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Introduction: Future concepts for airborne autonomy point toward human
operators moving out of the cockpit and into supervisory roles. Urban air
mobility, airborne package delivery, and military intelligence, surveillance, and
reconnaissance (ISR) are all actively exploring such concepts or currently
undergoing this transition. Supervisors of these systems will be faced with
many challenges, including platforms that operate outside of visual range and
the need to decipher complex sensor or telemetry data in order tomake informed
and safe decisions with respect to the platforms and their mission. A central
challenge to this new paradigm of non-co-located mission supervision is
developing systems which have explainable and trustworthy autonomy and
internal decision-making processes.

Methods: Competency self-assessments are methods that use introspection to
quantify and communicate important information pertaining to autonomous
system capabilities and limitations to human supervisors. We first discuss a
computational framework for competency self-assessment: factorized
machine self-confidence (FaMSeC). Within this framework, we then define the
generalized outcome assessment (GOA) factor, which quantifies an autonomous
system’s ability tomeet or exceed user-specifiedmission outcomes. As a relevant
example, we develop a competency-aware learning-based autonomous
uncrewed aircraft system (UAS) and evaluate it within a multi-target ISR mission.

Results: We present an analysis of the computational cost and performance of
GOA-based competency reporting. Our results show that our competency self-
assessment method can capture changes in the ability of the UAS to achieve
mission critical outcomes, and we discuss how this information can be easily
communicated to human partners to inform decision-making.

Discussion: We argue that competency self-assessment can enable AI/ML
transparency and provide assurances that calibrate human operators with their
autonomous teammate’s ability to meet mission goals. This in turn can lead to
informed decision-making, appropriate trust in autonomy, and overall
improvements to mission performance.
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1 Introduction

Humans stand to benefit greatly from working cooperatively
with autonomous systems that can operate in potentially high-risk
situations or perform complex and repetitive tasks. However,
reliance on robots and autonomous systems should only occur
when the human operator is confident that the system can
adequately perform the tasks at hand. This willingness to rely is
referred to as trust, a subjective measure which, in part, is a function
of human belief in an agent’s competency, as well as belief in the
predictability and “normality″ of the tasking situation (amongmany
other factors) (Israelsen and Ahmed, 2019). In operational contexts,
it has been established that the trust developed by a user in an
autonomous system may potentially result in an inaccurate
understanding of that system’s capabilities (Dzindolet et al.,
2003). Such misunderstanding raises the potential for the
improper tasking of the agent, and subsequent misuse, abuse, or
disuse of autonomy in deployment scenarios. One strategy for
encouraging appropriate human trust is for an autonomous robot
to report its own perspective on tasks at hand (McGuire et al., 2018;
McGuire et al., 2019). If done correctly, a user could better judge
whether the robot is sufficiently capable of completing a task within
desired delegation parameters, thus adjusting user expectations of
performance in a manner suitable to the situation at hand. This idea
lies at the core of a wide spectrum of algorithmic strategies for
generating soft assurances, which are collectively aimed at “trust
management” (Israelsen and Ahmed, 2019).

Remote information gathering tasks represent an increasingly
important use case for autonomous systems, spanning diverse
domains such as deep space exploration, scientific data collection,
environmental monitoring, agriculture, infrastructure inspection,
and security and defense. In this study, we focus on the use case of
intelligence, surveillance, and reconnaissance (ISR), a term
commonly used to characterize missions that employ sensors to
gather specifically valuable information. It is often subdivided
depending on the intended use of the data gathered by the
mission, such as in the defense domain—theater ISR, tactical ISR,
and human-portable or small-unit ISR (OASD, 2018). ISR at all
levels is becoming increasingly automated and autonomous and is
proliferating across domains. Uncrewed aircraft systems (UAS) are
being used to surveil battlefields and target locations (Chua, 2012;
Cook, 2007), help detect forest fires (Yuan et al., 2015; Sudhakar
et al., 2020; Julian and Kochenderfer, 2019), and assess areas after a
natural disaster (Ezequiel et al., 2014; Erdelj et al., 2017). In these
applications, the human operator is given the role of a supervisor or
teammate to one or more ISR platforms.

Of particular interest is small-unit ISR utilizing autonomous
UAS. Here, the ISR platforms are generally person-portable and are
either launched from a small runway, thrown, or catapulted into the
air. They can be fixed- or rotary-wing and are capable of carrying
small payloads. They have basic onboard autonomy, which enables
path planning and waypoint following. They may also be limited in
flight due to size, weight, and power (SWaP) constraints and can be
susceptible to inclement weather. Despite some limitations, these
platforms can be invaluable in many applications—with little prep
time, a small UAS can be deployed to help a fire crew search for the
closest fire or help a squad of soldiers safely recon beyond
the next hill.

The challenge with small-unit ISR is that, compared to commercial
or military pilots (or even pilots of larger platforms like the MQ-1
Predator or MQ-9 Reaper), small UAS operators may receive less
training on the operation of their platforms, which could impact trust.
For example, soldiers operating theMQ-7 RAVEN require only 10 days
of training1. Because the operators of these smaller ISR platforms receive
less training prior to deployment, they may have limited understanding
of the capabilities and characteristics of the aircraft in off-nominal
situations (for example, in poor weather conditions). Additionally, these
platforms may not possess soft assurances to calibrate trust. Any
misunderstanding of capabilities could be amplified by the high
stress and workload environments in which soldiers or disaster
responders may find themselves, where mis-calibrated trust in a
system can be costly, if not mission-ending. A competency-aware
autonomous ISR platform could prevent these misunderstandings by
calibrating operator trust through outcome assessments and
competency reporting.

We here describe an application of the factorized machine self-
confidence (FaMSeC) framework, which allows autonomous
algorithmic decision-making agents to generate soft assurances in
the form of introspective competency reports based on the concept
of machine self-confidence (i.e., machine self-trust). We then discuss
the generalized outcome assessment (GOA) factor within the
FaMSeC framework and how it can be formulated for reinforcing
learning-based autonomous small UAS performing simulated ISR
missions. As an extension of our previous research (Conlon et al.,
2022a), which only considered limited single-target mission
scenarios and narrow sets of competencies, we here present a
deeper analysis of the performance of GOA for a broader range
of mission-relevant competencies as well as its ability to quantify an
autonomous aircraft’s competencies in a multi-target ISR mission
under varying weather conditions featuring a stochastic wind model
that must be accounted for in a learned probabilistic world model.
We close with a discussion of several challenges in bringing
competency-awareness to live platforms and propose directions
for future work.

2 Background and related work

This section first reviews reinforcement learning and
probabilistic world modeling as a framework for autonomous
decision making. It then provides a brief overview of the
approach to mission competency assessment for probabilistic
decision-making agents. These ideas are developed further in the
next section to describe their application for small UAS ISR
mission contexts.

2.1 Autonomous decision making and
probabilistic world modeling

Probabilistic algorithms for decision-making under uncertainty
have been attracting wide attention within the aerospace community

1 https://asc.army.mil/web/portfolio-item/aviation_raven-suas/
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(Kochenderfer, 2015). In addition to their deep connections to
conventional state-space optimal control and estimation strategies
for guidance, navigation, and control (GNC), probabilistic decision-
making algorithms based on Markov decision processes (MDPs),
partially observable MDPs, and reinforcement learning (RL) offer an
attractive and unified framework for enabling autonomy onboard
vehicles which must respond to off-nominal events while coping
with complex and uncertain dynamics, observations, and model
parameters. RL is of particular interest in many autonomous vehicle
applications for its ability to simultaneously optimize control/
guidance laws and learn complex dynamics models for non-
trivial tasks online via repeated experiences (i.e., learning
episodes which can incorporate simulated as well as real data).
For instance, in relation to the USA ISR domain considered here,
much recent research has considered RL-based training of UAS
vehicle guidance and control laws to optimize various mission-level
objective functions including high-quality information gathering,
low-error target tracking, opportunistic communications, and
minimum energy consumption (Abedin et al., 2020; Goecks and
Valasek, 2019; Jagannath et al., 2021; Mosali et al., 2022; van Wijk
et al., 2023)

The objective in RL (Sutton and Barto, 2018) is to select actions
that maximize the total reward during a given learning episode. It is
formalized as an MDP consisting of the following model
components. Let S � st�1: T be a set of states and A � at�1: T−1 be
a set of actions for time indices t � 1: T, where each st and at is
represented as some finite-dimensional vector with continuous and
possibly discrete elements. Define r(st, at) to be the reward function
that maps the current state st and action at to a reward value, and let
p(st+1|st, at) be the state–action transition dynamics that provide
the distribution over the next state st+1 given the current state st and
action at. Finally, let π be a policy that provides an action from any
state such that at ~ π(st). An MDP agent seeks the optimal policy to
maximize an expected utility function or value function V(st)
starting from any state, which is defined in terms r(st, at) and
where the expectation is taken with respect to p(st+1|st, at) acting
under π. Typically, this corresponds to the cumulative expected
discounted reward for an infinite horizon or cumulative expected
reward under a finite horizon H, starting from state st and acting
under a given π being given by Equation 1.

Vπ st( ) � E ∑H
t�1

r st, at( )⎡⎣ ⎤⎦. (1)

The methods in RL can be separated into model-free and model-
based according to what is being learned by the agent. While model-
free methods directly learn the optimal policy π that maximizes
V(st), model-based RL focuses on learning a model of the
environment in which the agent is interacting. Given the
demonstrated benefits and flexibility of model-based RL, such as
sample efficiency and multi-tasking ability (Ebert et al., 2018;
Moerland et al., 2020; Wang et al., 2019), we chose to implement
this method rather than its model-free counterpart. As such, this
study follows the model-based approach to learn an approximate,
probabilistic world model p̂(st+1|st, at) of the real environment
p(st+1|st, at). This model and its predicted states can then be
used in conjunction with a planner and a reward function to
select the best actions to perform in the real environment.

Additionally, as we will show later, the probabilistic world model
can be utilized by competency assessment algorithms to predict
confidence statistics of the agent’s ability to successfully meet
mission objectives.

To parameterize the world model p̂(st+1|st, at), we use a deep
neural network. Since we are predicting the agent’s behavior over
some time horizon of interest, a recurrent neural network (RNN)
that can capture the temporal information is a suitable choice. The
training data comes directly from the agent’s interaction with the
environment, and a random policy is executed to generate a diverse
and exploratory trajectory dataset D � {(st, at, st+1)}t�0: T−1. The
input into the world model is the current state–action pair
(st, at), and the output is a prediction of the next state (st+1).
Then, maximum likelihood is used to optimize the parameters of the
network, resulting in a trained worldmodel that is used for planning.

The planning process follows a model predictive control (MPC)
paradigm, which allows the agent to plan over some prespecified
time horizon while continuously incorporating newly received
observations. The MPC also provides the flexibility to use any
algorithm, such as a tree-based planner, that can aggregate all the
possible actions or a simple random-sampling-based method like
random shooting (Nagabandi et al., 2019) to generate action
sequences. The focus of this work will be on using a simple
random-sampling-based planning algorithm which, while likely
to introduce uncertainty into the planning process, alleviates the
need to carefully design the planner. This planner is used with the
learned world model to predict the future states and generate action
sequences. Then, a user-defined, task-specific reward function is
used to rank the action sequences from best to worst in maximizing
the reward, and typically only the first action from the best action
sequence is executed in the real environment, resulting in the next
real observation from the environment.

The selection and tuning of the reward function r(st, at) lies at
the core of any RL problem and is especially critical in model-free
methods as it comprises part of the optimization criteria. In model-
based RL, however, we have the option of either learning the reward
function from the environment (Moerland et al., 2020) or designing
it independently of the learning process. Among many limitations of
directly learning r(st, at), the biggest is that the real world rarely
provides enumerated reward values. In contrast, designing the
reward function ourselves makes it amenable to a multitude of
tasks and allows the inclusion of factors that can make the agent
more safety conscious. Hence, we design a variety of task-specific
reward functions that take in a trajectory made via a state–action
sequence and output a single value reward.

2.2 Mission competency assessment

The introduction of sophisticated learning-based decision-
making autonomy ostensibly yields many benefits for human
end-users of small UAS. Well-designed decision-making
autonomy can not only significantly enhance overall mission
performance by using rigorous data-driven optimization to fully
utilize vehicle and sensor platform capabilities but can also alleviate
human users of “dull, dirty, and dangerous” tasks that are physically
and mentally demanding. For example, UAS pilots and sensor
specialists in search-and-rescue missions often need to work
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together to remotely pilot a single vehicle while paying attention to
data returns from a variety of onboard sensor payloads and also
routinely monitor intelligence feeds and other communication
channels to adapt mission strategies in dynamic time-critical
situations across multiple hours or days (Ray et al., 2024).

Nevertheless, the issue of trust in autonomy has been widely noted
as an important barrier to the wider adoption of vehicle autonomy for
such applications (Devitt, 2018; Shahrdar et al., 2019).While the topic of
trust in human–machine interaction is far too complex to fully discuss
here, it is worth noting that the perceived situation normality,
predictability, and competency of autonomous systems play a key
role in calibrating end-user trust; this in turn has motivated research
on a wide range of soft algorithmic assurances for trust calibration and
management in user–autonomous system interactions (Israelsen and
Ahmed, 2019). Whereas end-users will typically not be technology
experts in topics such as vehicle systems, RL, and deep learning, they
often will still have valuable domain knowledge that can be usefully
leveraged to design soft assurances. Of particular interest here is how
soft assurances can be developed to provide a more accurate
representation of a learning-based UAS’s actual mission capabilities
so that end-users can better calibrate their trust in a system and assign
tasks that remain within its competency limits.

This study focuses on one particular type of soft assurance for
learning-based UAS decision-making autonomy known as machine
self-confidence. This is defined as an autonomous agent’s own
perceived degree of competency to execute tasks within desired
parameters while accounting for uncertainties in its environment,
states, and limited reasoning/execution capabilities (Aitken, 2016;
Israelsen, 2019). Note that this definition not only captures
“irreducible” uncertainties that naturally arise in particular tasks
(i.e., aleatoric uncertainties such as sensor noise) and “reducible”
uncertainties that stem from ignorance of model details
(i.e., epistemic uncertainties from lack of available data), but
importantly, it also considers “meta-uncertainties” related to the
agent’s ability to process, acquire, and act on (uncertain)
information. Thus, machine self-confidence not only assesses the
degree to which an agent is uncertain about its own or the
environment’s state but also the degree to which its models of
uncertainty and actions derived from these are suited to the task at
hand (Hutchins et al., 2015; Sweet et al., 2016). Colloquially, this
may be thought of as an expression of “machine self-trust”, akin to
the self-trust/self-confidence expressed to a supervisor by a human
subordinate who has been delegated with executing particular tasks.

Aitken (2016), Israelsen et al. (2019), and Israelsen (2019)
developed the factorized machine self-confidence (FaMSeC)
framework to consider the computation of several interrelated
(and non-exhaustive/asymmetric) “problem-solving meta-factors”
that enable autonomous decision-making agents to generate
machine self-confidence assessments in the context of executing
tasks described by Markov decision processes (MDPs). For instance,
for agents that reason according to policies governed by standard
model-based MDPs, three key meta-factors can be quantitatively
evaluated relative to user expectations:

1. Outcome assessment (OA): do the sets of possible events,
rewards, costs, utilities, etc. for decisions governed by a
policy lead to a desirable landscape of outcomes under
uncertainty?

2. Solver quality: are the approximations used by the system for
solving decision-making problems appropriate for the given
task and model?

3. Model validity: are the agent’s learned/assumed models and
training data used for decision-making sufficient for operating
in the real world?

Computed scores for each factor can be mapped to notional
scales with upper/lower bounds, where the lower bound gives a
shorthand indication of “complete lack of confidence” (i.e., some
aspect of task, environment, or operational context falls completely
outside the agent’s competency boundaries) and the upper bound
indicates “complete confidence” (i.e., all aspects are well within
system’s competency boundaries). In Israelsen et al. (2019) and
Israelsen (2019), a human user study showed that FaMSeC self-
confidence computation and reporting improved the ability of
human supervisors to assign or reject tasks within/outside the
competency boundaries of simulated autonomous vehicles
conducting delivery tasks in uncertain adversarial environments.
More recent experiments have provided similar findings using the
FaMSeC framework with non-learning-based stochastic planning
algorithms in both software and hardware simulations of
autonomous ground robots performing navigation tasks in
uncertain environments (Conlon et al., 2024; Conlon et al., 2022b).

The problem of applying machine self-confidence concepts to
learning agents remains open and challenging. The FaMSeC
formulation for MDPs naturally extends to a variety of
autonomous agents, such as those that must rely on
reinforcement learning (RL) to learn optimal policies and
behaviors by interacting with uncertain environments. Mellinkoff
et al. (2020) considered a simple model-based RL agent, leveraging
the FaMSeC outcome assessment metric to modulate exploration/
exploitation in sparse reward environments based on degree of
confidence in completing tasks. While promising, this approach
requires the agent to have well-defined and reasonably small,
computationally tractable a priori probabilistic models of its task
environment and dynamics. This is not feasible for many
autonomous learning applications that must rely on more
complex black-box models, such as widely used state-of-the-art
deep learning neural network models.

In this study, we restrict attention to probabilistic model-based
reinforcement learning (MBRL) using deep neural networks.
Despite the theoretical connections between MBRL and MDPs,
the extension of FaMSeC to deep RL applications is still not
entirely obvious or straightforward. Among the most notable
issues, current strategies for computing FaMSeC metrics within
MDPs assume the availability of (1) tractable, closed-form state
transition probability distributions, (2) fixed policy functions or
tables, and (3) static well-defined reward functions and utilities.

In RL applications, assumption (1) is invalid for continuous state
spaces with complex dynamics or a large number of states, such that
state transition densities cannot be expressed in closed form.
Assumption (2) is not valid when considering online or
constraint-based decision-making strategies, such as model
predictive control. Lastly, assumption (3) is invalid since reward
functions for RL problems are often highly tuned to achieve
desirable behaviors. Arbitrarily rescaling reward values can
drastically alter the interpretation and sensitivity of metrics such
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as outcome assessment and solver quality, which Aitken (2016) and
Israelsen (2019) originally defined via the reward distribution
associated with a given policy. In this study, we consider how
principles underlying the FaMSeC metrics can be extended to
bridge these (and other) gaps.

Self-assessment of an autonomous agent’s capabilities for the
given task is critical for collaborative efforts with a human
supervisor. The self-assessment approach leveraged focuses on
outcome assessment (OA), one of five FaMSeC factors developed
by Aitken (2016), Israelsen (2019), and Israelsen et al. (2019), which
seeks to encourage appropriate human trust in an autonomous
system. For MDP-based problems, OA describes the confidence that
a user-specified margin of success can be achieved based on a set of
potential rewards governed by a policy π. Aitken (2016) proposed
applying a logistic function to the upper/lower partial moment
(UPM/LPM) of the pdf p(R∞) for the non-discounted
cumulative reward R∞ � ∑T

t�0Ri generated by a priori MDP
rollouts. The pdf p(R∞) in general cannot be represented
analytically since it depends on the probabilistic world model,
and so instead it is represented empirically using sample rollouts
of the policy simulated on the probabilistic world model. Applying
the UPM/LPM to the empirical approximation of p(R∞) provides a
measure of the “expected margin of success” that an agent expects to
achieve for completing the MDP task via π over some finite tasking
horizon given a minimum total reward threshold Rp defined by the
user to reflect their performance expectations,

UPM

LPM
|R* �

∫∞
R*

R∞ − Rp( ) · p R∞( )dR∞

∫R*
−∞ Rp − R∞( ) · p R∞( )dR∞

,

OA � 2

1 + UPM
LPM|R*( )−1 − 1 � UPM − LPM

UPM + LPM
.

This formulation results in OA ∈ [-1,1], which is ultimately
mapped into a semantic confidence statement to be provided to the
user. Of course, since this formulation depends on MDP rollouts to
construct p(R∞), many of the implicit assumptions in the previous
work are invalid in RL applications, as stated in the previous section:
(1) there are no closed-form state-transition probability
distributions, and (2) there is no global policy π to follow. As
such, MDP rollouts as classically defined are not possible in this
framework. However, as discussed in Section 2.1, by leveraging the
MPC framework to discern which action to take in combination
with the Gazebo environment to facilitate simulated transitions,
trajectory rollouts can be simulated to termination from a given
configuration of the environment. We can use these simulated
trajectories as a surrogate for the MDP rollouts defined in the
outcome assessment formulation.

Notwithstanding, there are some notable weaknesses to
outcome assessment that can be addressed in this MBRL
framework. Cumulative rewards do not contain information
relative to the specific or intermediary outcomes of a
trajectory. p(R∞) is tied to the reward function r(st, at), of
which the elements are not necessarily proportional to user
desirability. Additionally, the user-defined margin of success
Rp, in terms of reward value, implicitly requires that the user
is knowledgeable about the reward function used. More generally,
information from a simulated trajectory is summarized entirely

as a cumulative reward. Should a user wish to investigate
competency relative to more specific outcomes of a
complicated task, these are not available. To address these
weaknesses, we propose generalized outcome assessment
(GOA) to provide confidence that a specified margin of
success can be achieved based on a set of potential outcomes.

GOA is computed by running N simulation traces for an
outcome statistic of interest X with realizations x. These raw
outcomes are first broken down into M> 1 unranked sets of
equivalence classes: x1, x2, . . . , xM. Then, the unranked classes
are ranked by order of user desirability and mapping into the
domain z: z1, z2, . . . , zM′ ranked equivalence classes for M′> 1
(M′ need not equal M in general). An example of raw outcome
variables x includes measures such as the number of times the UAS
reaches desired waypoints or the specific battery states for the UAV
at the end of a mission. Examples of corresponding z variables could
include bins for different ranges of the number of waypoints
achieved—for example, z1 = {1-3 waypoints}, z2 = {3-
5 waypoints}, z3 = {6-8 waypoints}—or integer assignments for
battery levels—for example, z1 = {battery between 0%–10%}, z2 =
{battery between 10%–20%}, etc. In this new z domain, the ranking
zi > zj implies that outcome zi is preferable to zj.

Given a z-domain histogram of simulated outcomes, we next
define a minimum expectation of performance relative to z-domain,
zp. The value of zp is directly related to mission outcomes and, we
argue, more interpretable to users compared to the reward-based Rp

discussed earlier. In our z-domain battery example above, if a user
was interested in the confidence of the UAS being able to complete
the mission with at least 10%–20% battery remaining, they would set
zp � 2, indicating that bin z2 = {battery between 10%–20%} is the
minimum battery level they would accept to consider the mission a
success. The ratio of the upper partial moments to lower partial
moments can then be taken relative to zp:

DUPM

DLPM
|z* �

∑zj ≥ z*
zj − zp + 1( )pP zj( )

∑zm ≤ z*
zp − zm( )pP zm( ) ,

Next, the value for GOA is computed through a logistic function,
such that GOA ∈ [−1, 1]:

GOA � 2

1 + DUPM
DLPM|z*( )−1 − 1 � DUPM −DLPM

DUPM +DLPM
.

Finally, these GOA values ∈ [-1,1] are mapped into a semantic
labelling scheme to be provided to the user. This would assist general
users to quickly grasp the competencies of the autonomous system
for the given task regardless of the background. A flow diagram of
the computation of GOA given the MBRL context is shown in
Figure 1. With this approach, we retain the flexibility to characterize
competency relative to user defined margins while also allowing for
confidence statements relative to any outcome statistic of interest.
This formulation is much more generally applicable to complicated
tasks undertaken by an autonomous system where self-assessed
competency relative to many statistics will be useful to a human
operator acting as a supervisor of the system. Particularly for the
UAS ISR simulation, we expect that many task outcomes in addition
to overall success will play a role in the decision making of the
human operator.
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3 Development of competency
assessment in ISR missions

To explore our approach of UAS competency self-
assessment for ISR missions, we developed a simulated
scenario where a human–UAS team was tasked with
surveying several target sites within a broader mission area.
The team’s collective goal was for the UAS to visit and collect
data on as many sites as possible across two missions. The UAS
itself is a lightweight, portable, and easily launched platform,
similar to the MQ-7 RAVEN. However, due to its small size, it
can be adversely impacted by off-nominal environmental
conditions, particularly winds at altitude. The first mission’s
daily weather report predicts calm (nominal) winds, while the
second mission’s daily forecast is for adverse (off-nominal)
winds. Before deploying the UAS, the human supervisor
needs to know whether the UAS is capable of achieving their
desired outcomes of mission success.

In this section, we discuss the development of a learning-
based autonomous UAS capable of self-assessing its mission
competencies using GOA. While we note that the MQ-7
RAVEN is capable of flight times in excess of 60 min and
operating in a variety of environmental conditions (Pomranky,
2006), we constrain our experiment to a fixed 60 s mission length
under both calm and adverse constant wind conditions. This
shorter mission duration and limited experimental conditions
were chosen to balance model training complexity while still
being able to demonstrate GOA analysis of outcome statistics
targeted at an ISR platform operating within a realistic mission
environment. We believe this contribution to be an important
first step in developing methods for future human–UAS teams to
utilize competency reports derived from GOA to inform

decision-making and improve mission performance in high-
risk and uncertain environments.

3.1 Simulation and modeling

Gazebo is a highly customizable, open-source, 3D dynamic multi-
robot environment (Koenig and Howard, 2004). It supports a wide
variety of platform and sensor models, customized environments, and
interfaces with the Robot Operating System (ROS). In addition to
modeling the dynamics of our UAS platform, we leverage Gazebo’s
high-fidelity modeling of terrain, lighting, and various man-made
structures to create the realistic mission area for our experiments.
Much of our customization took the form of Gazebo plugins, which are
shared libraries loaded into Gazebo that enable fine-grained control of
most aspects of the simulator. Our plugins modeled the platform’s
dynamics, its battery, and environmental winds. All communication to
and from the plugin was via ROS messaging. Upon start-up, the plugin
paused Gazebo and initialized the models with initial UAS state s0. We
followed a pause–simulate–pause convention: starting in a paused state,
when an action at was received, the plugin applied that action to
models, unpaused, and simulated Gazebo for k simulation steps, then
paused Gazebo and returned the resultant state st+1. This pattern of
pause–simulate–pause continued when subsequent actions were
received, until the simulation ended.

3.1.1 Platform model
Our platform was modeled as a Techpod fixed-wing UAS from

the RotorS package (Furrer et al., 2016). This UAS has a wingspan of
2.6 m, a body length of 1.1 m, and a mass of 2.6 kg. We commanded
control surface deflections δ and thrust T by sending a
corresponding ROS message to the Gazebo simulator. Control-

FIGURE 1
Diagramof GOA computation. (1) Simulation traces sampled from a learnedworldmodel. (2) Outcome statistics gathered and converted into ranked
equivalence classes. (3) DUPM/DLPM statistic is calculated based on z*. Finally, the DUMP/DLPM statistic is mapped to a semantic label (4) before being
communicated to an operator as a competency report (5).
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surface deflections of the ailerons, elevator, and rudder ranged
∈ (−20deg,+20deg), while thrust ranged ∈ (0, 1), where 0 was no
thrust and 1 was maximum. The platform’s 6D action space was
then at � (δaileron,t, δelevator,t, δrudder,t, Tx,t, Ty,t, Tz,t).

3.1.2 Battery model
The battery level at time t + 1, bt+1, followed a simple linear

draw model:
bt+1 � bt − beffpTtpΔt

—where bt is the battery level at the previous time step, beff is a unitless
battery efficiency parameter that governs the battery draw rate,Tt is the
commanded UAS thrust at time t, and Δt is the duration of the
simulation time-step. The battery level estimate at a given time-step was
equal to the previous battery level minus the fraction of the battery that
was consumed during the previous thrust action. In the event, the
battery level reached 0, and our simulation software prevented the
platform from executing any further thrust actions. We experimentally
tuned the beff parameter to beff � 10

6 so that the UAS had a flight time
of approximately 60 s at maximum thrust, aligning with our ISR
mission requirements.

3.1.3 Wind model
The wind model simulates the wind disturbances affecting the

platform. The model generates wind velocity wt � ( _wx,t, _wy,t, _wz,t)
at each simulation step. The wind vector is applied uniformly across
the entire environment. At each step, the model computes a
transformation to the body frame and commands the Gazebo
simulator to apply the new wind vector to the platform.

3.1.4 Probabilistic world model
To develop learning-based autonomous UAS, we formulated

the problem of predicting UAS state dynamics given previous
states, battery information, and wind information through
model-based reinforcement learning (Figure 2). The UAS state
consists of both translational (xt, yt, zt) and rotational (roll ϕt,
pitch θt, and yaw ψt) positions and velocities to fully capture all
six degrees of freedom. In addition, we include the wind velocity
(wx,t, wy,t, wz,t), battery level (bt), external air temperature
(tmpt), and platform payload mass (pt) in the state. The
complete 18-dimensional state space, including their
applicable units and coordinate frames, is shown in Equation 2.

Position (meters): xinertial,t yinertial,t zinertial,t
Euler angles (radians): ϕvehicle−body,t θvehicle−body,t ψvehicle−body,t

Velocity (meters/second): _xbody,t _ybody,t _zbody,t
Angular rate (radians/second): _ϕvehicle−body,t _θvehicle−body,t _ψvehicle−body,t

Wind (meters/second): _wx,vehicle,t _wy,vehicle,t _wz,vehicle,t

Battery level (%): bt
External air temperature (Kelvin): tmpt

Payloadmass (kilograms): pt

(2)
We model the UAS action space as the instantaneous change in

control surfaces and thrust vector. Our six-dimensional action space
is shown in Equation 3.

Control surfaces (radians): δaileron,t δelevator,t δrudder,t
Thrust (Newton): Tx,t Ty,t Tz,t

(3)

One of the main challenges with training neural network world
models is ensuring that the input and output data are continuous,
normalized, and generalizable to previously unseen data drawn from
the training distribution. The absolute positions and Euler angles in the
state representation are particularly challenging for these reasons. If using
the body frame instead, the gravity vector would have to be explicitly
included. We thus formulate the inputs and outputs to the world model
in what we call themodel frame (Figure 3), where gravity is constant. We
predict the changes in pose rather than the absolute vehicle pose and then
integrate the neural network output. As the coordinate frame changes
and integration is fully differentiable, the loss function used for training
can still be based on the error in the main state representation. By
carefully crafting these data representations for the neural network, we
enable the optimization to result in reasonable backpropagated gradients,
allowing for stable training and avoiding issues of vanishing or exploding
gradients (Bengio et al., 1994; Pascanu et al., 2013).

The pre-processing step for the data input to the RNNworld model
involves first transforming the vehicle pose and velocity into the model
frame and then normalizing the model input representation to have a
mean of 0 and standard deviation of 1 over all trajectories.

The post-processing step for the data output from the RNN
world model consists of first transforming the change in vehicle pose
back into the inertial frame. We then integrate the change in vehicle
pose to determine the predicted pose in the inertial frame. Next, we
transform the vehicle pose velocity back into the body frame. Finally,
we look up the predicted vehicle pose in a wind map to determine
the predicted wind vector.

FIGURE 2
Training procedure (left) showing random data being generated and used to train the world model. The planning procedure (right) shows the trained
model being used in conjunction with model predictive control to choose optimal actions for the UAS to execute.
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As training data, we first collect 40,000 trajectories by executing
random actions in the Gazebo simulation. These trajectories are
collected at 1 Hz for a total of 1 min, resulting in 60 length sequences
that consist of information on all of the states and actions. Following
data collection, we train an RNN that uses a GRU cell to carry
through the information from one time step to the next. The model
is trained with a depth of 10, meaning that for any given state, the
network is asked to predict ten time-steps ahead. The loss then takes
on the form shown in Equation 4, where the total loss is the sum of
individual losses lt at each time step. We use mean absolute error as
lt to minimize the error between the predicted output (ŝt) and the
true state (st) for a chosen batch size n:

losstotal � ∑10
t�1

lt st, ŝt( ), (4)

where

lt st, ŝt( ) � ∑n
i�1|ŝt,i − st,i|

n

is the mean absolute error of the following components of the
predicted and true states.

During the planning phase, we use our trained world model in
conjunction with the filtering and reward-weighted refinement planner
(Nagabandi et al., 2019) to predict a sequence of states given a sequence
of actions.Within ourMPC setup, the re-planning occurs at every time-
step so that only the first action out of the best action sequence as
chosen by the reward function is applied to the environment.

3.1.5 Reward modeling
We modeled reward Rt at time step t as the sum of a three-

element reward function that can be seen in Equation 5.

Rt � Rtargets,t + Rsafety,t + Rbattery,t (5)

Each individual reward function Ri uses a tunable parameter x
multiplied by an indicator function 1(·), where the target reward

Rtarget,t � xtarget × 1 |UAS x,y,z( ) − TGT x,y,z( )|< 25( ),
rewards the agent for capturing a target. A target is considered

captured if the UAS moves within a 25 m radius of the given target;
once a target is captured, it cannot be captured again (i.e., no
additional reward is given). The safely reward penalizes the UAS
for crashing into the ground plane (altitude = 0) and takes the form

Rsafety � −xsafety × 1 UASz < � 0( ).

The battery level reward

Rbattery � xbattery × 1 UASbt > � 0( ),
rewards the UAS for conserving the battery life which is

expended by the control actions. For our experiments, we tuned
our reward parameters to xtarget � 10, xsafety � 0.01, and
xbattery � 0.004, respectively.

4 Experimental design

We designed two experiments to investigate the ability of
generalized outcome assessment (GOA) to evaluate the competency
of our autonomous UAS in a time-constrained multi-target visit task
under differing wind conditions. Wind speed and its impact on the
platform’s dynamics is an important factor a user must consider when
deciding if and how to deploy a fixed-wing UAS for an ISR mission.

FIGURE 3
Different coordinate frames: (left) inertial frame with origin at Earth’s center; (middle, top) vehicle frame with same axes as inertial frame but origin at
UAS center of mass; (middle, bottom) body frame with origin at UAS center of mass; (right) model frame, used in our representation, which is an
intermediate rotation between vehicle and body frame with rotation only along the yaw axis.

Frontiers in Aerospace Engineering frontiersin.org08

Conlon et al. 10.3389/fpace.2025.1454832

https://www.frontiersin.org/journals/aerospace-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fpace.2025.1454832


Here, we investigated the ability of GOA to assess the UAS competency
across two wind-speed experiments. Calm wind represents a nominal
operating environment with a constant wind velocity of
wt � (0, 0, 0) ms . Adverse wind represents an off-nominal operating
environment with a constant wind velocity of wt � (5, 5, 0) ms . These
experiments expand on our previous GOA work analyzing the
platform’s competency in maintaining a given altitude and
maintaining sensor coverage within a single-target zone (Conlon
et al., 2022a).

4.1 Multi-target ISR task

We designed a relevant ISR mission where we tasked our
autonomous fixed-wing UAS to fly to different target areas
within a larger mission area under varying wind conditions.
There were six targets available to the platform to visit. Each
target had a fixed (x, y, z) location, and all had equal value to
the mission. A UAS pass within 25m of a target counted as a
successful visit, and once a target was visited it did not have to be
visited again. We selected set of six targets dispersed throughout the
mission area: Tgt1 � (−100, 100, 100), Tgt2 � (100,−100, 150),
Tgt3 � (100,−100, 150), Tgt4 � (100, 100, 100), Tgt5 � (200,
−200, 150), and Tgt6 � (200, 200, 100).

In each episode, the UAS began at a fixed (x,y, z) location, with
initial orientation and velocity selected within a uniform range,
U(min,max). We initialized angle rates to 0. The wind velocity
was initialized based the wind condition for each
experiment—Calm (wt � (0, 0, 0) ms ) or Adverse (wt � (5, 5, 0)ms ).
The initial battery level was set at 100% and drained with respect to the
platform’s battery model. Temperature and payload mass were held
constant at 288 K and 0 Kg respectively. During the mission, the UAS
used the probabilistic world model with model predictive control and
the reward function discussed above (3.1.5) to choose the optimal
control surface and thrust actions needed to maximize the reward
function. This in turn translated into behaviors that visited the targets,
conserved battery, and maintained safe altitude. The initial UAS state,
s0, is shown below.

Position (meters): −300 0 150
Euler angles (radians): U(−π, π) U(−0.1, 0.1) U(−0.1, 0.1)

Velocity (meters/second): U(0, 30) U(−5, 5) U(−2, 2)
Angular rate (radians/second): 0 0 0

Wind (meters/second): wx,vehicle,t wy,vehicle,t wz,vehicle,t

Battery level (%): 100
Temperature (Kelvin): 288

Payloadmass (kilograms): 0

The goal of the task was for the UAS to maximize the number of
targets visited (visiting between zero and six targets) while maintaining
safe altitude and conserving battery level. We decomposed this high-
level goal into threemission outcomes of interest to a potential operator:
(1) battery-level conservation, (2) time to the first visit of any of the six
targets, and (3) total targets visited of out the six. Given these outcomes
of interest, an operator may, before deploying the UAS for this mission,
want to know whether the UAS can (1) complete the mission withX%

battery remaining, (2) arrive at the first target withinX seconds, and (3)
visit X or more targets.

4.2 Competency assessment

To quantify the autonomous UAS’s predicted competency in
achieving each outcome, we implemented the GOAmethod covered
in Section 2.2. For each experiment (calm or adverse wind), GOA
sampled 25 rollouts from the Docker-based Gazebo simulation of
the UAS executing the mission. This resulted in a set of 25 60-second
trajectory traces that the algorithm then analyzed with respect to
each of the three outcomes of interest.

We mapped the raw battery levels to GOA x-domain,
x � [0, 1, . . . , 100]%. The translation to ranked equivalence class,
or z-domain, here was trivial, z � x. Here increasing zi equated to a
higher battery level at mission completion, which was preferable.
The target timing outcome was mapped to the x-domain, x �
[0, 1, . . . , 60] seconds, indicating that the UAS could take 0–60 s
to reach the first target. Here, lower time was preferable, so we set
z-domain to z � [60, 59, . . . , 0], such that increasing zi equated to
lower capture time. The x-domain for the total number of targets
visited outcome was mapped to x � [0, 1, . . . , 6] targets. The
z-domain, indicating that more targets visited was preferable, was
mapped to z � x, indicating that more targets visited was preferable.
Note that the z-domain could have binned ranges of x; for example,
battery level could have used two bins:
z � [(0 − 50%), (51 − 100%)]. However, for simplicity, we chose
1: 1 mapping between the number of elements in the x-
and z-domain.

4.3 Hardware resources

All experiments and data analyses were performed on a Dell
Precision Laptop running Ubuntu 20.04. The laptop was equipped
with an Intel i7 4 core processor, 16 GB RAM, and Nvidia RTX
A3000 GPU. All simulation software (code, simulator, and
associated scripts) were run within a Docker container. We used
theWorld Model within the Model Predictive Control framework as
covered in 3.1.4. For all simulations, we used a 60 s mission time
where each simulation step was 1.0 s.

5 Results

We analyzed the generalized outcome assessment (GOA) for
both calm and adverse wind conditions. With respect to the
algorithm’s computational cost, the two main processes
underlying GOA are (1) trajectory sampling (simulation) and
(2) analysis to include both outcome analysis and risk analysis
(Figure 1). Across both experiments, we found that the time taken
to sample the set of trajectories was the primary contributor to
computational cost (μ � 46.7s, σ � 0.6s) compared to the time
taken to analyze the trajectories (μ � 0.0005s, σ � 0.0005s). This
is because the time cost of trajectory simulation is based on
factors including the complexity of the simulator’s dynamics
engine, mission time horizon, and mission complexity, while the
comparatively fast analysis calculations are only a function of the
number of trajectories.
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5.1 Wind conditions

Our calm wind experiment simulated wind speeds of |wt| � 0m
s ,

while our adverse wind experiment simulated wind speed of
|wt| � 7.07 m

s . Plots of the mission trajectory traces for both
experiments can be seen in Figure 4. In the calm wind
experiment (Figure 4A), each trajectory followed a relatively
smooth and straight path from one target to the next. From the
initial state of (−300, 0, 150), the platform’s strategy was to either (a)
head left to visit the three targets in +y, or (b) head right to visit the
three targets in −y. In the adverse wind experiment (Figure 4B), each
trajectory followed a comparatively more random and meandering
path due to the off-nominal wind. The platform’s strategy is much
less obvious here as it is coping with high wind.

5.2 Comparison of outcome distributions
and outcome assessments

In this section, we present an analysis of the outcome
distributions for each of the three outcomes of interest: battery
level, target timing, and targets visited. For each outcome of interest,
we discuss the UAS-predicted outcome distributions and how they
each translate to the GOA across a range of potential (zp) values. In
all plots, the calm wind experiment is represented in blue, while the
adverse wind experiment is represented in orange. GOA tending
toward −1 indicates lower confidence in achieving the outcome,
while GOA tending toward +1 indicates higher confidence. Israelsen
(2019) investigated mapping the raw GOA score to semantic labels
(e.g., probability words), indicating the machine’s self-confidence,
where very bad ∈ (−1.0,−0.5] indicates that the GOA algorithm
estimated a high certainty that the UAS will fail to achieve the given
outcome, bad ∈ (−0.5,−0.1] indicates that the GOA algorithm
estimated a high (but not certain) chance the UAS will fail to
achieve the outcome, fair indicates there is an even chance for

failure or success, good ∈ (0.2, 0.5] indicates that GOA estimated a
high (but not certain) chance the UAS will achieve the outcome, and
very good ∈ (0.5, 1.0) indicates that the GOA algorithm estimated a
high certainty that it will achieve the outcome. In this study we
analyze the outcome distributions and raw numerical competency
self-assessments computed by GOA, but in a real-world human-in-
the-loop mission, we foresee these semantic labels being
communicated to a user to calibrate them to the platform’s
competency.

5.2.1 Battery level outcome
Our first outcome of interest is battery level. Because a UAS may

have to contend with uncertainties in task, environment, weather,
and/or potential adversaries, keeping a battery reserve is critical to
mission success. An operator may want to know whether the UAS is
capable of completing the mission with X% battery remaining. We
measured the battery level as the percentage remaining at the end of
the 60 s mission. Figure 5 shows the predicted battery level outcomes
for both calm (Figure 5A) and adverse wind conditions (Figure 5B).
Looking at both outcome distributions, we can see that the UAS is
predicted to be more likely to conserve battery in the calm wind
experiment (μ � 52%, σ � 23%) than the adverse experiment
(μ � 27%, σ � 23%). However, there is a large variance in both
distributions, indicating a larger uncertainty in the predictions.

Figure 5C shows how these two outcome distributions translate
to raw GOA scores. We can see that in both experiments, GOA
estimated very good confidence (GOA> 0.5) of the UAS being
capable of completing the mission with at least 10% or more
remaining and estimated very bad confidence (GOA< − 0.5) of
the UAS being capable of completing the mission with 70% or more
battery remaining (blue line = orange line). We also see that for
ending battery levels between 10% and 70%, GOA estimated that the
UAS in the calm wind experiment should have a strictly higher
confidence in achieving the battery level outcome compared to the
UAS in the adverse experiment (blue line > orange line). This higher

FIGURE 4
Figures of the calm wind experiment (blue trajectories (A)) and adverse wind experiment (orange trajectories (B)) showing the predicted paths of the
UAS as it attempts to capture as many of the six targets (gray orbs) as possible within the mission time limit. UAS silhouette denotes the platform’s starting
position, while the trajectory arrows show its direction of travel at the end of the task. (A) Calm wind experiment. (B) Calm wind experiment.
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confidence across the calm wind experiment and lower confidence
across the adverse wind experiment is expected, as the UAS would
have to expend more thrust and execute more control surface
actions in the adverse experiment in order to counteract the
higher wind.

5.2.2 Target timing outcome
Our second outcome of interest is target timing. For both

mission planning and collaborative tasking, it is critical to
understand the platform’s time on target. We measure time-on-
target, or target timing, as the time in seconds for the UAS to visit its
first target. Here, an operator may ask whether the UAS is capable of
arriving at the first target within X seconds. Figure 6 shows the
outcome distributions for both calm (Figure 6A) and adverse
(Figure 6B) wind experiments. In the calm wind experiment, the
predictions indicate that UAS would visit its first target almost
immediately after mission start (μ � 17s, σ � 4s). In the adverse
experiment, the predictions indicate that the UAS will generally visit
the first target quickly (μ � 16, σ � 8s) but with a larger variance in

the distribution. In some cases, under adverse conditions, the UAS
controller may be able to take advantage of the stronger winds and
visit the first target faster than in calm conditions, while in others, it
may not visit the first target until the last few seconds of the mission
time window.

Figure 6C shows the GOA plot for this outcome of interest. We
can see both experiments track a similar curve, with the calm
experiment showing slightly higher confidence. In both the calm
and adverse wind experiments, GOA would estimate very bad
confidence (GOA � −1.0) that the UAS is capable of reaching its
first target before t � 10s and estimate very good confidence
(GOA � 1.0) for all times after t � 20.

5.2.3 Targets visited outcome
Our third outcome of interest is total targets visited. This

outcome gives users a sense of how well the UAS will be able to
maximize target visits. We measured this as the raw count of targets
visited during the 60-s mission. Once a target was visited, it was not
counted again. Here, an operator could ask whether the UAS could

FIGURE 5
Figures showing battery level outcome distributions across both calm (blue (A)) and adverse (orange (B)) wind experiments. (C)GOA response across
all possible ending battery levels, estimating generally higher confidence in the UAS completing the mission with more battery remaining in the calm
experiment compared to the adverse experiment. (A) Calm wind. (B) Adverse wind. (C) Generalized outcome assessment.

FIGURE 6
Figures showing the time to first target outcome distributions across both calm (blue (A)) and adverse (orange (B)) wind experiments. (C) GOA
response across all possible times to arrive at the first target; UAS has generally higher confidence in visiting the first target faster in the calm experiment
than in the adverse experiment. (A) Calm wind. (B) Adverse wind. (C) Generalized outcome assessment.
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visit X or more targets within the mission time. Figure 7 shows the
outcome distribution for the calm (Figure 7A) and adverse
(Figure 7B) wind experiments. As with the target timing
outcome, we found a large difference in variance between the
two experiments. In the calm experiment, the prediction
indicated that the UAS almost always visited three targets
(μ � 3, σ � 0). While the adverse experiment (μ � 2.5, σ � 1) may
have a similar mean, the variance captures the mission risk: under
adverse conditions, the prediction indicates that the UAS could
achieve as many as four or as little as no target visits within the
mission time.

This difference in variance impacts the shape of the GOA curve,
and in turn, the level of confidence reported to the operator
(Figure 7C). Under the calm wind experiment, GOA estimates
very good confidence (GOA � 1.0) that the UAS can achieve up
to three target visits during the mission, and very bad confidence
(GOA � −1.0) that the UAS can achieve any more than three. The
GOA curve in the adverse wind experiment is shallower, indicating
that GOA loses confidence faster in the ability of the UAS to visit
targets than in the calm wind experiment (blue line above orange
line). However, it is interesting to note that in adverse wind
conditions, GOA does show a small amount of confidence that
the UAS can visit four of the six targets (orange line above blue line).
However, because such an event is quite unlikely, this will be
reported as very bad confidence.

6 Discussion and future work

Our results indicate that the FaMSeC generalized outcome
assessment can be used to assess the competency of an
autonomous UAS executing tasks characterized by
environmental uncertainty and mission time pressure. We
observed that a UAS tasked with operating in calm wind
conditions outperformed the same UAS operating in adverse
wind conditions across three outcomes of interest to a human
supervisor: battery level, target time, and targets visited. The fact
that the UAS showed superior performance in the calm wind
conditions is expected and obvious. However, given these

outcome distributions, we then showed that they can be
analyzed using GOA to compute a metric of machine self-
confidence in achieving each outcome of interest. We
demonstrated that this competency quantification is impacted
by both location and the shape of the predicted outcome
distributions—GOA captured uncertainties in predicted
outcomes that can both add risk and impact performance. We
found that the high performance of the UAS during the calm
wind experiment led to overall higher GOA confidence in
achieving each mission outcome of interest than the UAS
during the adverse wind experiment.

As an example of how this may translate to a human–machine
team, where the human is supervising the autonomous UAS,
consider the human supervisor requesting the following
assessments from the UAS in each experiment:

1. “Will the UAS complete the mission with 40% or more battery
remaining?” In this case, the calm wind UAS would report back
very good confidence (GOA ∈ (0.5, 1.0)) in achieving the
outcome while the adverse wind UAS would report back
very bad (GOA ∈ (−0.5,−1.0]). The user can thus easily
grasp the wind conditions in which the UAS can
successfully maintain battery life.

2. “Will the UAS visit the first target within 20 seconds?” Both the
calm wind UAS and the adverse wind UAS would thus report
back very good confidence (GOA ∈ (0.5, 1.0)). While the
platforms may use different strategies due to the wind
conditions, both are quite certain in their ability to quickly
arrive at the first target.

3. “Will the UAS visit 4 or more targets?” Both the calm and
adverse wind UAS would thus report back very bad confidence
(GOA ∈ (−1,−0.5]), indicating that they are both quite certain
each will not achieve such an ambitious outcome. This could
lead to a follow up question: “Can the UAS visit 3 or more
targets?” Here, in calm winds, the UAS would report back very
good confidence (GOA ∈ (0.5, 1.0)) while in adverse
conditions, the UAS would report back an even chance
(GOA ∈ (−0.2, 0.2]), giving the user a good indication of
the conditions in which the UAS is more capable.

FIGURE 7
Total targets visited outcome distributions across both calm (blue (A)) and adverse (orange (B)) wind experiments. (C) GOA response across all
possible targets, showing that the UAS has generally higher confidence in visitingmore targets in the calm experiment than in the adverse experiment. (A)
Calm wind. (B) Adverse wind. (C) Generalized outcome assessment.
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While we are investigating a small set of potential outcomes
in a simplistic ISR mission, reported GOA self-assessments
should help calibrate human users with their autonomous
system’s capabilities and lead to improved decision-making
with respect to mission execution and platform employment.
Previous research has found evidence that communicating
competency self-assessments in the ground domain can lead
to improvements in user decision-making, with downstream
improvements to performance and calibrated trust in the
system (Israelsen et al., 2019; Conlon et al., 2022b); however,
it is not obvious how such information should be presented to
autonomous UAS supervisors, who may be managing far faster
and more dynamic platforms. One potential direction for future
research is to validate competency self-assessments with GOA in
the aerial domain using live platforms with humans in the loop.

Moving toward competency self-assessments for live aerial
platforms poses several challenges. The first is the need to
quantify and report in situ changes to competency. Once a
platform is in flight and executing the mission, any a priori self-
assessments, such as those presented in this work, could be
invalidated by changes in the environment (e.g., weather) or the
mission (e.g., additional tasking) or the addition of cooperative and
non-cooperative platforms (e.g., other aircraft in the area,
adversaries). In order to keep human supervisors calibrated to
the platform’s ability to achieve favorable mission outcomes, the
platform should be able to update the assessment as new
information becomes available. While such competency updating
has been shown to be effective for ground platforms that can safely
stop and re-assess (Conlon et al., 2024), the air domain presents a
challenge in that fixed-wing platforms that rely on forward motion
to generate lift do not have the luxury of temporarily stopping
operation while the system and the supervisor decide how
to proceed.

This leads to an additional challenge, in that competency self-
assessments, particularly those executed in situ, need to be
computationally fast. We found in this study that the
computational bottleneck is in simulating mission rollouts to
generate the outcome distributions. We found that this is a
function of several parameters, including task time horizon,
mission complexity, and the requested number of rollouts. With
respect to efficient sampling, research has shown that these
distributions can be generated by approximating and intelligently
“reusing” rollouts (McGinley, 2022). However, the proposed
method has not been directly applied to the aerial domain and
may not directly translate to online assessments where previous
rollouts can easily be invalidated due to in situ changes. Given this,
we believe there is ample opportunity to investigate efficient
sampling of probabilistic world models, simulations, and digital
twins such as those used in this study.

7 Conclusion

As a step toward developing competency-aware decision-
making autonomous agents, we developed and analyzed a
simulated learning-based autonomous UAS that leverages model-
based reinforcement learning to execute a multi-target intelligence
surveillance, and reconnaissance (ISR) task. Our UAS used a learned

probabilistic world model of its operating environment in
conjunction with a stochastic model-based planner to choose
optimal actions given a reward function that prioritizes visiting
targets, conserving battery, and maintaining a safe altitude. The
simulated trajectories capture uncertainties that emerge from both
the planner, task, and modeled environment. We showed that we
can analyze the trajectories to quantify the system’s competency
using Factorize Machine Self-Confidence GOA. In particular, we
evaluated an autonomous UAS operating in both calm and adverse
wind conditions and showed that GOA can capture both
performance differences as well as uncertainties across three
mission outcomes of interest to potential human supervisors.
Additionally, we identified several challenges and directions for
future work in translating competency self-assessments to live
aerial platforms with humans in the loop. The communication of
competency self-assessments to human partners should lead to a
safer deployment of the autonomous system and additionally
provide UAS operators with the ability to make informed
decisions based on the platform’s GOA, thus improving the
ability to calibrate user trust and understand the system’s
capabilities.
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