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Deep Reinforcement Learning (DRL) has demonstrated promising performance

in maintaining safe separation among aircraft. In this work, we focus on a

specific engineering application of aircraft separation assurance in structured

airspace with high-density air traffic. In spite of the scalable performance, the

non-transparent decision-making processes of DRL hinders human users from

building trust in such learning-based decision making tool. In order to build a

trustworthy DRL-based aircraft separation assurance system, we propose a

novel framework to provide stepwise explanations of DRL policies for human

users. Based on the different needs of human users, our framework integrates 1)

a Soft Decision Tree (SDT) as an online explanation provider to display critical

information for human operators in real-time; and 2) a saliencymethod, Linearly

Estimated Gradient (LEG), as an offline explanation tool for certification

agencies to conduct more comprehensive verification time or post-event

analyses. Corresponding visualization methods are proposed to illustrate the

information in the SDT and LEG efficiently: 1) Online explanations are visualized

with tree plots and trajectory plots; 2) Offline explanations are visualized with

saliency maps and position maps. In the BlueSky air traffic simulator, we

evaluate the effectiveness of our framework on case studies with complex

airspace route structures. Results show that the proposed framework can

provide reasonable explanations of multi-agent sequential decision-making.

In addition, for more predictable and trustworthy DRL models, we investigate

two specific patterns that DRL policies follow based on similar aircraft locations

in the airspace.
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1 Introduction

Many real-world decision making and control tasks face

challenges from dynamic environments and complex state

spaces. In addition, there are often competitions or

collaborations when there is a multiple-agent environment.

These practical factors make it challenging to design planning

and control algorithms. Aircraft separation assurance is one

example of these real-world control tasks. It aims to maintain

safe separation distances among all aircraft in a given airspace

region and guarantee that every aircraft exits the airspace region

without conflict. In this work, we focus on aircraft separation

assurance provided through speed advisories.

In recent years, Deep Reinforcement Learning (DRL) has been

recently explored in aircraft separation assurance. Our group solves

this problem in structured airspace with DRL (Brittain and Wei,

2019; Brittain and Wei, 2021; Brittain et al., 2021; Guo et al., 2021).

Different DRL approaches have been applied to aircraft separation

assurance task. Deep Q-network (Mnih et al., 2013; Van Hasselt

et al., 2016) is a very popular solution in this field because of its

generalization ability (Wulfe, 2017; Wang et al., 2019; Ribeiro et al.,

2020; Isufaj et al., 2021). Proximal Policy Optimization (PPO)

(Schulman et al., 2017) is also widely used because it provides

stable and outstanding performance (Brittain and Wei, 2019;

Brittain and Wei, 2021; Brittain et al., 2021; Ghosh et al., 2021;

Guo et al., 2021). Though DRL models show good performances in

collision avoidance problems, they make decisions in a non-

transparent way, which makes it hard to build trust in such a

safety-critical system.

The non-transparency issue can be addressed by providing

explanations regarding the model decisions and

recommendations. For example, displaying the key factors,

such as position and airspeed, that lead to a speed change

advisory will help human users understand DRL policies

better. In our work, users of DRL-based aircraft separation

assurance systems refer to human operators such as pilots and

air traffic controllers, and certification agencies such as the

Federal Aviation Administration. Apart from the critical

information for the decision at each time step, analysts from

certification agencies also need to reason whether or not the

speed advisories follow any patterns given specific aircraft

locations and speeds in the airspace. If such pattern is

identified, DRL policies will become more predictable to users,

resulting in a more trustworthy aircraft separation assurance

system for human operators.

In order to aid human users in capturing the key factors in

the decisions of DRL models, it is important to quantify the

influence of input states on output policies. One popular

approach is to build Soft Decision Trees (SDTs) (Frosst and

Hinton, 2017) by distilling the knowledge from DRL models into

shallow, more explainable trees. The distilled SDT works as a

surrogate model. Its decision path and feature weights can be

leveraged to present critical state information behind one

recommended decision. Another promising branch of

methods are saliency methods (Simonyan et al., 2013;

Selvaraju et al., 2017; Sundararajan et al., 2017). Instead of

building a surrogate model, saliency methods typically

leverage the neural network’s gradients to compute saliency

scores of input features. Higher scores imply more important

features.

We propose a novel framework that integrates an SDT and a

saliency method called linearly estimated gradient (LEG) (Luo et al.,

2021), to provide stepwise explanations for human users, as shown

in Figure 1. The SDT serves as an online explanation provider to

display critical information for human operators in real-time, while

LEG is an offline explanation tool for certification agencies to

conduct more comprehensive analyses. Specifically, the SDT

transfers knowledge from complex network representation to

tree-structured representation with clear decision paths. We

visualize the transferred knowledge with 1) a tree plot showing

feature importance and the decision path and 2) a trajectory plot

highlighting critical state information for a recommended decision.

In addition, LEG computes saliency scores of the DRLmodel’s input

features. We visualize these scores with a saliency map. Offline

explanations are provided by combining it and a position map

showing the airspace route structure and all aircraft. Furthermore,

we utilize LEG to explain two specific patterns that speed advisories

follow. We refer to our framework as “Stepwise Explainable

Separation Assurance MEthod” (SESAME).

Our contributions can be summarized as follows:

• We extend the application of LEG from deep learning

based computer vision models to DRL-based decision-

making models.

• To the best of our knowledge, our work is the first to build

explainable DRL-based aircraft separation assurance systems.

• Our proposed framework provides online explanations for

human operators via an SDT and decision path

visualization, and provides offline explanations for

certification agencies via LEG and decision reasoning

visualization.

2 Related works

Many works on Explainable DRL have been proposed to

provide model explanations. Representation learning is applied

to generating compact and explainable representations

(Jonschkowski and Brock, 2015; Jarrett et al., 2021). Human-

understandable rules from DRL models are extracted by logic

rule methods to provide behavior explanations (Verma et al.,

2018). Neural language models are trained to generate

explanations for agent behaviors in text form (Cideron et al.,

2019; Kim et al., 2020).

SDT is a popular model for behavior explanations, which

integrates the traditional hard decision trees (Quinlan, 1986)
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and perceptrons. SDTs can distill knowledge from complex

DRL models and work as surrogate models. The tree

structure in SDT provides a decision path and detailed

feature weights, which can then be used to provide

explanations. The first SDT model was implemented to

solve an image classification problem (Frosst and Hinton,

2017). To build SDT models for DRL models, state-action

pairs are first generated by DRL models and then used to

train SDT models in a supervised-learning paradigm. The

knowledge from a PPO network was distilled to explain the

behaviors of agents playing the Super Mario game

(Karakovskiy and Togelius, 2012). To further improve the

performance of DRL-based SDTs, a linear model U-tree is

proposed by approximating Q functions (Liu et al., 2018).

Univariate nodes are introduced to discretize SDTs for better

interpretability (Silva et al., 2020). A feature learning tree is

integrated with the standard SDT to improve model

expressivity (Ding et al., 2020). A series of novel metrics

are proposed for a comprehensive evaluation (Dahlin et al.,

2020).

Another promising branch of explanation methods is

saliency methods. They typically leverage the neural

network’s gradients to compute saliency scores of input

features. Features with higher scores are more relevant to

the network prediction. Saliency methods are widely used to

determine the regions in an image that contribute the most to

the classification result (Simonyan et al., 2013; Zeiler and

Fergus, 2014; Selvaraju et al., 2017; Smilkov et al., 2017;

Sundararajan et al., 2017; Ancona et al., 2018). Similarly,

they are used to capture the key factors that lead to the

decisions of DRL agents. Jacobian saliency is visualized on

the images of Atari games to highlight the most important

pixels (Wang et al., 2016; Zahavy et al., 2016). A perturbation

method is proposed to generate saliency maps that are more

human-interpretable (Greydanus et al., 2018). Object saliency

maps are explored to explain DRL-based object recognition

(Iyer et al., 2018). Specificity and relevance are introduced as

two criteria for more accurate saliency maps (Gupta et al.,

2020). In this work, we integrate a saliency method, LEG (Luo

et al., 2021), into our framework as an offline explanation tool

for certification agencies.

Our work is different from the previous works in the

following ways: 1) Our framework provides both online

explanations with SDTs and offline explanations with saliency

methods. In contrast, the previous papers only focus on one

specific method. 2) Our work concentrates on the aircraft

separation assurance task with a complex high-dimensional

input space. But the previous works mainly focus on tasks

with simple low-dimensional input [e.g., CartPole (Ding et al.,

2020), LunarLander (Silva et al., 2020)] or tasks with pixel-based

input [e.g., Mario AI Benchmark (Coppens et al., 2019), Wildfire

Tracking (Haksar and Schwager, 2018)]. 3) Our work focuses on

a complex multi-agent problem so the proposed methods need

to consider the cooperation among all agents in the system.

However, the previous works mainly explain the tasks with

only a single agent. 4) Our work explores the general patterns

that DRL policies follow. In contrast, previous works on

explaining DRL policies with saliency methods mainly

focus on extracting important information from a

particular state.

3 Background

3.1 Markov decision process

Sequential decision-making problems can be formalized as

Markov Decision Processes (MDPs). The important Markov

FIGURE 1
The structure of the SESAME explanation framework. The framework observes the state vectors of the simulation environment and generates
the decision path with the SDTs in distillationmodule at each time step. The decision path is fed to the visualizationmodule. The visualizationmodule
generates tree plot and trajectory plot to provide online explanations for human operators. LEG computes saliency scores of input features. The
scores are fed to the visualization module. The visualization module generates saliency maps and position maps to provide offline explanations
for certification agencies.
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assumption here is that the transition between two states depends

only on the current state and action but not the history. An MDP

can then be modeled with tuple < S, A, T, R> . The agent chooses

an action a ∈ A in state s ∈ S and receives a reward R (s, a). Given

the transition probability T (s′|s, a), the current state s will

transition to the next state s′.
The agent interacts with the environment based on the policy

π. The solution of MDP is an optimal policy π* that maximizes

the expected utility. The optimal policy can be found

recursively by:

π* � argmax
π

E ∑T
t�0

r st, at( )|π( )⎡⎣ ⎤⎦.

3.2 Deep reinforcement learning

DRL is a solution to solve the Reinforcement Learning

problems. A policy π is represented as a neural network in

DRL models. Policy-based DRL is a family of algorithms

designed to learn stochastic policies. PPO is a gradient-based

DRL method (Schulman et al., 2017) that implements a

neural network to approximate the policy and the value

function. In this work, a PPO network is first trained and

then used to generate offline transitions for the explainable

models.

3.3 Soft decision tree

SDT is a classification model that integrates perceptrons with

traditional hard decision trees together. SDT is recently explored

in explainable classification problems. A single-layer neural

network parameterized by weight wk is built in each non-leaf

node k. Given all possible classes c′ and the target class c, a fixed

classification distribution parameterized by vector ϕl is learned by

each leaf node l as:

Ql
c �

exp ϕl
c( )

∑c′ exp ϕl
c′( ).

The traversal probability is defined as the probability of

traversing from the parent node k to its left child node. Given

input state s, weight vector wk, the sigmoid function σ, and

inverse temperature parameter β, the traversal probability can be

calculated as:

pk s( ) � σ β swk( )( ).
A decision path is formed by the traversal from the root

node to another node (e.g., a leaf node). The decision is made

hierarchically in an SDT along the decision path. The path

probability p is defined as the overall product of all

probabilities leading from the root to the last node in this

traversal. Given the input state s, the traversal probabilities are

calculated on each none-leaf node along the decision path.

Finally, one leaf node is reached and the classification

distribution ϕl is used to guide the output selection.

The loss function of SDT mainly has two parts: entropy loss

foc classification and the regularization loss to penalize unequal

use of non-leaf nodes. All non-leaf and leaf nodes are optimized

during the training process.

3.4 Linearly estimated gradient

Linearly Estimated Gradient (LEG) (Luo et al., 2021) is a

saliency method that recovers the gradient of a neural network

by perturbing its input features. Features that contribute more

to the network output will have gradients with larger

magnitudes. In our setting, we treat the DRL model as a

non-linear function whose policy output is π(a|s), where s

is the input state and a is the action. The perturbations are

sampled from a continuous distribution F. The gradients to be

recovered are denoted as g. If the current state is s0, g can be

written as:

g � zπ a|s( )
zs

( )
s0

.

LEG approximates the function π(a|s) based on the first-

order Taylor series expansion around the point s0:

π a|s( ) ≈ π a|s0( ) + gT s − s0( ).

LEG is defined as:

γ π, s0, F( ) � argmin
g

Es~F+s0 π a|s( ) − π a|s0( ) − gT s − s0( )( )2[ ].
It minimizes a squared error. The distribution F is chosen based

on the range of points to be considered.

It can be proved that LEG has an analytical solution

under certain conditions [Lemma 1 in Luo et al. (2021)].

Specifically, let Z be a vector of random variables which

obeys a centered distribution F, i.e., Z ~ F and E[Z] � 0.

Assume that covariance matrix of Z exists, and is positive-

definite. If we denote it as Σ = cov(Z), the analytical solution

to LEG is:

γ π, s0, F( ) � Σ−1EZ~F Z π a|s0 + Z( ) − π a|s0( )( )[ ].

Therefore, LEG can be approximated by an empirical mean.

We randomly sample s1, . . ., sn from F + s0, and then compute

y1, . . ., yn, where yi = π(a|si). If we denote the difference between

the original and perturbed value as ŷi � π(a|si) − π(a|s0) and
Zi = si−s0, the empirical estimate of LEG is:

γ̂ π, s0, F( ) � Σ−1 1
n
∑n
i�1

ŷiZi
⎛⎝ ⎞⎠. (1)
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4 Problem formulation

The target of aircraft separation assurance is to maintain a

safe distance or prevent loss of separation among all aircraft in an

airspace region. Specifically, we formulate it as a decentralized

decision-making process, so each aircraft needs to coordinate

with other aircraft. In this paper, our proposed framework

provides explanations of all aircraft behaviors. The BlueSky

(Hoekstra and Ellerbroek, 2016) is used as the air traffic

simulator.

To evaluate the performance of the proposed framework, two

challenging case studies are implemented with multiple

intersections and high-density air traffic. Each case study has

a dynamic simulation environment and the aircraft enter the

sector stochastically. So the proposed explainable framework

cannot just remember the correct behaviors but has to

understand the dynamic strategies based on varying scenarios.

This problem setting further increases the difficulty of behavior

explanations.

4.1 Multi-agent reinforcement learning

The aircraft separation assurance problem is formalized

as a multi-agent reinforcement learning problem. Each

aircraft is treated as an agent and needs to coordinate

with all other aircraft. The same DRL model and

explainable framework are implemented on each aircraft

to maintain safety separation and provide explanations

during execution.

4.2 Action space

Since the radar surveillance system updates the en route

position every 12 s, the agent is allowed to select an action per

12 s. The action space is simplified with three available actions:

deceleration a−, acceleration a+, and maintaining the current

speed a0.

4.3 State space

Both information of ownship and intruders is included in the

state space. Since the information needs to be shared among all

aircraft, we proposed the functions of communication and

coordination. Specifically, the following features are contained

in ownship state: location, current speed, acceleration

information, route identifier, and the distance to sector exit.

Extra information is included in intruder state: Distance between

ownship and intruders, distance between ownship and

intersections, and the distance between intruders and

intersections.

4.4 Termination

Aircraft will be generated and fly following the routes in each

simulation episode. The termination happens when all aircraft

either 1) exit the sector without conflict or 2) have collisions with

other aircraft.

4.5 Reward

The same reward function is implemented on all aircraft. To

sum up, the reward function penalizes the local collisions and the

speed changes of all aircraft agents. The collision reward Rc
penalizes only the two or more aircraft in conflict. The speed-

change reward Rs is implemented because speed changes should

be avoided unless necessary in the real world. Specifically, the

collision reward function Rc and the speed-change reward

function Rs are defined as follows:

Rc s( ) �
−1 if dc

o < 3,
−α + δ · dc

o if 3≤dc
o < 10,

0 otherwise

⎧⎪⎨⎪⎩ (2)

Rs a( ) � 0 if a � a0,
−ψ otherwise.

{ (3)

Here dco is the distance between the intruder and the

ownship. α and δ are parameters ensuring the reward range.

ψ is used to mitigate the number of speed changes.

5 Proposed methods

Our objective is to provide explanations of the DRL agent

behaviors in aircraft separation assurance. In order to achieve

this goal, we propose an explanation framework with both online

and offline modules to pair with the given DRL model.

5.1 Distillation module

This module distills the knowledge from a DRL model into a

shallow SDT. The DRL model controls the agent to perform

aircraft separation assurance task. It also generates transitions

consisting of state-action pairs (s, a) to train the SDT model. a is

the predicted action for state s from the DRL model.

SDTs are fitted with the above-mentioned transitions using

supervised learning. During the execution phase, SDT generates a

decision path for input state s. And each state variable (e.g.,

velocity, acceleration) in state s from DRL model is treated as a

feature in SDT. The feature weights and the decision path in SDT

are then utilized in the visualization module to support behavior

explanations.

Because the feature scales may vary greatly, we further

implement a Batch Normalization (BN) layer in front of the
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SDT to normalize the input. BN operator subtracts the mean

value of mini-batch and subsequently divides the centered input

by the standard deviation of mini-batch during training. The

mean and standard deviation are calculated per dimension over

the mini-batches during the training phase. In the evaluation

phase, the estimated population statistics are then used for

normalization. Therefore, BN helps normalize the input and

provide more meaningful interpretations.

5.2 Visualization of distillation module

The distillation module is not sufficient to help users

understand the agent behaviors because there is too much

redundant information in the SDT model. Therefore, we

implement a visualization module that provides visual

explanations efficiently. The visualization module offers the

explanation information extracted from the distillation

module with a graphical interface to human users. Specifically,

the visualization module contains 1) a tree plot showing feature

weights of each node and decision path in a tree-structured image

and 2) a trajectory plot showing the trajectories of all aircraft in

the structured airspace with precise explanations. A sample tree

plot and trajectory plot is shown in Figure 2.

5.2.1 Tree plot
Each non-leaf node in SDT processes all input features with a

one-layer network, so the feature weights give the information on

how features influence the decision in that node. The feature

weights and output values of nodes along the decision path can

provide the behavior explanations on how the hierarchical

decisions are made.

The tree plot illustrates feature weights of all SDT nodes

in a tree-structured image. Feature weights of each node are

visualized as a heatmap. The decision path is demonstrated

with dense arrows connecting nodes along the

decision path.

The explanation information is projected into the tree plot

following these rules:

• Each feature weight is represented as a colored square in

the heatmap.

• Feature weights of the same aircraft are drawn in the same

row of heatmap.

• The higher the absolute value of weight is, the larger the

size and the deeper the color is of the square. This also

implies that the feature is more influential on the decision

in the current layer.

• Red color and blue color represent positive and negative

influences respectively.

5.2.2 Trajectory plot
While the tree plot gives a comprehensive explanation of

behaviors, the trajectory plot only shows the most influential

features for decision-making with both visual symbols and

text. The simple structure of trajectory plot provides users

with the most important information to understand the agent

behaviors.

There are three main components in a trajectory plot: 1) all

aircraft flying along routes, 2) highlighted influential factors, and

3) text boxes showing action information and ownship behavior

explanations. Following rules are applied to demonstrate vital

information in the trajectory plot:

• For each node in decision path, the feature with the largest

absolute value will be selected as the important feature. For

an SDT with depthm, there will bem important features in

the trajectory plot. Their icons will be emphasised in the

trajectory plot.

• Different symbols are used to emphasize features. For

example, distance feature will be drawn as an green

solid line.

5.3 Saliency module

LEG works as the saliency module to recover the gradient

of a neural network by perturbing its input features (in our

case, input states). In this work, we utilize two state

variables, location and speed, for the purpose of offline

explanations. The location of an aircraft is represented by

FIGURE 2
Sample tree plot and trajectory plot. (A) Sample tree plot, (B)
Sample Trajectory Plot.
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its longitude given the assigned route1, and we assume that

latitude of longitude is monotonic all along the route.

Therefore, the gradient of the DRL model is recovered by

perturbing the longitude and speed of each aircraft. We

reduce the input state space in order to save

computational costs. Since all the distance features can be

computed from location, we preserve location as a high-level

feature of aircraft. We also keep the speed feature as the

dynamics information of aircraft. Additionally, the route

identifier of each aircraft is a fixed value. Acceleration

reflects the decision at the previous time step, and its

absolute value is fixed. So route identifier and acceleration

are not included in the reduced state space.

As mentioned above, the gradient of the DRL model is

recovered by perturbing the longitude and speed of each aircraft,

so we need to determine the perturbation structure, namely F in the

definition of LEG. According to Brittain andWei (2019) and Brittain

et al. (2021), intruders of an ownship are selected based on

intersections and conflicting routes. If the ownship or any

intruders pass an intersection after perturbation, the dimension

of the ownship’s state space may change. To avoid this change, we

define the following rules of perturbation:

• The ownship must not pass an intersection after

perturbation.

• Intruders on conflicting routes must not pass any

intersection after perturbation.

• Aircraft must stay on their routes.

Considering the first two rules, we need the values of state

features to be bounded, so we independently sample

perturbations of each feature from uniform distributions.

Since aircraft must stay on their routes, we are then able to

compute latitudes from the perturbed longitudes.

5.4 Visualization of saliency module

We visualize LEG with saliency maps that show the

importance of locations and speeds to DRL policies.

Additionally, position maps showing airspace and aircraft are

used to pair with saliency maps. A sample saliency map and

position map is shown in Figure 3.

5.4.1 Saliency map
A saliency map consists of three heatmaps that illustrate the

importance of locations and speeds to the three actions:

acceleration, deceleration, and maintaining the current speed,

respectively. Each heatmap follows similar rules to tree plots:

• The saliency score of each feature is displayed in a colored

square.

• Saliency scores of the same aircraft are drawn in the

same row.

• Normalized speed values are displayed alongside

corresponding saliency scores.

• Higher absolute values of saliency scores imply more

important features.

• The red and blue colors represent positive and negative

influences respectively.

5.4.2 Position map
For online explanations, trajectory plots integrate the most

influential features with the information on airspace and aircraft.

Similarly, for offline explanations, we need a graphical interface

showing airspace and aircraft to pair with the saliency map. We

implement a position map for this purpose. While a trajectory

plot shows one ownship and its intruders, a position map shows

all aircraft in the current airspace to provide a more

comprehensive view. Analysts may take different aircraft as

the ownship based on their needs.

Position maps follow these rules:

• Each aircraft is represented as a triangle.

FIGURE 3
Sample saliency map and position map. (A) Sample saliency
map, (B) Sample position map.

1 The location of an aircraft can also be represented by its latitude
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• Each aircraft is indexed by order of entering the airspace.

• Green color represents the ownship focused by the current

analysis, red color represents intruders, and blue color

represents other aircraft in the airspace.

5.5 Integration of modules

To provide explanations of agent behaviors for aircraft

separation assurance, we integrate the distillation module,

saliency module, and their visualization modules together. We

illustrate the architecture of the integrated framework in

Figure 1.

At each time step, one forward pass for input state s is

executed by the SDTs in distillation module. The decision path p

is generated and transited to the visualization module. Based on

the feature weights and decision path, visualization module

draws tree plots and trajectory plots to provide online

explanations of agent behaviors.

At the same time, LEG in the saliency module recovers the

estimates of the gradient of the DRL models γ by perturbing

input state s. Based on γ, the visualization module draws saliency

maps and position maps to provide offline explanations of agent

behaviors.

6 Experiments

6.1 Settings

In this work, SESAME framework distills knowledge for

aircraft separation assurance from two DRL models: D2MAV-

A (Brittain et al., 2021) and D2MAV-NC (Brittain and Wei,

2019). This further increases the difficulty because now

SESAME has to generalize well with different DRL models.

The number of intruders in D2MAV-A is fixed to make the

performances of two models comparable. All SDTs in the

SESAME framework are trained with the transitions from the

same amount of episodes. No other validation phase is

implemented.

We use BlueSky (Hoekstra and Ellerbroek, 2016) as the air

traffic simulator. In BlueSky, We evaluate the SESAME

framework on two challenging case studies, A and B, with

multiple intersections and high-density air traffic. Each of

them is a dynamic simulation environment where aircraft

enter the airspace stochastically. Figure 4 shows these two

case studies.

6.2 Fidelity of soft decision trees

Since the SDTs in SESAME framework are considered as

surrogate models for the DRL models, one important property

is whether the predictions of SDT models match those of the

original DRL models. Specifically, the fidelity score is

defined as:

∑s∈S1 YSDT s( )�YDRL s( )[ ]
S‖ ‖ .

Here S is the set of all states resulting from evaluated

transitions. YSDT and YDRL are the output actions of SDTs and

original DRL models. Therefore, a higher fidelity score means

that the behaviors of SDT and DRL models match better. The

training batch size is 1,280. And transitions from 100 episodes are

generated for evaluation.

The fidelity scores of different models for case A and case B

are reported in Table 1 and Table 2. SDTs trained with

D2MAV-A and D2MAV-NC are named as SDT-A and

SDT-NC respectively. SDTs with a BN layer on the top of

tree are named as SDT-BN. To give a comprehensive

comparison, the traditional hard decision trees are also

trained as baseline models and named as HDTs. The other

baseline is random policy, whose fidelity score is 33.33%.

Comparing the fidelity scores from the same column, we see

that the SDTs get higher fidelity scores in almost all cases than

baseline models given the samemodel depth. This shows that our

proposed SDT models work better than both hard decision tree

models or random policy baselines in most cases except for some

FIGURE 4
Case Studies for evaluation in the BlueSky air traffic simulator.
Specifically, the green triangles, dotted lines, solid lines represent
the aircraft, flight routes, and sector boundaries respectively.
Symbol Ri and Ij stand for the ith route and jth intersection. The
green numbers are the aircraft IDs. (A) Case study A, (B) Case
study B.
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cases based on D2MAV-A and the outputs of proposed SDTs

match those of DRLmodels. Based on results in the same row, we

notice that a tree with more layers does not always perform better

in terms of model fidelity given the same tree structure. The

reason may be that the deeper models can have too many

parameters to learn and the training process does not cover

all of them perfectly. We also notice that our SESAME

framework is not devoted to a specific DRL model because

the SDTs gain high fidelity scores in both D2MAV-A and

D2MAV-NC cases. We compare the performances of SDTs

trained with the same DRL model and find that SDTs with a

BN layer have higher scores. The results show that batch

normalization helps improve the fidelity of SDTs. Fidelity has

also been evaluated on other case studies in our previous paper

(Guo and Wei (2022). The previous results are consistent with

the analysis in this paper.

6.3 Tree plots for explanation

In this subsection, we demonstrate how the tree plot can be

used to explain the agent behaviors since the feature weights of

non-leaf nodes along the decision path offer the explanations

on how each feature influences the agent decisions. The tree

plot based on a transition in case A with model SDT-NC-BN is

drawn in Figure 5.

Starting from the root node, we find that the node

concentrates on the feature at cell (1, 1), which is the

distance from ownship to the destination. This makes sense

because the ultimate goal of the aircraft is to reach the

destination and it should focus on the goal. When this

feature value becomes larger, the SDT tends to traverse to

its left child node.

In the second layer, we find that the left node focuses on the

distance from the third intruder to the destination. This shows

that our SDT models have comprehensive understanding of the

case and do not only concentrate on the closest intruder. At the

same time, the right node focuses on the distance between

intruders and the ownship. This shows that the child nodes

can concentrate on different features given the output of the

parent node.

Along the decision path, the second non-leaf node on the

third layer focuses on the distance between the closest intruder

and the ownship. The distance between intruders and ownship

is of great importance because it is very likely to have a

collision if the distance is small. Among all intruders, the

closest intruder is the most urgent. Finally, the deceleration

action is selected.

TABLE 1 Fidelity scores (%) in case A.

Model Depth

1 2 3 4 5 6

SDT-A 66.71 73.74 72.59 71.22 72.34 72.00

SDT-A-BN 68.49 76.34 78.55 78.35 76.71 78.17

HDT-A 69.34 67.67 74.33 75.53 73.05 76.42

SDT-NC 67.77 87.50 89.47 90.91 90.96 92.00

SDT-NC-BN 46.61 87.76 90.75 94.15 95.10 95.80

HDT-NC 42.87 72.64 76.58 82.55 85.81 85.83

TABLE 2 Fidelity scores (%) in case B.

Model Depth

1 2 3 4 5 6

SDT-A 58.26 71.71 74.42 76.73 77.72 78.86

SDT-A-BN 57.50 71.64 78.96 82.63 84.66 88.18

HDT-A 44.69 48.43 59.30 68.63 71.15 71.30

SDT-NC 88.92 91.72 92.99 93.37 93.53 94.01

SDT-NC-BN 88.93 91.72 94.72 96.07 97.26 97.67

HDT-NC 71.44 88.96 88.96 90.70 90.50 91.66

FIGURE 5
Tree plot using model SDT-NC-BN with depth 3 for case A in
one step. The same state is used as input in all non-leaf nodes. The
heatmaps are drawn based on the feature weights of all non-leaf
nodes. Specifically, each feature is represented as a cell in the
heatmap. The information of ownship O is in the first row. The
information of five intruders I1, . . ., I5 is in the second to the sixth
rows. Each column shows the values of the same feature for all six
aircraft: distance to goal dg, current speed v, route identifier r,
current acceleration ac, distance between ownship and the
intruder da, distance between ownship and the intersection do,
and distance between intruder and intersection di. The dense
orange arrows represent the decision path. The leaf nodes show
the prediction actions. Hold stands for maintaining the current
speed. Acc stands for acceleration. Dec stands for deceleration.
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6.4 Trajectory plots for explanation

We demonstrate how precise behavior explanations can be

provided by trajectory plots in this subsection. Here a trajectory

plot is drawn based on the SDT-NC-BN model for case A in

Figure 6. Figures 5, 6 show the explanations for the same state.

The ownship near the intersection decides to decelerate in

this case to avoid the potential collision at the near intersection.

The important features are defined as the features having the

highest absolute value in each node along the decision path. Here

the important features are 1) distance from ownship to goal, 2)

distance from the third intruder to goal, and 3) distance between

ownship and the closest intruder. We have introduced the

importance of these features in the previous subsection. Solid

green lines are used to emphasize the distance information.

So compared with the tree plot, the trajectory plot only shows

the most influential factors that explain the agent behaviors. By

integrating the tree plot and trajectory plot, our proposed

SESAME framework can provide precise explanation in

trajectory plot and supplemental details in tree plot.

6.5 Saliency map and position map for
explanation

While human operators need real-time and precise

explanations, certification agencies are responsible for

conducting more comprehensive analyses. In this subsection,

we demonstrate how saliency maps and position maps can be

used to provide offline explanations. The saliency map and

position map based on a transition in case B with model

D2MAV-A are drawn in Figures 7, 8 respectively. They show

the explanations for the same state. In this subsection and the

following subsection, Hold stands for maintaining the current

speed, Acc stands for acceleration, and Dec stands for

deceleration. The sample size used for computing LEG is

1,000, namely n = 1,000 in Eq. (1).

First, we focus on the most important location

(i.e., longitude) features2, namely the locations of aircraft

18 and aircraft 22. Aircraft 18s location has a negative

influence on Acc. So if the longitude value of aircraft

18 decreases, which means that it moves closer to aircraft 22,

the speed advisory for it will be more likely to be acceleration in

order for maintaining a safe distance. On the contrary, aircraft

22s location has a positive influence on Acc. So if the longitude

value of aircraft 22 increases, which also means that the distance

between aircraft 22 and aircraft 18 becomes closer, the speed

advisory for aircraft 18 will be more likely to be acceleration.

Therefore, we can conclude from the above consistent

observations that one major cause of the Hold decision is the

safe distance between aircraft 18 and aircraft 22.

Second, we focus on aircraft 14, the closest intruder to aircraft

18. Despite being closest to the ownship, the absolute values of its

saliency scores are relatively small. A possible reason is that the

speed of ownship is lower than those of all its intruders. In this

circumstance, aircraft behind the ownship (aircraft 22) should be

given more attention than those ahead (aircraft 14). We also

notice that the speed advisory for aircraft 14 is acceleration,

which will further assure the safe separation. This may imply a

certain cooperation scheme that the D2MAV-A model learns to

make reasonable decisions.

FIGURE 6
Trajectory plot using model SDT-NC-BN with depth 3 for
case A. The light green ownship decelerates to avoid the potential
collision at the near intersection. Three important features are
emphasized in this case: 1) The distance from ownship O to
goal, 2) the distance from the third intruder I3 to goal, and 3) the
distance between ownship O and the closest intruder I1. The
distance information is highlighted as orange dense lines. The
explanations and the advisory speed are also provided in text.

FIGURE 7
Position map using model D2MAV-A for case B in one
transition. There are 27 aircraft in the airspace, each with an index
indicating the order of entering the airspace. In parentheses are
the speed advisories provided by the D2MAV-A model: H
stands for maintaining the current speed; A stands for
acceleration; D stands for deceleration. We focus on aircraft 18.

2 When we analyze the change of one feature, other features are
assumed to be fixed.
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6.6 Decision patterns of deep
reinforcement learning models

Apart from the critical state features for the decision at

each time step, analysts from certification agencies also need

to determine whether or not the speed advisories follow any

patterns given specific aircraft locations in the airspace. In this

subsection, we study two kinds of aircraft’s relative locations

and discover some similar decisions and corresponding

explanations.

First, we focus on three adjacent aircraft on the same

route, and the ownship is in the middle. In the transition

shown in Figure 7, aircraft 18, aircraft 14 and aircraft 22 are

adjacent and all located on route R1. We still take aircraft

18 as the ownship. According to the previous discussion, if

the distance between aircraft 18 and aircraft 22 decreases, the

speed advisory for aircraft 18 will be more likely to be

acceleration. On the contrary, we can conclude from

Figure 8 that the speed advisory will be more likely to be

deceleration if the distance between aircraft 18 and aircraft

14 decreases. Furthermore, the location of aircraft 14 has

more influence on Dec than Acc, while the location of aircraft

22 has more influence on Acc than Dec. The difference shows

that the D2MAV-A model is able to encode the order

information for the purpose of attributing different

importance to the intruders behind and in front of the

ownship respectively.

The same conclusions can be drawn from aircraft 13

(ownship), aircraft 16 and aircraft 9. The saliency map

shown in Figure 9 suggests that the speed advisory tends to

acceleration when the ownship becomes closer to the intruder

behind it (aircraft 16) and tends to deceleration when the

ownship becomes closer to the intruder in front of it (aircraft

9). Additionally, the location of aircraft 16 has substantially

more influence on Acc than Dec, while the location of aircraft

9 has substantially more influence on Dec than Acc. These

consistent results provide insights into the decisions of

aircraft that are on the same route.

Second, we focus on two aircraft that are on different

routes and about to pass the same intersection. One of them is

closer to the intersection than the other. Aircraft (22, 21),

Aircraft (3, 17), Aircraft (4, 12), and Aircraft (15, 14) are four

examples. In the first three pairs, aircraft closer to the

intersection (22, 3, 4) decide to accelerate, while others

decide to maintain the current speed or decelerate. These

decisions show the cooperation between two aircraft that the

closer one passes the intersection first. However, aircraft

15 and aircraft 14 both select the acceleration action. The

reason why aircraft 14 does not choose to maintain the current

speed or decelerate is that its surrounding air traffic situation

is more complex. Figure 10 shows that besides aircraft 15,

aircraft 18 and aircraft 19 are also highly important to aircraft

14s decision. Therefore, aircraft 14 chooses to accelerate in

order to keep ahead of aircraft 18 and aircraft 19, which again

FIGURE 8
Saliencymap using normalized LEG values for the decision of aircraft 18. The intruders are sorted by distance to the ownship in ascending order:
14, 22, 19, 24, 15, 27. Larger absolute values imply more important features, and the sign implies the direction of influence. In parentheses are min-
max normalized speed values.
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suggests the ability of the D2MAV-A model to encode order

information.

7 Conclusion

In this paper, we propose a novel framework to explain

DRL-based aircraft separation assurance models. Our

framework provides both online explanations to human

operators and offline explanations to certification agencies.

Through numerical experiments in the BlueSky air traffic

simulator, our results show that the proposed framework is

capture crucial factors in the decisions of DRL models. In

addition, we explain two specific patterns that DRL policies

follow using the proposed framework, which suggests that the

decision-making processes of DRL models can be more

FIGURE 9
Saliencymap using normalized LEG values for the decision of aircraft 13. The intruders are sorted by distance to the ownship in ascending order:
16, 9. Larger absolute values imply more important features, and the sign implies the direction of influence. In parentheses are min-max normalized
speed values.

FIGURE 10
Saliencymap using normalized LEG values for the decision of aircraft 14. The intruders are sorted by distance to the ownship in ascending order:
15, 18, 19, 10, 24, 22. Larger absolute values imply more important features, and the sign implies the direction of influence. In parentheses are min-
max normalized speed values.
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predictable and trustworthy. The promising results encourage us to

further explore the effectiveness of the framework and its extensions

for other safety-critical applications in the future.
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