy

consumed flying the wind-optimal lateral trajectory and

great-circle trajectory under similar wind conditions,

respectively.

3.4.2 Flight duration savings
The flight duration savings (%) associated with flying the

wind-optimal lateral trajectory compared to the great-circle

trajectory is computed as follows:

TABLE 3 Wind statistics and model of the strongest wind and highest spatial variability of the wind in the Dallas-Fort Worth (DFW) and the New York
(NY) metropolitan areas.

North wind (WN m/s) East wind (WE m/s) Wind speed (VW m/s)

DFW Wind Statistics and Model
Strongest Wind

Spatial Average −16.92 10.83 20.08

Standard Deviation 0.27 0.25 0.26

Wind Model −16.92 10.83 N/A

Highest Spatial Variability of the Wind

Spatial Average −1.93 7.37 10.23

Standard Deviation 7.13 0.84 2.25

Wind Model 2,160.6–395.6λ + 1,142.7τ -172.5 + 49.2λ - 89.5τ N/A

NY Wind Statistics and Model
Strongest Wind

Spatial Average 28.35 0.54 28.40

Standard Deviation 5.01 1.67 5.02

Wind Model 1,218–691.3λ + 539.4τ 380–253.5λ + 153.9τ N/A

Highest Spatial Variability of the Wind

Spatial Average 7.43 4.19 11.64

Standard Deviation 9.35 3.57 6.13

Wind Model 2,247.6–873.7λ + 1,250.9τ -102.6–501.3λ - 357.6τ N/A

FIGURE 2
Depiction of wind field and routes used to study operational
benefits of flying wind-optimal lateral trajectories in the DFW
metropolitan area for the strongest wind case study.
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Flight Duration Savings (%) �
FlightDurationGreat−Circle − FlightDurationWind−Optimal

FlightDurationGreat−Circle
100 (25)

where Flight DurationWind-Optimal and Flight DurationGreat-Circle
are flight duration flying the wind-optimal lateral trajectory and

great-circle trajectory under same wind conditions, respectively.

3.4.3 Dallas-Fort Worth metropolitan area
Two types of wind scenarios are considered: i) strongest

wind (as shown in Figure 2) and ii) highest spatial variability

of the wind (Figure 4) in the Dallas-Fort metropolitan area.

The location of vertiports and the direct route lengths are

based on the Air Traffic Management - eXploration (ATM-X),

Urban Air Mobility (UAM) Experiment two scenarios

conducted at NASA Ames (Verma et al., 2020). Therefore,

the great-circle distance between different origin and

destination pairs is 30–50 nautical miles.

3.4.4 Case study - Strongest wind in the Dallas-
Fort Worth metropolitan area

To study wind-optimal lateral trajectories, three routes

originating from the origin location (32.901767, -97.193954)

are considered (Verma et al., 2020). The destinations are

chosen at a great-circle distance of 30 nautical miles from

the origin. Figure 2 shows a depiction of wind fields and routes

used to study the operational benefits of flying wind-optimal

lateral trajectories in the Dallas-Fort Worth metropolitan area

for the strongest-wind (Table 3) case study.

From Figure 3, it can be seen that in the uniform wind

field, the energy consumption and flight duration for the

wind-optimal lateral trajectories are the same as the

corresponding great-circle trajectories. However, because of

the slow nominal cruise speed (50.41 m/s), the energy

consumption and flight duration while flying in the

headwind is 2–3 times higher than flying the same distance

(30 nm) in the tailwind. As shown in Figure 3, the flight

duration (cruise) results of PSOPT are validated using the

overall flight duration (climb, cruise, and descent) results of

FACET. The flight duration results obtained using FACET are

generally slightly different (1–2 min) because of: i) climb and

descent phases modeled in FACET, which are not considered

in PSOPT; and ii) slight difference in the wind field modeling

between FACET and PSOPT. FACET directly uses rapid

refresh wind data at grid points for trajectory prediction,

whereas PSOPT uses a wind model created using Matlab

curve-fitting toolbox.

3.4.5 Case study - Highest spatial variability of
wind in the Dallas-Fort Worth metropolitan area

To study the impact of spatial variability of the wind field on

the wind-optimal lateral trajectory, two routes (50 nm great-

circle distance) as shown in Figure 4 are considered. The wind

model used to generate wind-optimal and great-circle trajectories

is listed in Table 3.

In this case study, the operational benefits (energy

consumption and flight duration) with the wind-optimal

lateral trajectory when compared to the corresponding great-

circle trajectory are observed to be slightly less than 1% for both

the routes as shown in Figure 5. From Figure 5, it can be

concluded that the spatial variability of the wind field has an

impact on the amount of operational benefits.

FIGURE 3
Comparison of wind-optimal and great-circle trajectories under different wind conditions in the Dallas-Fort Worth metropolitan area for the
strongest wind case study.
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3.5 New York metropolitan area

Similar to the Dallas-Fort Worth case studies, two types

of wind scenarios are considered: 1) strongest wind (as shown in

Figure 6) and ii) highest spatial variability of the wind (as shown

in Figure 8) in the New York metropolitan area. The vertiports

and direct route lengths of 30 and 50 nautical miles are based on

the Air Traffic Management - eXploration (ATM-X), Urban Air

Mobility (UAM) Experiment two conducted at NASA Ames

(Verma et al., 2020).

3.5.1 Case study - Strongest wind in the New
York metropolitan area

To study wind-optimal lateral trajectories, three routes

originating from the location (40.703869, -74.176071) as

shown in Figure 6 are considered.

FIGURE 4
Depiction of wind field, routes and computed wind-optimal lateral trajectories used to study operational benefits of flying wind-optimal lateral
trajectories in the DFW metropolitan area for the highest spatial variability of the wind case study.

FIGURE 5
Comparison of wind-optimal lateral trajectory with great-circle trajectory in the DFWmetropolitan area for the highest spatial variability of the
wind case study.
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From Figure 7, it can be seen that in the non-uniform wind

field, the energy consumption and flight duration for the wind-

optimal lateral trajectory are 1.2% lower than the corresponding

great-circle trajectory. However, because of the slow nominal

cruise speed (50.41 m/s) and high magnitude of the headwind

(approx. 28 m/s), the energy consumption and flight duration

while flying in the headwind is 4–5 times higher than flying the

same distance (30 nm) in the tailwind. As shown in Figure 7, the

flight duration (cruise) results of PSOPT are validated using

overall flight duration (climb, cruise, and descent) results

obtained using FACET. The flight duration results of FACET

are generally slightly different (1–2 min) because of: i) climb and

descent phases modeled in FACET, which are not considered in

PSOPT; and ii) slight difference in the wind field modeling

between FACET and PSOPT. FACET directly uses rapid

refresh wind data at grid points for trajectory prediction,

whereas PSOPT uses a wind model created using Matlab

curve-fitting toolbox. Therefore, the slightly lower flight

duration (around 1.5%) result obtained using FACET under

headwind conditions in Figure 7 can be attributed to a higher

contribution from wind modeling error in this scenario.

To perform the sensitivity analysis on wind-optimal lateral

trajectory, the headwind route is further extended to 50 nm

(57.54 miles). The headwind route is picked among the three

routes because it showed the greatest operational benefits (energy

consumption and flight duration) of 1.2% for wind-optimal

lateral trajectory when compared to the corresponding great-

circle trajectory. For the headwind route (origin: 41.3661,

-74.176071 and destination: 40.2, -74.176071), the operational

benefits with the wind-optimal lateral trajectory when compared

to the great-circle trajectory are approximately 2.5% as listed in

Table 4. From Table 4 and Figure 7, it can be concluded that the

length of the direct route, spatial variability of the wind field,

wind magnitude, and direction of the direct route relative to the

wind field impact the percentage of operational benefits.

3.5.2 Case study - Highest spatial variability of
the wind in the New York metropolitan area

To study the impact of spatial variability of the wind field on

the wind-optimal lateral trajectory, two routes (50 nm great-

circle distance) as shown in Figure 8.

FIGURE 6
Depiction of wind field and routes used to study operational
benefits of flying wind-optimal lateral trajectories in the New York
metropolitan area for the strongest wind case study.

FIGURE 7
Comparison of wind-optimal and great-circle trajectories under different wind conditions in the New York metropolitan area for the strongest
wind case study.
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TABLE 4 Comparison of wind-optimal lateral trajectory with great-circle trajectory on headwind route (50 nm).

Trajectory type Energy consumption (MJ) Flight duration (seconds)

Wind-Optimal 629.88 4,037.71

Great-Circle 646.45 4,143.9

FIGURE 8
Depiction of wind field, routes and computed wind-optimal lateral trajectories used to study operational benefits of flying wind-optimal lateral
trajectories in the New York metropolitan for the highest spatial variability of the wind case study.

FIGURE 9
Comparison of wind-optimal lateral trajectory with great-circle trajectory in the New York metropolitan area for the highest spatial variability of
the wind case study.
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In this case study, the operational benefits of flying a wind-

optimal route compared to the great-circle route for North-East

bound flight are approximately 1.1%. However, the operational

benefits of flying a wind-optimal route compared to the great-

circle route for South-West bound flight are about 2.3% as shown in

Figure 9. The results of this case study reiterate the earlier conclusion

that the length of the direct route, spatial variability of the wind field,

wind magnitude, and direction of the direct route relative to the

wind field impact the percentage of operational benefits.

3.5.3 Case study - Simulated wind in the Dallas-
Fort Worth metropolitan area

Since 50 nm great-circle distance corresponds to 6–7 wind

extraction grid points with 13 km resolution for wind data,

therefore, wind field is simulated to perform sensitivity analysis

and substantiate the results of the impact of wind field with varying

direction (higher magnitude of a spatial gradient than previous case

studies) on a wind-optimal lateral trajectory. The north component

of the wind (WN) is linearly varied from its maximum magnitude

with the direction towards the north at the origin vertiport

(32.901767, -97.193954) to its maximum magnitude with the

direction towards the south at the destination vertiport

(32.897850, -96.204208) as shown in Subfigure 10a. In the

simulated wind-field scenario, the north component of the wind

(WN) is linearly varied from +15m/s at the origin vertiport to -

15 m/s at the destination vertiport as shown in Subfigure 10a,

whereas the east component of the wind (WE) is kept constant.

The linear curve-fit of the north component of the wind (WN

m/s) obtained using the MATLAB curve-fitting tool (Toolbox,

2001) is as follows:

WN � −1736.68τ − 2931.03 (26)
WE � 15 (27)

From Table 5, it can be seen that in the wind field with

varying direction as shown in Figure 10, for the multirotor

eVTOL aircraft on a short UAM mission (50 nm), the energy

consumption and flight duration for the wind-optimal lateral

trajectory are approximately 1.4% lower than the corresponding

great-circle trajectory.

4 Conclusion

The optimal control problem with energy consumption as

the performance index was formulated to generate trajectories for

TABLE 5 Comparison of wind-optimal lateral trajectory with great-circle trajectory in simulated wind with varying direction.

Lateral trajectory type Energy consumption (MJ) Flight duration (seconds)

Wind-Optimal 220.54 1,413

Great-Circle 223.12 1,430

FIGURE 10
Wind-optimal lateral trajectory and great-circle trajectory in simulated wind with varying direction.
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a multirotor electric vertical takeoff and landing aircraft on a

short urban air mobility mission (less than 60miles). The optimal

control model presented includes a wind model for quantifying

the effect of wind on the lateral trajectory. The wind models were

formulated by analyzing the real wind data from the Rapid

Refresh (RR) operational weather prediction system in the

Dallas-Fort Worth and New York metropolitan areas for the

following scenarios: 1) strongest wind and ii) highest spatial

variability of the wind.

Further, this paper presents a framework for comparing

energy consumption and flight duration flying wind-optimal

lateral trajectories and great-circle trajectories to evaluate the

operational benefits (energy consumption and flight

duration) of wind-optimal routing for short flights. The

lateral trajectory optimization problem was numerically

solved using the pseudospectral method for a NASA-

proposed conceptual multirotor electric vertical takeoff

and landing aircraft.

The numerical results in the Dallas-Fort Worth metropolitan

area for the strongest wind case study showed that in uniform

wind conditions, the wind-optimal lateral trajectories were

identical to the corresponding great-circle trajectories for

short flights (30 nm). However, the highest spatial variability

of the wind case study showed operational benefits of slightly less

than 1% for both of the 50 nm direct routes, i.e., Eastbound and

Westbound.

The numerical results in the New York metropolitan area

for the strongest wind case study showed operational benefits

flying the wind-optimal lateral trajectories compared to the

corresponding great-circle trajectories for short flights

(30 nm) with maximum benefit (1.2%) in the headwind

condition. Upon performing a sensitivity analysis by

extending the headwind route to 50 nm, the operational

benefits increased to 2.5%. The operational benefits can be

attributed to non-uniform wind conditions. However, the

highest spatial variability of the wind case study showed

operational benefits of 2.3% for the South-West bound

50 nm direct route, and 1.1% for the North-East bound

50 nm direct route.

In conclusion, this research study suggests that for short

flights in an urban environment, operational benefits of the

wind-optimal lateral trajectories over the corresponding

great-circle trajectories in terms of energy consumption

and flight duration per flight are dependent on multiple

factors. These factors are: 1) wind field’s spatial variability,

ii) wind magnitude, iii) the direction of route relative to the

wind field, and iv) cruise segment length. The operational

benefits observed in realistic flyable wind scenarios are less

than 2.5%; these could be translated to an equivalent of a

maximum of 2 min of cruise flight duration savings in the

urban air mobility environment. As expected, headwinds and

tailwinds along the flight route significantly impact energy

consumption and flight duration.
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Nomenclature

λ Latitude

τ Longitude

h Altitude above mean sea level

D Parasite drag

V True airspeed

VGS Ground speed

LRC Long range cruise airspeed

m Mass

q Dynamic pressure

T Net thrust

ψ Heading angle

χ Course angle

Trotor Thrust produced by an isolated rotor

vh Rotor-induced velocity in hover

vi Rotor-induced velocity during forward flight

α Angle-of-attack of air-stream relative to rotor tip-path-plane

θ Rotor tip-path-plane pitch angle

ϕ Rotor tip-path-plane roll angle

κ Induced power factor

Pmax Total deliverable power

Arotor Rotor disk area

R Radius of the rotor

Ω Rotational velocity of the rotor blades

σ Thrust-weighted solidity ratio

σwind Standard deviation (spatial variability) of the wind at any

given epoch

σWN Standard deviation (spatial variability) of the north

component of the wind at any given epoch

σWE Standard deviation (spatial variability) of the east

component of the wind at any given epoch

Cd mean Mean blade drag coefficient

ρ Density of air

REarth Radius of the Earth assuming spherical model

WN North component of the wind speed

WE East component of the wind speed.
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