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Anomaly response in aerospace systems increasingly relies on multi-model
analysis in digital twins to replicate the system’s behaviors and inform
decisions. However, computer model calibration methods are typically
deployed on individual models and are limited in their ability to capture
dependencies across models. In addition, model heterogeneity has been a
significant issue in integration efforts. Bayesian Networks are well suited for
multi-model calibration tasks as they can be used to formulate a mathematical
abstraction of model components and encode their relationship in a probabilistic
and interpretable manner. The computational cost of this method however
increases exponentially with the graph complexity. In this work, we propose a
graph pruning algorithm to reduce computational cost while minimizing the loss
in calibration ability by incorporating domain-driven metrics for selection
purposes. We implement this method using a Python wrapper for BayesFusion
software and show that the resulting prediction accuracy outperforms existing
pruning approaches which rely primarily on statistics.
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1 Introduction

The context of this research is presented by first describing the computational
challenges pertaining to probabilistic multi-model calibration. We then provide a review
of existing work on computational reduction methods.

1.1 Problem description

Decision-making in complex aerospace systems often relies on multiple models for
analysis purposes. For example, many models are used for Environmental Control and Life
Support Systems (ECLSS) (Chu, 2002) which are critical in ensuring crew safety in space
habitats (Eshima and Nabity, 2020). Using multiple models concurrently is often required
to perform holistic analysis in aerospace systems as individual models tend to be limited to
specific sub-systems or behaviors (Gratius et al., 2024d). This further induces a need to
integrate calibration across models to avoid inconsistencies. In spacecraft operations, this
task is typically ensured by sub-systems specialists in the Mission Control Center (MCC)
(Watts-Perotti and Woods, 2007; Dempsey, 2018). However, experts are not always
available to support this process. For example, a crew operating a space habitat in deep
space may experience communication delays. Making this calibration task more
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autonomous is therefore desirable but challenging because models
embed uncertainties and are typically heterogeneous (Montero
Jimenez et al., 2020).

In addition, simulation models incorporate various model-
specific properties that naturally induce integration challenges.
Each model may utilize different data formats, storage systems,
or access protocols, thereby inducing compatibility issues. For
example, the question of model heterogeneity in the context of
space systems is discussed in a previous study where issues such as
ontological inconsistencies, entity matching, and redundancy were
identified (Gratius et al., 2024d).

Digital Twins (DTs) technologies are promising in this context
as they aim at integrating models in a digital environment. The
American Institute of Aeronautics and Astronautics formally
defines DTs as “A set of virtual information constructs that
mimics the structure, context and behavior of an individual/
unique physical asset, or a group of physical assets, is
dynamically updated with data from its physical twin throughout
its life cycle and informs decisions that realize value” (AIAA and
AIA, 2020).

The task of integrating multiple models has been explored in
previous studies, notably by leveraging simulation environments
(Margolis and Lyons, 2022), mathematical abstractions (Lara et al.,
2023; Xu et al., 2021), and existing standards such as the Functional
Mock-up Interface (FMI) (Blochwitz et al., 2012). However, the task
of coordinating the calibration of these models remains a significant
challenge. Bayesian Networks (BNs) have shown to be promising for
integrating multi-model calibration processes into a DT. This is
explained by their ability to be interpretable, quantify uncertainty,
represent abstract model parameters, and provide adjustable
computational tractability (Gratius et al., 2024d,c). BNs are
Probabilistic Graphical Models (PGMs) with directed arcs. For
simplicity, we will refer to the terms “BNs” and “graphs”
interchangeably depending on the context. The work in Gratius
et al. (2024d) envisions a BN composed of two layers of nodes,
i.e., random variables, representing sub-system states and model
parameters respectively. This BN approach integrates multiple
models by encoding probabilistic causal relationships between
states and parameters. Ultimately the method is used to identify
the set of model parameters that best represent the current operating
conditions of the system. One limitation of this approach is that
computational complexity increases exponentially with the size of
the network, thereby becoming intractable. Our work in this paper
proposes an algorithmic procedure to reduce the complexity of a BN
designed for multi-model calibration as described in the framework
from Gratius et al. (2024d). We address this challenge by
formulating an optimization problem and developing an
algorithm combining existing statistical methods with novel
domain-driven metrics.

1.2 Related work

Many model reduction approaches have been developed and
usually consist of selecting a design of experiment and a type of
surrogate model (Alizadeh et al., 2020). For example, BNs are often
used to construct surrogates of complex models, e.g., of physics-
basedmodels (Kaghazchi et al., 2021; Gratius et al., 2023). This study

however focuses on creating a BN that is a reduced version of a more
complex BN which is used for multi-model calibration. We chose to
investigate BNs as surrogates to ensure that the reduced model can
still quantify uncertainties using probabilities, and can remain
interpretable, i.e., a user should be able to visually assess the
graphical model topology after reduction. For example, while we
could have chosen to simplify the complexity of performing
inference on the as-designed PGM by calibrating linear models
that capture the relationship between simulation parameters and the
system states, this approach would have missed the ability to
explicitly represent variables and their uncertainties within the
model. The behavior of such a model would be guided by
learned parameters, e.g., slope and intercept vectors for a
regression model. Such quantities are more difficult to interpret
for a human user than probability distributions over a set of explicit
states for nodes representing real system entities, e.g.,
[P(filter � unclogged) � 90%;P(filter � clogged) � 10%].

We reviewed the literature on BN reduction methods and
classified them into two categories, namely, (1) methods adapted
to system design, i.e., where the BN is reduced permanently at the
beginning of the system lifecycle, and (2) methods for system
operations, i.e., where the BN is reduced temporarily before
returning to its initial conditions (see Figure 1).

Methods for system design include arc pruning, which consists
of removing the arcs that are the least statistically relevant. This
relevance can be defined according to the Kullback Leibler (KL)
divergence, which is a well-established metric in the statistics
community to measure the distance between two distributions
(Kullback and Leibler, 1951). The pruning method removes an
arc x from a BN G such that x � arg minxKL(Gold‖Gnew)
(Kjaerulff, 1994). An alternative is to annihilate low probabilities
by setting the corresponding outcomes to zero thereby simplifying
the distributions. The idea of selecting graph components based on
statistical relevance is related to sensitivity analysis which quantifies
how small changes in model inputs influence the model outputs
(Kjaerulff, 1994).

Methods for system operation are employed at inference time
without modifying the graph permanently. Approximate inference
methods are examples that aim at reducing inference time but
these may result in a loss of accuracy. These can be classified into
two categories, namely, (1) sampling approaches such as Markov
Chain Monte Carlo (MCMC) (Li and Mahadevan, 2018), and (2)
variational methods which consist of solving an optimization
problem (Koller and Friedman, 2009). A key distinction
between these categories of approximate inference methods is
that sampling converges slowly to the true solution while
variational methods converge quickly to an approximate
solution. Finally, another approach relevant to systems in
operation is query-based pruning. This consists of temporarily
removing the part of the graph that is irrelevant to a given query,
i.e., instead of updating the belief over all random variables, the
computations are conducted only for the nodes necessary to
answer the query.

While methods used in operations are highly relevant to solving
BN computational issues, we focus on design methods as the graph
definition is going to have a lasting impact on all future
computations during the system lifecycle. Our work therefore
attempts to solve the problem of defining a graph that is
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appropriate from the start by addressing the limitations of existing
BN pruning methods that are applicable to system design. For
example, annihilating low probabilities is problematic for a
system in operation because degraded system states are typically
unlikely. Removing these outcomes from probability distributions
would therefore greatly reduce the ability to calibrate models such
that they represent degraded behaviors. More generally, existing
pruning methods tend to rely primarily on statistical heuristics,
i.e., domain knowledge pertaining to the calibration task at hand is
not leveraged. Purely statistical methods are also limited in their
ability to prune nodes as knowing which nodes are more important
than others pertains to the application domain.

1.3 Proposed algorithm

The algorithm presented in this work aims at reducing the
computational complexity of inference tasks performed by a BN for
multi-model calibration. This is done by combining existing
statistical methods with novel domain-driven heuristics.
Specifically, starting from a large and computationally inefficient
BN, the proposed algorithm iteratively prunes subsets of the graph
that are considered the least relevant for the inference task to be
ultimately performed by the BN. This pruning prioritization is
defined according to an objective function that quantitatively
assesses multiple pruning scenarios. The pruning continues until
the graph is considered computationally tractable. Informally, the
proposed algorithm executes the following steps:

1. Identify candidate graph subsets to be pruned,
i.e., nodes and arcs

2. For each candidate, compute a score according to an
objective function

3. Select and prune the graph subset with the best score
4. Repeat until the graph is computationally tractable

The novelty of this work resides primarily in the inclusion of
domain-specific metrics in the objective function. Namely, we
propose ways to quantify the relevance of source nodes, arcs, and
leaf nodes with respect to the calibration task to be performed by the
BN. We found that the inference tasks performed by the resulting
BN are more accurate when the model reduction is performed with
these metrics than when relying solely on existing
statistical methods.

To demonstrate this, we propose to compare two BN reduction
methods: (1) a baseline statistical method to prune graph
components using KL divergence, and (2) a proposed method
combining statistical and domain heuristics for pruning.

This paper will introduce the proposed method and associated
validation approach, before presenting results and discussing their
implications.

2 Materials and methods

To motivate the proposed method, we start by providing some
background in BN-driven multi-model calibration and discuss what
domain knowledge is important in that context.

2.1 Domain knowledge in inference

The BN for multi-model calibration envisioned in Gratius et al.
(2024d) consists of two layers of nodes representing sub-systems
andmodel parameters. In the following, a graph representing a BN is

FIGURE 1
Bayesian Network reduction methods (icons: Flaticon.com).

FIGURE 2
Bayesian Network for multi-model calibration.
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denoted G, and the models to be calibrated using the inferred
parameters are denoted M. These are shown in blue and green,
respectively, in Figure 2. In this BN, inferring the most likely
parameters given the current system steps consists of three steps
that mirror the procedure typically employed by subject matter
experts for calibration (see Figure 3).

1. State instantiation: This step occurs when an anomalous
sensor reading is detected and diagnosed. The value of the
corresponding sub-system node is then set to a degraded
state. For example, if a temperature reading reaches a pre-
defined threshold, the value of the random variable
associated with the heater sub-system node can be set to
“off-nominal”.

2. Belief propagation: A BN algorithm is executed to update the
probability distribution of all nodes given the previous
instantiation (see Jensen and Nielsen (2007) for a
description of such algorithms). This step consists of
estimating the posterior distribution of sub-system and
parameter nodes, denoted as X in Figure 3, given the
observation made previously.

3. Parameter assignment: This last step consists of identifying the
most likely values for each parameter node. The updated
distributions for these nodes are read and the values with
the highest probability are selected as the most appropriate
parameter values to be assigned to the models given the current
system states.

The proposed BN pruning method introduces three metrics
evaluating the ability of specific graph components to serve the
three steps of the calibration pipeline, namely, (1) observatbility
O(Si); quantifies the instantiability of source nodes Si, i.e., how
easily can these nodes be observed, (2) knowledge K(Xi → Xj);
quantifies the confidence in the ability of the arcs to represent
causal relationships accurately, and (3) utility U(θi); quantifies
the expected usefulness of target nodes θi as some may be more
important than others during operation. These metrics are
assigned to components of the graph to be pruned as shown
in Figure 4. For defining utility metrics, previous work proposed
leveraging Failure Modes and Effect Analyses (FMEA) as these
readily provide quantitative “severity” scores associated with
risks in spacecraft operations (Gratius et al., 2024a). Using
existing FMEA studies avoids conducting a dedicated
knowledge elicitation campaign to evaluate this metric. This
avoids elliciting expert knowledge specifically. The approach
consists of summing over Risk Priority Numbers (RPNs)
relevant to each parameter thereby defining a quantity
representing how important a parameter is regarding the
severity, occurrence, and detection of related risks:
U(θt) ≜∑(RPNθt). Metrics formulation for observability and
knowledge however remains mostly undefined for multi-model
calibration but some relevant methods will be discussed in a later
section. Beyond the problem of defining these metrics
appropriately, a more general challenge is to define an
algorithmic framework integrating these metrics. This topic
will be addressed in the next section before discussing
individual metric definitions.

FIGURE 3
Calibration pipeline: Bayesian Network inference steps.

FIGURE 4
Metric assignment.
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2.2 Proposed reduction method

We propose to prune the BN by solving an optimization problem
intended to maximize the objective function in Equation 1. This
equation first contains a performance part that sums over the
metrics previously introduced and subtracts the KL divergence
between the original and the pruned BN. The second part of the
equation represents an expected computability score which is high if the
computational cost of the BN is low. Finally, α and β are weights,
possibly multi-dimensional, to prioritize certain metrics over others.
While these weights may prove to be difficult to estimate, there exist
methods to facilitate their identification. For example, computing the
Pareto front could help in identifying the solutions that are not
dominated by others, thereby reducing the space of candidate values
to explore (Van Veldhuizen and Lamont, 1998). All the terms in this
equation will later be discussed in further detail, but we first introduce
the associated pseudo-algorithm that we envision for solving the
optimization problem.

f G( ) � α ∑
i

O Si( ) + ∑
Si → θt

K Xj → Xk( ) +∑
t

U θt( ) − KLG
⎛⎝ ⎞⎠
︸






















︷︷






















︸

P: Performance

+ β E C+[ ]︸

︷︷

︸
C: Computability

(1)
The objective function previously defined is proposed to be

maximized by following the steps described in Algorithm 1. First, a
computability target C+

max is defined, and the graph G is pruned
iteratively until the expected computability of the resulting BN
reaches the target. At each iteration, the algorithm considers
pruning candidate graph components and computes the resulting
performance losses Li. The candidates comprise all non-cut arcs and
non-cut nodes to avoid the resulting graph being disconnected after
pruning. We define a “non-cut” entity as a node or an arc, which can
be pruned without separating the initial graph into multiple graph
subsets. This term is used by opposition to the notion of separating
set as defined in Chapter 4 of Douglas Brent (2001). The graph
component eventually pruned is the one inducing the lowest loss.
Note that graph components could be removed in batches but for
simplicity, this algorithm considers removing unique components,
i.e., removing a single arc or a single node at a time.

while E[C+]>C+
max do

for all non-cut arcs a, nodes v do

compute Li � f(G) − f(G\i�{a∨v})
end for

G(n+1) ← G(n)
\i* : i* � argminiLi

end while

Algorithm 1. Bayesian Network pruning.

An example of the pruning process is illustrated in Figure 5
where nodes and arcs are iteratively considered for pruning. Note
that once a node or arc is removed, the algorithm reiterates and goes
through the remaining nodes and arcs. Each node keeps its
identification label throughout the process as they embed an
interpretable meaning, e.g., a node called “temperature” must
keep that name for the end-user to interpret the graph as needed
once the model is reduced and ready for use. The process stops when
the computability target is achieved. We now discuss in more detail
the different metrics that were introduced as part of this proposed
optimization framework.

2.3 Metric definition

The metrics integrated into the proposed pruning algorithm
relate closely to existing practices. This section discusses how
observability, knowledge, utility, KL divergence, and
computability, can be defined for BN-based multi-model
calibration by leveraging previous work.

2.3.1 Observability
In the control community, a system is said to be “observable” if

its state can be entirely inferred from measurements (also called
outputs). Such measurements can be obtained in aerospace systems
using sensors, e.g., approximately 350,000 sensors are used in the
International Space Station (ISS) (Wu and Vera, 2019). However,
sensors may be subject to noise (Xu et al., 2021) and placement
limitations (Guo et al., 2021) thereby limiting the quality of
information that can be accessed. Alternatively, human operators
can collect measurements. For example, in the ISS, maintenance
time is estimated to be 2 hours per crew member per day and can
include data collection tasks (Russell et al., 2006). This data
collection method however also has limitations as human
operators may not always be available. For example, in the future
Gateway space habitat, crew members are expected to occupy the
habitat only 30–60 days per year (Coderre et al., 2018).

As available measurements have limitations, it is reasonable to
assume that some subsystems may be more easily observable than
others. Previous work quantified observability probabilistically by
counting the number of critical measurements without which a
system becomes unobservable (Brown Do Coutto Filho et al., 2013).

FIGURE 5
Example of iterative pruning.
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One contrast with such a method is that the BN architecture, on which
our study is based, models the system as a set of connected nodes
representing sub-systems. In this context, the concept of observability is
only applied locally to individual nodes, i.e., we assume that external
detection and diagnosis algorithms provide state estimates for each
node. In this work, we envision that observability scores will be
primarily derived from the detection score defined in FMEA studies.
For example, the work in Eshima and Nabity (2020) defined a scale
from 1 to 5 to quantify how detectable a given failure is.

2.3.2 Knowledge
We define knowledge as a metric representing how certain sub-

systems experts are of the probabilities encoded by a specific arc. In
BNs, an arc is formalized as a Conditional Probability Distribution
(CPD) of the form: P(destination|origin). If this distribution is well
known, i.e., there is significant prior information available to specify
the distribution, the knowledge score is high and vice versa. We
implemented this metric by assigning a number between 0 and 10 to
each arc, where 0 indicates that the CPD of the arc is unknown and
10 indicates that the CPD is certain. This work assumes that the
elicited experts are able to provide a reasonable estimate without
relying on specific thresholds. Note that in addition to defining
probabilities, arcs in BNs are also used to specify causal relationships
between random variables. For example, an arc between two random
variables, A → B can be read as “A causes B” where A could
represent the rain, and B represents whether the grass is wet or
dry. Algorithms have been defined to learn the structure of the
graphs from data (Spirtes and Glymour 1991; Spirtes et al., 2000),
but these typically require a large amount of data, which may not be
possible to collect in practice.

As causal relationships are often best understood by subject
matter experts, several expert elicitation methods have been
developed in that regard. For example, the Sheffield elicitation
(SHELF) process is a step-by-step method to define CPDs. It
consists of preparing evidence, conducting expert elicitation
individually, conducting expert elicitation in a group, fitting the
distribution to the collected answers, and finally, conducting a joint
distribution elicitation (Rizzo and Blackburn, 2019). Other methods
are more focused on the graph structure itself. For example, the
authors in Xiao et al. (2018) elicit expert opinion by asking for a
scalar value that is negative if the arc is believed to be inexistent and
positive if it is believed to exist. The magnitude of the scalar value is
used to represent the strength of the expert’s belief. In addition,
expert accuracy is modeled using a standard deviation variable.

In this work, we assume that existing expert elicitation methods,
such as the ones previously discussed, can be leveraged to define
knowledge metrics for each arc quantifying the belief in both the
resulting graph structure and the resulting probability distribution.
While this implementation did not define specific thresholds for the
knowledge scoring, such an approach could be considered in
future work.

2.3.3 Utility
Utility is a metric that has been defined in previous work

(Gratius et al., 2024a). It represents the expected usefulness of
individual model parameters given previous information on
operational conditions on similar aerospace systems. Such
information can be derived from FMEA analysis such as the one

proposed by the author in Eshima and Nabity (2020) to describe the
risks associated with life support systems in space habitats.

2.3.4 KL divergence
As a BN represents joint distribution over its random variables,

KL divergence can be computed between multiple BNs by
considering their respective joint distribution. The joint
distribution of a BN can be formulated as a factorization over its
marginal and conditional distributions for each random variable Xk

(see Equation 2).

p x( ) � ∏K
k�1

p Xk | parent Xk( )( ) (2)

Explicitly specifying a closed-form solution for such joint
distributions can be difficult in BNs, and so, these distributions
are often estimated using sampling methods (Koller and
Friedman, 2009). In this work, we sampled the BNs to be
compared as described in Figure 6 to generate a data file for
each network. We used Maximum a Posteriori estimation
(MAP) to estimate probabilities for each node configuration.
This consists of counting the number of configuration
occurrences in each data file and normalizing by the number
of data samples. Note that MAP is similar to combining
Maximum Likelihood Estimation (MLE) with an informative
prior. Specifically, we associated a low probability to all
configurations before using the data to avoid assigning a
probability of zero to configurations that did not appear in
the data set because they were unlikely.

The computation of KL divergence is shown in Equation 3
where we use the following notation for clarity: P(Si � si) � P(si)
and P(θ1 � t1) � P(t1). Applying this formula to the example from
Figure 6 results in Equation 4.

KL p‖q( ) � ∑N
i�1

pi log2
pi

qi
( ) (3)

KL P̂Ga‖P̂Gb( ) � ∑N
s1 ,s2 ,t1 ∈ 0,1{ }

P̂Ga s1, s2, t1( )log2
P̂Ga s1, s2, t1( )
P̂Gb

s1, s2, t1( )( ) (4)

After pruning, one of the BNs may have fewer nodes than the
other, thereby leading to joint distributions over a distinct set of
random variables. In this case, KL divergence would normally be
either undefined or set to infinity as no configuration of random
variables can be matched. Existing methods therefore tend to be
limited to the computation of KL divergence across BN with the
same nodes but with different arcs (Moral et al., 2021). Intuitively,
this issue arises because the loss in nodes cannot be measured
statistically as this is primarily a domain problem, i.e., the value of
each node depends on the intended application downstream.
Therefore, we propose to separate concerns by measuring the
domain loss separately from the statistical loss. The domain loss
is computed over the entire graphs by using utility, knowledge, and
observability metrics. The statistical loss is measured only on the
shared random variables by marginalizing out the nodes belonging
to only one of the data files. Note that this marginalization
approach is similar to the mechanisms employed in well-
established belief propagation algorithms (Jensen and Nielsen,
2007). Additionally, sampling large BN and counting all node
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configurations may be computationally expensive for large
networks. Methods have therefore been developed to reduce
this cost by, for example, leveraging dynamic programming,
i.e., using cache memory to reuse previous results rather than
re-computing them.

2.3.5 Computability
We use the term computability to refer to the ease with which

an algorithm can be computed, highlighting the efficiency and
minimal computational resources required to achieve a solution.
Two types of computational costs can be dissociated when

considering computability issues in BN-based multi-model
calibration problems, namely, direct and indirect costs. These
costs can be associated with either the calibration itself or the
simulation tasks downstream (see Figure 7). When designing a
BN for multi-model calibration, the parameter nodes added to
the graph are tied to an underlying choice in the type of
simulation models that will be supported. In practice, if such
models are intended to provide analysis support in anomaly
response scenarios when operating an aerospace system, certain
simulation needs may be more urgent than others. For example,
using models to predict a small drift in cabin temperature over
several months (Gratius et al., 2023), may be less time-critical
than simulating the cabin depressurization rate following a
meteorite (Rhee et al., 2023). This results in a need for
balanced simulation capabilities where some models are
better for accurate analysis while other models are prioritized
for time-critical analyses. When pruning a BN for multi-model
calibration one should therefore account for both (1) the direct
cost of updating the BN to estimate parameters, and (2) the
indirect expected costs associated with the underlying
simulation models calibrated by the previously identified
parameters.

Indirect costs are more challenging to estimate than direct costs
as their magnitudes and frequencies are tied to uncertain system
operation queries. In particular, the cost of running a simulation
model can vary greatly depending on the type of model and
operational constraints. Such cost estimation could benefit from
expanding existing simulation model libraries with computability
information (FMI, 2023; Isasi et al., 2015). In this study, we choose to
primarily focus on the direct cost for simplicity, i.e., we assume that
parameters can be pruned without having a significant impact on the
desired diversity of simulation capabilities downstream. While
direct BN inference costs are also not easily identifiable, studies
have shown that a BN with larger cliques typically induces high costs
at inference time (Mengshoel, 2010). This is closely related to the
growth of the junction tree and the number of BN parameters,
i.e., the quantities defining marginal and conditional probability
distribution in the BN. In the following, we will, therefore, set
computability targets by specifying a reduction in the number of
independent BN parameters, i.e., parameters that cannot be deduced

FIGURE 7
Direct and indirect computational costs: Model M, Input X, Output Y (icons: Flaticon.com).

FIGURE 6
Sampling for KL divergence computation.
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from ensuring that probabilities sum to one. These BN parameters
are meant to capture the updating behavior of the graph and are to
be distinguished from the simulation model parameter represented
by the green nodes in the network.

2.4 Validation method

2.4.1 Data-based validation
In the machine learning community, data-driven BNs are

typically validated by splitting a dataset according to Figure 8.
Training data is used to learn the parameters of the BN and test
data is used after training to provide ground truths against which
model predictions are compared. The difference between ground
truths and predictions in the test data is used to evaluate an accuracy

metric such as the Euclidian distance. In certain cases, the data is
split three-fold to define a validation dataset which is typically used
for hyperparameter selection. Figure 8b illustrates the cross-
validation approach which is another popular method consisting
of alternating between different validation and training data splits to
avoid overfitting.

One of the limitations of the previously discussed validation
methods is their reliance on available datasets. Data tend to be
difficult to obtain in hybrid BN, i.e., BN derived from both data and
domain knowledge. This is the case for multi-model calibration as
collecting data would require retrieving many instances of model
calibration given the states of an aerospace system. Historical
records of this type exist, for example, from the operation of the
Space shuttle (Watts-Perotti and Woods, 2007), but they remain
sparse and difficult to collect.

2.4.2 Hybrid validation
In this work, we deployed three hybrid validation approaches

because of their demonstrated applicability to BN which do not rely
solely on data as described in Pitchforth and Mengersen (2013). The
two first approaches are relatively brief and discussed hereafter, and
the third one will be covered in the next section.

First, nomological validity consists of ensuring that the
designed BN belongs to a literature-established domain. We
identified a significant corpus of literature confirming this
validity criterion. This include BN representing system states
(Hwang et al., 2023; Gratius et al., 2023; O’Neill et al., 2019;
Mindock and Klaus, 2012), representing model parameters (Li
et al., 2017; Ye et al., 2020; Sankararaman and Mahadevan,
2015), and embedding multiple simulation models (Kaghazchi
et al., 2021; Tao et al., 2021). Second, convergent validity verifies
that the proposed BN is similar to nomologically proximal BNs.
One relevant example is the work presented in kapteyn et al.
(2021) for digital twin-based operations of aerospace systems.
The inference steps employed are closely related to the ones
employed in our work as they consist of (1) collecting data, (2)
inferring the system state, and (3) conducting simulations to
analyze the quantity of interest. The third, and most extensive,
validation approach for hybrid BNs is predictive validity. This

FIGURE 9
Validation pipeline.

FIGURE 8
Validation principles: (a) General validation. (b) Cross-validation.
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approach is very similar to the ones traditionally used for data-
driven BNs as it quantitatively compares the output and
behavior of a proposed BN with an alternative BN. We
therefore aim at introducing and comparing two BNs: (1) a
BN pruned with well-established statistical methods, and (2) a
BN pruned using a combination of statistical and domain-driven
approaches. Note that our objective is to validate the pruning
procedure rather than the BN itself. However, comparing the
behaviors of BNs resulting from alternative pruning procedures
is useful to provide insights for the evaluation of our method
against existing approaches.

2.4.3 Predictive validity
The method we deploy for predictive validity starts by defining

the initial graph to be pruned which we refer to as G0. Because all
models are approximations, we also define a true BN, which is
normally unknown at the time of pruning, but will be useful later on.
This true graph is referred to as Gtrue. The objective is therefore to
prune a BN G0, which is an approximation of a true BN Gtrue. After
setting a computational target, G0 is pruned using both the baseline
and the proposed methods to generate the BNs Gb and Gp

respectively as shown in Figure 9.
The objective of the validation consists of ensuring that if

the O, K, U metrics are informative, i.e., at least better than
random guesses, the BN resulting from the proposed method
should demonstrate better predictive performance in its
estimate of model parameters. The following steps will
be conducted.

1. Define the ground truth BN Gtrue

2. Define G0 as a copy of Gtrue, and assign metric scores
as follows:
• Knowledge K: Introduce mistakes in G0, i.e., BN properties
that are different from Gtrue, and compensate for them by
defining lowK scores on the impacted arrows. For example,
if a conditional distribution becomes noisy as shown in

Figure 10, the K score associated with that arrow should be
low in most cases.

• Observability O: Assign observation scores to system nodes
to serve as probabilistic filters. For example, if the node
“valve” has a score of 0.6, then in 40% of the trials where this
node is instantiated, the state will be incorrect, e.g.,
“nominal” instead of “degraded”.

• Utility U: Assign utility scores to parameter nodes to reflect
how often we expect each node to be the object of a query.
For example, if a parameter node has a parent representing a
system with a high probability of failure, its utility is likely
to be high.

3. The baseline and proposed pruning methods are then
implemented to obtain Gb and Gp

4. These BNs are used to predict parameters on sample sets
comprising both system evidence and parameter queries,
e.g., “What is the most likely value of θi given that the
subsystem Sj is degraded?“. These queries are defined by (1)
sampling that state nodes in Gtrue, (2) applying the
probabilistic filtering specified by O, (3) defining the
parameter of interest as the parameter node(s) most closely
connected to the degraded system node(s).

5. Finally, for each query, the predicted parameters for both
pruned BNs are classified as correct or incorrect by
comparing these with the prediction of Gtrue.

Note that the metrics previously defined are only required to
be partially correct, i.e., better than average in their ability to
inform on the quality of graph components in G0. The BN used
for G0 is derived from the work presented in Gratius et al. (2024a)
which is shown in Figure 11. This BN represents a space habitat
called Gateway which can be crewed and is composed of modules,
namely, the Power and Propulsion Element (PPE), the
International Habitat (I-HAB), and the Habitation and
Logistics Outpost (HALO). The graph further expands on the
Environmental Control and Life Support System (ECLSS) which
comprises a Carbon Dioxide Removal System (CDRS), an Air
Circulation and Ventilation (ACV) unit, an Oxygen Generation
Assembly (OGA), a Fire Detection and Suppression (FDS)
system, a Water Processing Assembly (WPA), and a
Temperature and Humidity Control System (THCS). Green
nodes on the right-hand side are parameters associated with
different models as described in Gratius et al. (2024a). Figure 11
highlights the graph components where informative metrics
(O, K, U) have been assigned. The structure for G0 and Gtrue

were kept the same but some of the underlying probabilities were
modified as described previously. The graph structure was
maintained for simplicity but this will not bias the evaluation
towards one of the pruning methods as both methods start from
the same graph G0.

3 Results

The results presented in this section were generated using
BayesFusion software, namely, the GeNIe modeler (BayesFusion,
2023a) and its SMILE engine (BayesFusion, 2023b) that we accessed
through its Python Application Programming Interface (API) called

FIGURE 10
Example of noisy distribution.
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PySMILE. The software code designed for this case study is publicly
available on GitHub (Gratius et al., 2024b).

3.1 Verification

This first step consists of verifying that the pruning
algorithms for the baseline and the proposed methods are
executing their tasks as expected, especially concerning the
performance objective function. Figure 12 shows the pruning
of the same graph G0 for three computational targets, namely,

reductions of 5%, 10%, and 20%. These percentages correspond
to reductions in the number of independent BN parameters, e.g.,
{Target � 10% ∧|θold| � 50} 0 |θnew| � 45. Each point bn
and pn in the figures represents a newly pruned graph and the
pruning stops once the computational target has been achieved.
In each case, the performance score achieved by the latest graph
in the proposed method has a better performance score than the
baseline. This is expected because the baseline considers only KL
divergence while the proposed method optimizes over the
performance metric itself which compounds KL divergence
with the O, K, U metrics and the expected computability

FIGURE 11
BN to prune: informative metrics (O,K,U) were assigned to nodes and arrows with glowing contours (icons: Flaticon.com).
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E[C+], which we simply defined as the number of independent
parameters.

3.2 Validation

Similarly, for validation, we prunedG0 with both the baseline and the
proposed method for three distinct computational targets. As discussed,
queries were then generated by (1) sampling the systemnodes fromGtrue,
(2) applying the observability filtering, and (3) defining the parameter(s)
to be retrieved. Note that for this last step, we assume that the correct
parameter of interest can be specified correctly in the query even if an
incorrect observation has been made. This is to simplify result
interpretation as the BN is primarily used here for parameter
estimation rather than diagnosis. The results are shown in Figure 13

which shows that the proposed method consistently outperforms the
baseline even as the target reduction becomes more stringent.

4 Discussion

We now discuss some of the lessons learned we discovered in
this study by reviewing implementation details and limitations that
could be considered for future work.

4.1 Observations

We made three implementation adjustments to ensure
computational tractability and fairness in comparing the

FIGURE 12
Performance VS Parameters. (a): Pruning with 5% reduction (b) Pruning with 10% reduction (c) Pruning with 20% reduction.
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methods. First, existing KL divergence-based methods for
pruning BNs are primarily focused on removing arcs
(Kjaerulff, 1994). This however bounds the reduction target
as the number of non-cut arcs is limited. For a fair comparison,
we extended this method to also prune nodes once all non-cut
arcs have been removed. Nodes were selected using the same KL
divergence criteria as for arcs. Second, as the network
considered in our work is relatively large, we chose, for the
proposed method, to only measure the KL divergence between
the parameter nodes as these are the nodes that we ultimately are
interested in. We expect this approximation to be reasonable
and more informative given the intended application. However,
in the baseline method, we kept measuring KL divergence for all
the nodes to mirror existing practices as these do not prioritize
which node to select based on their expected future use. Thirdly,
during pruning, the algorithm may choose to remove a
parameter node. This may lead to a conflict when defining
the queries as these may refer to parameter nodes that are
not in the reduced graphs anymore. Instances where such
queries occurred were systematically classified as incorrect.

4.2 Limitations

Defining weights for quantities in the objective function can be
challenging as there is no obvious calibration procedure for such
hyperparameters. We found that (1) the scale of the KL divergence
should be similar to the scale used by the O,K,U metrics, thereby
avoiding imbalanced representations, and (2) no weight adjustments
were required for the O,K,U metrics to perform appropriately.
Further studies should investigate whether adjusting the weight α, β
beyond ensuring a similar scale for all metrics could improve the
reduction process.

An additional issue is that computing KL divergence between
BNs using samples is very computationally demanding. The
graph in this study was reduced within five to 15 minutes
depending on the reduction target (using an 11th Gen Intel

Core i7-1185G7 @ 3.00 GHz with 32 GB RAM on Windows
11). A larger graph may not be tractable. We found that an
efficient way to save costs was to generate a unique and relatively
large sample set from Gtrue at the beginning of the algorithm, and
smaller sample sets for candidate BNs. This is because generating
many samples for all the candidates tends to significantly increase
computational demand. The tradeoff in this approach consists of
choosing between a large number of samples, resulting in a more
accurate estimation of the KL divergence, and a smaller sample
set, which reduces the computational cost of the
reduction algorithm.

Moreover, the number of entities being pruned at a time may
have an influence on the resulting BN, e.g., pruning several
nodes at a time may lead to better results than pruning a single
node at a time. Future work could attempt deploying iterative
strategies where pruning is done according to different batch
sizes to avoid local maxima when optimizing according to the
objective function. Pruning multiple nodes and arcs at a time
will increase the computational cost of the reduction because
the number of candidate graph subsets to be removed will be
larger. However, this may also help in avoiding local maxima in
the objective function, which may be induced when pruning
single entities. The tradeoff between the computational cost of
the reduction and the gain in inference capabilities for the
resulting BN could be studied in future work.

Finally, further studies may be conducted on expanding the
scope of the objective function. The main goal is to improve the
computational tractability of performing inference on the
resulting graph after pruning. The optimization approach
presented in this paper consists of pruning graph entities such
that the loss in the objective function is minimal, i.e., the loss in
parameter selection accuracy is minimized. Ultimately, the final
purpose of the reduced BN is to infer the parameters of other
downstream models, which will be used for simulations. A more
general objective function could be defined to measure the loss of
accuracy for the downstream simulation outputs. Specifically,
even if a selected parameter is the most appropriate one out of
multiple candidates, the associated model is still an
approximation of reality and will, therefore, lead to
inaccuracies. Future work could consider incorporating post-
simulation analysis to reinforce uncertainty-aware
decision-making.

5 Conclusion

To conclude, we introduced a method to prune BNs for
computationally tractable multi-model calibration. While
existing BN pruning methods rely primarily on statistics, these
can benefit from incorporating domain knowledge when
selecting graph components to be pruned. This work is
deployed on a space habitat example and the parameter
prediction accuracy of the proposed method outperforms
existing practices relying solely on statistics. Future work
could benefit from defining how weights should be assigned to
the decision metrics and how different batch sizes should be
considered when pruning a BN.

FIGURE 13
Accuracy of the proposed and the baseline method for different
computational reduction targets.
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Nomenclature
ACV Air Circulation and Ventilation

API Application Programming Interface

BNs Bayesian Networks

CDRS Carbon Dioxide Removal System

CPD Conditional Probability Distribution

ECLSS Environmental Control and Life Support System

FDS Fire Detection and Suppression

FMEA Failure Modes and Effect Analyses

HALO Habitation and Logistics Outpost

I-HAB International Habitat

ISS International Space Station

KL Kullback Leibler

MAP Maximum a Posteriori estimation

MCC Mission Control Center

MCMC Markov Chain Monte Carlo

MLE Maximum Likelihood Estimation

OGA Oxygen Generation Assembly

PGMs Probabilistic Graphical Models

PPE Power and Propulsion Element

RPNs Risk Priority Numbers

SHELF Sheffield elicitation

THCS Temperature and Humidity Control System

WPA Water Processing Assembly
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