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of neuronal structures and functions are well documented by the 
neuroscience community, what is less appreciated is the diverse 
response of brain neurons to stresses and adverse factors during 
aging or as a result of neurodegenerative diseases.

A pronounced yet underappreciated phenomenon in the 
response of different neuronal populations to stressful neuro-
degenerative conditions is the appearance of selective neuronal 
vulnerability (SNV). SNV refers to the differential sensitivity of 
neuronal populations in the CNS to stresses that cause cell injury 
or death and lead to neurodegeneration. For example, neurons 
in the entorhinal cortex, hippocampus CA1 region, frontal cor-
tex, and amygdala are the populations of neurons most sensitive 
to the neurodegeneration associated with Alzheimer’s disease 
(AD) (Hyman et al., 1984; Braak and Braak, 1991; Terry et al., 
1991). In Parkinson’s disease (PD), dopaminergic neurons of the 
substantia nigra are the primary neurons undergoing cell death 
(Hirsch et al., 1988; Damier et al., 1999; Dauer and Przedborski, 
2003). And, amyotrophic lateral sclerosis (ALS) is characterized 
by the degeneration of, primarily, spinal motor neurons, but also 
cortical and brain stem neurons (Rowland and Shneider, 2001). 
The fact that specifi c brain regions exhibit differential vulner-
abilities to various neurodegenerative diseases is a refl ection of 
both the specifi city in the etiology of each disease and of the 
heterogeneity in neuronal responses to cell-damaging processes 

INTRODUCTION
The approximately 100 billion neurons in the human brain orches-
trate an incredibly wide range of motor and internal regulatory 
functions, such as body movement, balance, visual and auditory 
perception, pleasure, pain and thermal sensations, hormonal and 
metabolic regulation, as well as highly complex behaviors, such 
as language, memory, learning, and executive functions. Such 
diverse functional output is the product of molecular events occur-
ring in neurons. Small variations in the thousands of chemical 
reactions occurring in neurons lead to different morphological 
and functional characteristics among the billions of neurons. 
Morphologically, central nervous system (CNS) neurons differ in 
size, the number and complexity of dendrites, number of synaptic 
connections, length of axons and distance across which synaptic 
connections are established, extent of axonal myelination, and 
other morphological characteristics. Neurons can also be clas-
sifi ed chemically on the basis of the neurotransmitters they use 
for chemical  transmission or neuromodulation, e.g., glutamate, 
GABA, acetylcholine, dopamine, adenosine, or peptide transmit-
ters and neuromodulators. This great diversity among neuronal 
populations is a strong indication that although all neurons con-
tain the same genetic code in their genome, each neuronal popula-
tion has their own unique gene expression profi le as to what parts 
of the genome are active and at what levels. While the diversity 
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associated with each of the diseases. The appearance of SNV is 
not limited to cross-regional differences in the brain, as within a 
single brain region, such as the hippocampus or the entorhinal 
cortex, SNV is manifested as internal, sub-regional differences 
in relative sensitivities to stress and disease. For example, the 
hippocampal CA1 neurons are much more vulnerable than CA3 
neurons to a variety of adverse conditions including global cer-
ebral ischemia (Schmidt-Kastner and Freund, 1991; Olsson et al., 
2003), early stages of AD (O’Banion et al., 1994), chronic epilep-
tic seizures (Mathern et al., 1997), aging (Mueller et al., 2007), 
and oxidative stress (OS) (Wilde et al., 1997; Wang et al., 2005). 
Similarly, transentorhinal neurons undergo neurodegeneration 
before entorhinal proper and CA1 hippocampus neurons (Braak 
and Braak, 1991).

In the CNS, excessive production of reactive oxygen and nitrogen 
species (ROS/RNS) has been invoked as a mechanism for neuro-
degeneration associated with various insults to neurons, such as 
hypoxia and hypoglycemia (Halliwell et al., 1992; Friberg et al., 
2002), as well as with the neurodegeneration seen in AD (Zhu et al., 
2004b), PD (Fahn and Cohen, 1992; Jenner, 2003; van Muiswinkel 
et al., 2004) and ALS (Carri et al., 2003). OS is caused by an imbal-
ance between overproduction of ROS and/or RNS and the enzy-
matic or non-enzymatic detoxifi cation of these highly reactive 
species. The highly reactive ROS and RNS, when over-produced 
or under-detoxifi ed due to factors such as aging and disease, are 
detrimental to cells since they chemically modify lipids, proteins, 
and nucleic acids. Such oxidative modifi cation of macromolecules 
may be an initiating event in the causation of neuronal injury. As 
mentioned above, brain neurons respond to such stresses differ-
ently. While most brain neurons can tolerate OS well, neurons in 
certain parts of the brain, such as those in the hippocampal CA1 
region and cerebellar granule cell layer, are particularly vulnerable 
to OS (Wilde et al., 1997; Wang et al., 2005, 2007, 2009). The vul-
nerability of the cerebellar granule neurons to OS might play an 
important role in their signifi cant loss in aged individuals (Renovell 
et al., 1996; Andersen et al., 2003). As OS appears to be a common 
underlying factor in the various adverse conditions characterized 
by SNV (Sayre et al., 2001; Valko et al., 2007), the study of SNV 
to OS might improve our understanding of how this particular 
form of cell stress causes selective neuronal losses in brain, as well 
as reveal potential molecular and cellular mechanisms that bring 
about relative resistance or sensitivity of neurons to stresses.

THE DUALITY OF ROS AND RNS AS BOTH STRESS AND 
SIGNALING MOLECULES
Oxygen is essential for the survival of aerobic organisms. Because of 
its high redox potential, it serves as the terminal electron acceptor 
in the process of metabolic energy generation through a series of 
redox reactions. Unfortunately, its high redox potential can also be 
damaging to cells, if it is not completely reduced. Partial reduction 
of molecular oxygen is an unintended occurrence during aerobic 
metabolism and may lead to the generation of highly reactive spe-
cies, including singlet oxygen, superoxide anion, hydrogen perox-
ide, hydroxyl radical, and peroxyl radical. These ROS can disrupt 
the redox balance inside cells if not properly neutralized. RNS, 
including nitric oxide, nitrogen dioxide, dinitrogen trioxide and 
peroxynitrite, are similarly disruptive to the redox state of cells if 

not detoxifi ed. Nitric oxide is a product of the reaction catalyzed 
by nitric oxide synthase. Other RNS species, such as peroxynitrite, 
are derived from the reaction of nitric oxide with superoxide. Nitric 
oxide is relatively unreactive, with the exception of reaction with 
sulfhydryl-containing peptides and proteins (nitrosylation reac-
tions) (Stamler et al., 1992); on the other hand, peroxynitrite is 
a more highly reactive species that can nitrate proteins on select 
tyrosine residues and thus alter the structure and function of such 
proteins (Viner et al., 1996). In cells, over-production and/or 
under-detoxifi cation of ROS/RNS, or even normal demands for 
these reactive species due to their benefi cial effects (see below), 
may cause oxidative/nitrosative stress.

Many of the modifi cations of lipids, nucleic acids, and proteins 
result in structural changes in the respective macromolecules and 
lead to either dysfunction or loss of activity of these molecules. To 
protect themselves from the detrimental effects of these oxidative 
modifi cations, neurons employ a variety of defensive mechanisms 
that include lipid turnover, protein re-folding or degradation, 
and DNA base excision and repair. When these mechanisms are 
compromised, neuronal homeostasis is disturbed and OS ensues. 
Among all organs in the body, the brain is particularly prone to 
OS-induced damage because of the high oxygen demand of this 
organ, the abundance of redox-active metals (iron and copper), the 
high levels of oxidizable polyunsaturated fatty acids, and the fact 
that neurons are post-mitotic cells with relatively restricted replen-
ishment by progenitor cells during the lifespan of an organism.

Induction of OS in neurodegenerative diseases may result from 
changes in neuronal metabolism brought about by the accumula-
tion of certain macromolecules. For example, the accumulation 
of the oligomeric form of amyloid-β peptide (Aβ), the most toxic 
form of Aβ, induces OS in neurons. The redox potential of differ-
ent types of Aβ species (human Aβ42 > human Aβ40 >> rodent 
Aβ) matches the order of their toxicity to neurons (Huang et al., 
1999a), which suggests that OS plays a causative role in the devel-
opment of AD. In addition, redox-active transition metal ions that 
are known to increase ROS formation through the Fenton reaction, 
such as iron and copper, bind with high affi nity to Aβ (Huang 
et al., 1999a,b; Atwood et al., 2000). The link between AD and OS 
is further supported by the increased levels of lipid peroxidation, 
protein and DNA oxidation in neurons affected byAD (Smith et al., 
1997; Gabbita et al., 1998; Montine et al., 1998; Butterfi eld and 
Lauderback, 2002; Markesbery and Lovell, 2006; Pratico, 2008). In 
addition, neurons affected by AD are characterized by decreased 
ATP production and diminished cytochrome c oxidase content, 
both of which are indices of mitochondrial dysfunction and, as 
dysfunctional mitochondria are a major source of ROS genera-
tion, increased OS (Zhu et al., 2004a; Onyango and Khan, 2006; 
Reddy, 2007).

In PD, neurons in the substantia nigra pars compacta region are 
selectively lost. The role of OS in this disease is supported by the 
observation of dramatically diminished levels of glutathione as one 
of the earliest detectable changes during the development of this 
disease in this region (Pearce et al., 1997). The iron levels in this brain 
region are high, as is the activity of monoamine oxidase, and both of 
these entities contribute to the generation of ROS in these neurons. 
The accumulated free radicals in the substantia nigra pars compacta 
neurons can lead to aberrant oxidation of dopamine and the forma-
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tion of 6-hydrodopamine (6-OHDA), which then undergoes auto-
oxidation to the quinone form with the generation of superoxide 
(Heikkila and Cohen, 1973). This cascade of events, amplifi ed by 
the redox cycling of the quinone, leads to signifi cant increases in 
OS and ultimately the demise of the dopaminergic  neurons in this 
region. Several agents that lead to the formation of ROS, includ-
ing MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and 
paraquat, can reproduce a selective neuronal death pattern similar 
to that observed in PD (Moratalla et al., 1992; Brooks et al., 1999; 
McCormack et al., 2002).

The involvement of OS in brain aging and neurodegenerative 
conditions, such as ischemia, seizures, calcium dysfunction and 
glutamate-mediated excitotoxicity, are described in existing reviews 
(Coyle and Puttfarcken, 1993; Sayre et al., 2001; Floyd and Hensley, 
2002; Valko et al., 2007) and not repeated here.

Over millions of years of evolution, cells have developed a 
multitude of anti-oxidant mechanisms to cope with the potential 
damaging effects of ROS and RNS. These mechanisms include 
anti-oxidant enzymes (such as superoxide dismutase, catalase, 
glutathione peroxidase, and the thioredoxins), as well as non-
 protein antioxidants (such as glutathione [GSH], α-tocopherol 
[vitamin E], ascorbic acid [vitamin C], bilirubin, and coenzyme 
Q10). Glutathione is a major non-protein antioxidant in cells and 
the ratio of its reduced and oxidized form (GSH/GSSG) is an indica-
tor of cellular redox status (Schafer and Buettner, 2001; Jones, 2002). 
The combination of anti-oxidant proteins and smaller molecules 
offers a versatile and fl exible system to control intracellular levels 
of ROS/RNS. The high effi ciency of this system in cells, including 
neurons, is maintained through the diverse subcellular localization 
of the antioxidants, their biochemical properties, and the differ-
ential inducibility of anti-oxidant enzymes at both transcriptional 
and translational levels.

Although cellular antioxidants are highly effi cient in main-
taining redox homeostasis, such anti-oxidant defenses do not 
completely eradicate ROS/RNS from the intracellular environ-
ment. Nor would such eradication be desirable as cells also use 
ROS/RNS as signaling molecules to monitor changes in the inter-
nal and external environment. Scientifi c thinking with regard 
to OS has evolved over the years from one of viewing all ROS 
and RNS as “evil-doers”, to one of considering them as “double-
edged swords”, because these damaging reactive species are also 
benefi cial to cells at physiological levels (Valko et al., 2007). The 
coining of the term “oxidative stress” is a refl ection of the histori-
cal view of seeing ROS and RNS as purely harmful molecules. 
More recent scientifi c data support the idea that these species 
are essential components of a repertoire of signals that neurons 
depend on to respond to environmental and developmental cues 
(Gutierrez et al., 2006). In the CNS, ROS and RNS are used as 
secondary messengers in many neurological processes. Neurons 
can sense, transmit and convert ROS/RNS signals into appropri-
ate intracellular responses, including synaptic plasticity (Kamsler 
and Segal, 2004, 2007; Serrano and Klann, 2004; Kishida and 
Klann, 2007). Such redox sensing and signal transduction proc-
esses require a network of redox-sensitive metabolic and signaling 
pathways. These pathways contain redox-sensitive proteins that 
can undergo reversible oxidation/reduction and thus modulate 
their functions based on the cellular redox status (Kohr et al., 

1994; Suzuki et al., 1997; Forman et al., 2002; Lipton et al., 2002; 
Hidalgo, 2005; Janssen-Heininger et al., 2008). The modulation 
of redox-sensitive proteins can be conferred by ROS/RNS either 
directly or indirectly through other redox-sensitive molecules 
such as glutathione or thioredoxins. It is currently known that 
many of these proteins contain redox-sensitive cysteine residues 
that may be oxidized to either sulfenic acid or disulfi de bonds, 
thus producing changes in structural and functional states of the 
respective  proteins (Denu and Tanner, 1998; Droge, 2003; Piotukh 
et al., 2007). The reversible oxidation/reduction changes in these 
redox-sensing proteins lead to downstream metabolic and signal-
ing events, for example, modulation of cellular metabolism and 
synaptic plasticity through activation/deactivation of a variety of 
signaling effectors, such as kinases, phosphatases and transcrip-
tion factors (e.g., Nrf2 and NF-κB) (Arrigo, 1999).

The duality of ROS/RNS as both signaling and stress molecules 
is exemplifi ed by the effects of these reactive species on synaptic 
plasticity. At high concentrations, ROS and RNS, such as hydro-
gen peroxide and hydroxyl radical, attenuate long-term potentia-
tion (LTP) and synaptic neurotransmission (Colton et al., 1989; 
Pellmar et al., 1991; Gahtan et al., 1998; Avshalumov et al., 2000). 
This might be partially due to the inhibition of glutamatergic 
N-methyl-D-aspartate (NMDA) receptors by ROS/RNS through 
excessive oxidation of the extracellular redox-sensitive sites of these 
receptors (Steullet et al., 2006). On the other hand, at lower (“physi-
ological”) levels, ROS such as superoxide and hydrogen peroxide 
enhance LTP and synaptic neurotransmission (Thiels et al., 2000; 
Thiels and Klann, 2002; Kamsler and Segal, 2003, 2004). Signaling 
in neurons based on formation and release of ROS and RNS is 
 produced through reversible modifi cation of redox-sensitive sites 
on target proteins, such as ryanodine receptors (RyRs) (Hidalgo, 
2005; Huddleston et al., 2008). These redox modulations lead to a 
cascade of downstream events, such as phosphorylation and activa-
tion of ERK (extracellular signal-regulated kinase), PKC (protein 
kinase C), and CREB (cAMP-responsive element-binding  protein), 
all of which are indispensable for LTP and synaptic plasticity 
(English and Sweatt, 1997; Klann et al., 1998; Knapp and Klann, 
2002; Silva, 2003; Hidalgo, 2005; Kemmerling et al., 2007).

NEURONS SHOW DIFFERENTIAL VULNERABILITY TO OS
Excessive amounts of ROS and RNS cause OS in all neurons, yet, 
the vulnerability of neurons to OS varies from one brain region 
to another. Selective vulnerability of neurons to OS is one type of 
SNV in the brain. Since OS is a pervasive stress involved in many 
neurodegenerative conditions, studies on SNV to OS not only pro-
vide mechanistic insights into this particular form of SNV but may 
also shed light on the phenomenon of SNV, in general.

The hippocampus is an ideal brain area for the study of SNV 
caused by OS. The majority of neurons in this important brain area 
are densely packed into a single layer, which is divided into several 
regions, i.e., CA1 through CA4. The hippocampal regions CA1 and 
CA3 are adjacent to each other and are composed of morphologi-
cally similar neurons, pyramidal neurons. Despite their physical 
proximity and cell morphological similarity, CA1 and CA3 neurons 
respond to OS very differently. When exposed to OS-generating 
agents, the pyramidal neurons in the CA1 region suffer massive 
cell death while those in CA3 mostly survive (Wilde et al., 1997; 
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Vornov et al., 1998; Sarnowska, 2002; Wang et al., 2005). This is 
the case regardless of the agents used to generate OS. Superoxide-
producing agents, such as duroquinone or paraquat, lead to the 
selective destruction of CA1 neurons (Wilde et al., 1997; Vornov 
et al., 1998; Wang et al., 2005). Ferrous sulphate (FeSO

4
), a hydroxyl 

radical generator, also produces the same effect (Wang et al., 2005), 
as does another ROS molecule, hydrogen peroxide (Sarnowska, 
2002). This pattern of selective sensitivity of CA1 neurons to OS 
matches that of selective vulnerability of CA1 neurons to other 
adverse or disease-related conditions, such as hypoxia, ischemia, 
and neurodegeneration in AD.

Outside the hippocampus, OS-inducing agents, such as 
paraquat or xanthine/xanthine oxidase, cause extensive death 
of neurons in the cerebellar granule cell layer, but not in the 
cerebral cortex (layers IV-VI) (Satoh et al., 1998; Wang et al., 
2009). Cerebellar granule neurons are so sensitive to OS that 
even the oxygen tension in the ambient air (∼20%) under in 
vitro culture conditions causes increased cell death among these 
neurons as compared with effects of the oxygen tension simi-
lar to that in the body (5%) (Wang et al., 2009). In compari-
son, most cerebral cortical neurons in primary cultures survive 
either induction of OS by paraquat, or exposure to 20%  oxygen 
tension. This differential response to OS of cerebellar granule 
and cerebral cortical neurons is consistent with other observa-
tions under conditions involving OS, including methyl mercury 
(Kaur et al., 2007), ischemia and re-oxygenation (Scorziello et al., 
2001). The vulnerability of cerebellar granule neurons to OS is 
also in agreement with their signifi cant loss in aged individuals 
(Renovell et al., 1996; Andersen et al., 2003). Selective vulner-
ability of cerebellar granule neurons to OS might underlie the 
poor motor coordination and impaired motor learning associ-
ated with the aging process.

The two major populations of dopaminergic neurons in mid-
brain, i.e. those in the substantia nigra pars compacta (A9) and the 
nearby ventral tegmental area (A10), also show differential vulner-
ability to OS. Although they are electrophysiologically similar, A9 
neurons are susceptible to OS while A10 neurons are mostly resist-
ant. The A9 neurons are also the ones that are selectively lost in PD. 
In both populations of dopaminergic neurons, the auto-oxidation 
of dopamine itself and its metabolites can lead to the production of 
ROS, which is worsened by abundant content of iron and copper 
in this region (Olney et al., 1990; Jenner et al., 1992). In addition, 
treating the two neuronal populations with MPTP, 6-OHDA, or 
paraquat, all of which induce OS, can easily differentiate these two 
groups of neurons based on their survival pattern (Burns et al., 
1983; Waters et al., 1987; German et al., 1988; Hung and Lee, 1998; 
Rodriguez et al., 2001; McCormack et al., 2005, 2006). Most A9 
neurons die following such treatments, while A10 neurons mostly 
survive the same type of treatment.

Studies of SNV to OS have been focused for the most part 
on neurons in the CNS, yet neurons in the peripheral nervous 
system also display differential vulnerability to OS. For example, 
sympathetic neurons in the celiac and superior mesenteric gan-
glia (CG/SMG) are more sensitive to menadione-induced OS than 
those in the superior cervical ganglion (SCG) (Semra et al., 2006). 
The induction of OS by menadione is through its one-electron 
 reduction to a semiquinone radical, which then generates large 

amounts of superoxide via redox cycling with molecular oxygen 
(Thor et al., 1982). Whereas the concentration of 1 nM menadi-
one caused a signifi cant loss of viability in CG/SMG neurons, the 
same concentration applied to SCG neurons had no signifi cant 
effect. This differential vulnerability is consistent with the selective 
degeneration of CG/SMG neurons during aging or glucose-induced 
OS in diabetes-associated autonomic neuropathy (Schmidt et al., 
1993, 1997).

MECHANISMS OF SELECTIVE VULNERABILITY OF 
NEURONS TO OS
SNV is a refl ection of the heterogeneity of neurons in the nervous 
system. From the list of OS-vulnerable neurons described in the 
preceding sections, it is clear that different populations of neurons, 
in different brain regions, have different morphologies and bio-
chemical characteristics. Due to this diversity, it is very likely that 
each neuronal population has a unique molecular composition 
that determines its level of vulnerability to OS. Thus, mechanisms 
underlying the vulnerability of the hippocampal CA1 neurons may 
be somewhat different from those of the dopaminergic neurons 
in the substantia nigra pars compacta. Close examination of the 
existing literature in the fi eld, although still limited, may identify 
some common factors that are shared by many currently known 
OS-vulnerable neurons. The purpose of this review is to fi rst present 
an overview on these common factors from existing studies on 
OS-induced neuronal vulnerability, and second to raise the aware-
ness in the neuroscience fi eld on this particular form of SNV and 
on the general phenomenon of SNV.

HIGH INTRINSIC OS IN VULNERABLE NEURONS
It might sound overly simplistic to explain the sensitivity of vulner-
able neurons as being the result of pre-existing high OS in these 
neurons. The reasoning behind this hypothesis is that when further 
OS increase is encountered, due to either endogenous or exogenous 
factors, the vulnerable neurons will be overwhelmed and conse-
quently suffer cell death. High baseline OS condition is indeed 
an intrinsic characteristic of a number of vulnerable neuronal 
populations. In the case of hippocampal CA1 and CA3 neurons, a 
measurement of superoxide formation using the dihydroethidine 
method showed that the vulnerable CA1 neurons contain signifi -
cantly higher levels of superoxide anion than the resistant CA3 
neurons (Wang et al., 2005). Another line of evidence for a higher 
level of endogenous OS in CA1 neurons comes from measurement 
of ROS production from purifi ed mitochondria using H

2
DCFDA 

(2’,7’-dichlorodihydrofl uorescein-diacetate). Mitochondria isolated 
from the CA1 release more ROS than those from the CA3 region 
(Mattiasson et al., 2003a).

Transcriptomic studies also show that neurons from brain 
regions vulnerable to OS express higher levels of genes related 
to OS response than those in resistant regions, which is a fur-
ther indication of an endogenous higher OS status in  neurons 
within vulnerable regions. A mapping of basal condition 
CA1/CA3 microarray data to an OS response pathway that consists 
of induced antioxidant and repressed ROS-producing genes (Morel 
and Barouki, 1999), showed that CA1 neurons express both anti-
oxidant and ROS-producing genes at signifi cantly higher levels than 
those in CA3 (Wang et al., 2005). One of these genes, Nqo1, encodes 
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the enzyme NAD(P)H:quinone oxidoreductase 1, an important 
anti-oxidant in the maintenance of cellular redox homeostasis. Due 
to its importance in maintaining the redox status in cells, Nqo1 is 
often employed as an indicator of cellular redox status (Raina et al., 
1999; Wang et al., 2000; SantaCruz et al., 2004; van Muiswinkel 
et al., 2004). The signifi cantly higher expression of this gene in CA1 
than in CA3 is an additional indication of endogenously higher 
levels of OS status in the CA1 region. Nqo1 is one of the target 
genes of the key anti-oxidant transcription factor Nrf2, which is 
also signifi cantly more active in CA1 neurons (Wang et al., 2005). 
Nrf2 activates the transcription of a multitude of downstream anti-
oxidant genes via binding to the cis-acting anti-oxidant response 
element (ARE) of these genes (Nguyen et al., 2004). The concerted 
higher expression of Nqo1, Nrf2 and other anti-oxidant genes in 
CA1, in comparison to CA3, is further evidence for the presence 
of high OS in neurons of this vulnerable region under basal condi-
tions. After treatment with ROS-generating agents, such as duro-
quinone, stress-response genes in CA1 are consistently expressed 
at higher levels than their counterparts in CA3, indicating that the 
stress level stays higher in vulnerable neurons before reaching the 
point of neuronal death (Wang et al., 2007).

The same differential OS profi le is characteristic of the contrast-
ing case of vulnerable cerebellar granule neurons vs. the resistant 
cerebral cortical neurons, with the vulnerable cerebellar granule 
neurons expressing higher levels of genes related to OS than the 
resistant cortical neurons (Wang et al., 2009). In addition, the 
A9/A10 dopaminergic neurons in midbrain showed a similar tran-
scriptomic pattern to CA1 or cerebellar granule neurons that is 
characterized by higher expression of anti-oxidant genes in the vul-
nerable A9 than in the resistant A10 neurons (Chung et al., 2005). 
Included among the genes of higher expression in A9 neurons were 
Glrx3 (or Txnl2, glutaredoxin 3), Gpx4 (glutathione peroxidase 4), 
Oxr1 (oxidation resistance 1), Prdx2 (peroxiredoxin 2), and Sod2 
(superoxide dismutase 2). Because this pattern of gene expression 
is suggestive of a high intrinsic OS status in vulnerable neurons, 
despite their location in different regions of the brain, it appears 
that a commonality among these various types of neurons is an 
endogenously high level of ROS/RNS formation. Logical questions 
to ask then are: why do vulnerable neurons contain more ROS/RNS 
and why do they have higher intrinsic OS than resistant neurons? 
The answer may lie in the differential requirements of vulnerable 
and resistant neurons for ROS and RNS as signaling molecules as 
detailed next.

DIFFERENTIAL SIGNALING REQUIREMENTS FOR ROS AND RNS
As mentioned earlier, while ROS and RNS are neurotoxic at high 
concentrations, they are also indispensable as signaling molecules 
at physiological levels for crucial neuronal functions, including 
enhancing synaptic plasticity, LTP and memory formation. In 
connection with the phenomenon of SNV, the enhancement of 
synaptic plasticity and LTP by ROS/RNS seems to be neuron-
type-specifi c. For example, CA1 neurons, but not CA3 neurons, 
require superoxide for LTP, and the use of scavengers of superoxide 
leads to impaired LTP in CA1 but not in CA3 (Klann, 1998; Thiels 
et al., 2000; Knapp and Klann, 2002; Huddleston et al., 2008). The 
ROS-induced form of LTP requires the activation of RyR3, a sub-
type of the RyRs (Huddleston et al., 2008). The modulation of 

RyR3 activity by ROS leads to the activation of downstream factors, 
including ERK and CREB. Intriguingly, this specifi c subtype of 
ryanodine receptor is particularly enriched in CA1 neurons but not 
in CA3 (Mori et al., 2000). The differential signaling requirements 
for ROS/RNS in different neuronal populations might explain why 
vulnerable neurons maintain higher levels of these reactive species 
and exhibit the signs of higher levels of intrinsic OS.

Besides LTP and synaptic plasticity, ROS/RNS also serve as sign-
aling molecules for other bio-functions such as apoptosis. To con-
nect to SNV, some neurons are found to be more responsive to these 
signaling molecules than others. For example, in a recent study on 
ROS as signaling intermediates for apoptosis in the substantia nigra 
pars compacta, the vulnerable dopaminergic neurons were found 
to be much more sensitive than the resistant non- dopaminergic 
neurons in this area to the ROS-mediated apoptosis through a 
pathway involving receptor-mediated Ca2+ infl ux (Agrawal et al., 
2010). The authors postulated several possible underlying factors 
for the differential effects of ROS on the dopaminergic and non-
dopaminergic neurons, including differences in receptor density 
and distribution.

LOW ATP LEVELS AND MITOCHONDRIAL DYSFUNCTION
Neurons require high levels of energy in order to operate. 
Therefore, either exceedingly high demand for ATP or dimin-
ished production of ATP can affect normal neuronal function 
and the response of neurons to heightened stress encountered 
during aging and in the development of neurodegenerative dis-
eases. The neurons that are vulnerable to OS may have a high 
demand for ATP to counteract the high intrinsic OS status of 
these neurons; such neuronal efforts as synthesizing anti-oxi-
dant proteins, repairing and degrading oxidatively modifi ed 
macromolecules (proteins, lipids, and nucleic acids) may require 
additional energy. In addition, the production of ATP in these 
neurons may be reduced due to mitochondrial dysfunction (to 
be detailed next). Currently available data, although still lim-
ited, support the negative effects of low ATP levels on vulnerable 
neurons. Measurement of ATP levels in OS- vulnerable cerebellar 
granule neurons and in OS-resistant cerebral cortical neurons 
showed that the level of ATP in the cerebellar granule neurons 
was 25% lower than that in cortical neurons under basal condi-
tions. Following exposure to exogenous OS, in order to maintain 
intracellular redox balance, ATP levels in both neuronal popula-
tions dropped, but this drop was more precipitous in cerebellar 
granule neurons (Wang et al., 2009). It is expected that the higher 
energy demand and low ATP levels in vulnerable neurons can 
lead to energy crises in case of increased stress, which can seri-
ously affect their ability to mount effective defenses against the 
stress increase.

Transcriptomic data on the vulnerable (CA1 and cerebellar 
granule neurons) and resistant (CA3 and cerebral cortical) neu-
ronal populations also support the concept of lower ATP and 
energy reserves in vulnerable as compared with resistant neurons. 
Transcriptomic analyses show that genes related to “DNA damage 
and repair”, “RNA damage and repair”, “Response to unfolded pro-
tein”, and “Lipid metabolism” were signifi cantly more active in the 
vulnerable neurons (Wang et al., 2007, 2009). While the expression 
of enzymes involved in these repair processes was up-regulated, 



Frontiers in Aging Neuroscience www.frontiersin.org March 2010 | Volume 2 | Article 12 | 6

Wang and Michaelis Neuronal vulnerability to oxidative stress

the expression of nuclear genes involved in energy generation was 
lower in vulnerable as compared with resistant neurons (Brooks 
et al., 2007; Liang et al., 2008; Wang et al., 2009). The reason for 
such under-expression of genes related to energy generation is not 
known but might be due to oxidative modifi cations in the promoter 
region of these genes, or due to mitochondrial loss. In support of 
the idea that there might be loss of mitochondria in vulnerable 
neurons is the observation that neurons of the substantia nigra 
pars compacta contain less mitochondrial mass than those of the 
ventral tegmental area (Liang et al., 2007).

Mitochondria are not only the powerhouses for ATP genera-
tion in cells, they are also the major site of free radical generation 
and initiation of OS. The electron transport chain localized in 
the inner membrane of mitochondria is a major source of super-
oxide in cells due to side reactions of electron carriers along the 
chain (especially Complexes I and III) with molecular oxygen. The 
outer mitochondrial membrane, on the other hand, produces a 
sizable amount of hydrogen peroxide from the membrane enzyme 
monoamine oxidase during the catalysis of oxidative deamination 
of monoamines (such as the catecholamines). This represents one 
of the major sources for hydrogen peroxide generation in both 
the mitochondrial matrix and cytosol. As indicated previously, the 
superoxide and hydrogen peroxide generated by the mitochondria 
can react further to produce other ROS, such as hydroxyl radical and 
peroxynitrite, thus accounting for the close relationship between 
mitochondrial activity and cellular OS (Cadenas and Davies, 2000; 
Balaban et al., 2005).

Mitochondria, however, may also be damaged by the free radi-
cals they produce. The mitochondrial DNA molecules, being close 
to the site of free radical generation, accumulate mutations more 
quickly than nuclear DNA does. Such damage to mitochondrial 
DNA tends to be more extensive than nuclear DNA also because 
of the limited DNA repair capacity in mitochondria. In addition 
to mitochondrial DNA, metabolic enzymes in these organelles are 
frequently modifi ed by the highly reactive ROS or RNS formed. 
Therefore, the high intrinsic OS status in vulnerable neurons may 
have direct detrimental effects on mitochondrial function, includ-
ing reduced ATP production. Dysfunctional mitochondria in vul-
nerable neurons can release more ROS and thus maintain a vicious 
cycle of oxidative modifi cation of mitochondrial proteins leading to 
further OS. Currently available evidence shows that mitochondria 
isolated from CA1 neurons release more ROS than those from CA3 
neurons (Mattiasson et al., 2003a). The link among ATP decline, 
dysfunctional mitochondria, and SNV is further supported by the 
use of some mitochondrial toxicants (such as MPTP and roten-
one) to induce ATP depletion and produce very similar patterns 
of selective vulnerability of dopaminergic neurons as that seen in 
PD (Hasegawa et al., 1990; Betarbet et al., 2000).

The mitochondrial permeability transition (MPT) pore leads to 
mitochondrial swelling and ultimately cell death. Differential acti-
vation of the MPT pore in vulnerable vs. resistant neurons provides 
another link between mitochondria and SNV. In the hippocampus, 
the MPT pore can be more readily activated upon calcium induc-
tion in CA1 than in CA3 (Mattiasson et al., 2003a). In a study 
of selective dopaminergic vulnerability in PD, the MPT pore was 
activated by a potent dopamine metabolite much more readily 
from energetically compromised mitochondria than fully energized 

mitochondria, and this MPT pore activation was suggested to be a 
mechanism for the selective vulnerability of neurons to dopamine 
in PD (Kristal et al., 2001). Finally, the differential activation of 
the MPT pore in several brain regions was found to be correlated 
with the differential susceptibility of neurons to ischemia-induced 
injury (Friberg et al., 1999).

Uncoupling protein 2 (UCP2) provides a further potential 
connection between mitochondria and SNV. This mitochon-
drial inner membrane protein can protect neurons from OS by 
reducing ROS production through the uncoupling of oxidative 
phosphorylation and ATP synthesis (Horvath et al., 2003). As 
such, after ischemia and traumatic brain injury, both involving 
OS, high expression of Ucp2 is neuroprotective through acti-
vation of neuronal redox signaling or prevention of apoptosis 
(Mattiasson et al., 2003b). Consistent with the higher ROS pro-
duction and selective vulnerability of hippocampal CA1, neurons 
in this region exhibit lower expression of Ucp2 compared with 
those in CA3 (Richard et al., 2001).

GLIA AND CHRONIC INFLAMMATORY RESPONSE
There is emerging evidence that suggests neuron-glial crosstalk 
may play a role in SNV. Although often overlooked, glial cells, 
such as astrocytes and microglia, play important roles in main-
taining overall CNS homeostasis, providing trophic support to 
neurons, clearing synapses of the released neurotransmitters, re-
establishing ionic gradients near the synapse, mediating immune 
responses in the brain, and reducing OS (Dringen et al., 2000; 
Park et al., 2001). When CNS regional homeostasis is disturbed 
because of redox shifts or other neurodegenerative conditions, 
astrocytes and microglia release various cytokines in an effort to 
re- establish regional integrity and repair damaged cells. While 
these glial responses are benefi cial to neurons, the continuous or 
repeated activation of astrocytes and microglia under conditions of 
chronic infl ammatory stresses can lead to the increased production 
of ROS/RNS and other neurotoxic mediators, which can lead to 
severe neuronal damage (Banati et al., 1993; Banati and Graeber, 
1994; Aloisi, 2001; Streit, 2002). Because properly functioning glia 
are essential for neuronal health, glial dysfunction can increase the 
vulnerability of neurons to neurotoxic conditions such as OS. In 
the substantia nigra pars compacta of individuals suffering from 
PD, glial dysfunction has been shown to underlie the selective 
degeneration of dopaminergic neurons (McNaught and Jenner, 
1999; Marchetti et al., 2005). In the hippocampus, astrocytes in 
the CA1 region under ischemia, display selective loss of glutamate 
transport activity, increased mitochondrial ROS generation, and 
reduced mitochondrial membrane potential. This selective dys-
function of CA1 astrocytes has been suggested as being important 
in determining the selective loss of CA1 neurons under ischemia 
and other OS-related adverse conditions (Ouyang et al., 2007). 
In a different study focused on the relationship between neuron-
glial interactions and SNV during ischemia, it was shown that 
microglia are specifi cally activated in areas containing suscepti-
ble neurons (Bernaudin et al., 1998). In trying to reproduce in 
neuronal cultures the pattern of SNV observed in vivo, it became 
apparent that the interactions between glial cells and neurons are 
essential to the appearance of SNV among neuronal populations 
(Bernaudin et al., 1998).
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Existing functional genomics studies provide further insights 
into the role of glia in SNV, especially with regard to the infl am-
matory responses that follow exposure of cells in a brain region 
to OS. Compared with OS-resistant neurons, vulnerable neurons 
in the hippocampal CA1 region, cerebellar granule cell layer, and 
 substantia nigra pars compacta, have a higher transcriptional activ-
ity of genes related to cytokine and chemokine formation and 
infl ammatory response (Grunblatt et al., 2004; Duke et al., 2007; 
Wang et al., 2007, 2009; Simunovic et al., 2009). These increases in 
gene expression are indicative of the existence of chronic infl am-
matory stress in vulnerable neurons. While infl ammatory responses 
may protect neurons by removing injured cells or neuronal proc-
esses from the vulnerable regions, there is evidence showing that 
chronic infl ammation can be a causative factor for SNV (Herrera 
et al., 2005; Whitton, 2007). For example, microglia, the princi-
pal mediator of infl ammation in the CNS, release a large amount 
of ROS/RNS upon activation (Colton and Gilbert, 1987; Moss 
and Bates, 2001; Liu et al., 2002; Block et al., 2007), leading to OS 
increases and further neuronal damage.

OTHER FACTORS UNDERLYING THE SELECTIVE VULNERABILITY OF 
NEURONS TO OS
Defi cient DNA damage repair
One consequence of high OS in neurons is DNA oxidation. Repair 
of DNA in cells following oxidative modifi cation requires a size-
able amount of energy. Energy production in vulnerable neurons, 
however, is less than in resistant neurons, therefore, there is an 
unfavorable environment in vulnerable neurons for the repair of 
modifi ed DNA. It is well known that when repair of DNA damage 
is insuffi cient, then damaged DNA accumulates, especially, in the 
promoter regions of protein-coding genes, and this can lead to 
transcriptional disruption of active genes, followed by cellular 
dysfunction and, ultimately, apoptosis (Hanawalt, 1994; Lu et al., 
2004; Roos and Kaina, 2006). Existing evidence suggests that 
selective OS vulnerability of some neurons is partially underlied 
by defi cient DNA damage repair. As described earlier, MPTP 
elicits OS and selectively affects dopaminergic neurons in the 
substantia nigra pars compacta. In a study of time- and region-
dependent changes in the activity of OGG1 (8- oxoguanine DNA 
glycosylase 1), a key enzyme for base excision repair, it was shown 
that in a region that is vulnerable to OS, the repair of DNA 
damage was increased initially but did not last beyond 48 h. 
On the other hand, the activity of OGG1 in regions resistant 
to OS, was maintained up to 72 h (Sava et al., 2006). The brain 
region-specifi c capacity for DNA repair following induction of 
OS may be responsible for the selective vulnerability of specifi c 
neurons to OS (Cardozo-Pelaez et al., 2002). The relevance of 
these observations is attested by the fact that defi cient DNA repair 
systems have been linked to AD, ALS, and PD, all of which are 
connected to SNV (Robbins et al., 1985; Mazzarello et al., 1992; 
Lovell et al., 2000).

Calcium dysregulation and glutamate hyperactivity
Calcium signaling plays an important role in regulating and main-
taining normal neuronal function, including neurotransmitter 
release, excitability, neurite outgrowth, synaptic plasticity, gene 
transcription, and cell survival (Berridge, 1998; Yuste et al., 2000; 

Burnashev and Rozov, 2005). Intracellular Ca2+ concentrations 
([Ca2+]

i
)

 
represent a powerful activating stimulus for many signal 

transduction cascades and abnormal elevations of intracellular 
[Ca2+]

i
 may lead to cell dysfunction and death. The abnormal 

increases in [Ca2+]
i
 in cells may result from diminished transport 

of cytosolic Ca2+ to the extracellular environment (Michaelis 
et al., 1992, 1996; Zaidi et al., 1998), decreased sequestration into 
mitochondria and binding to intracellular Ca2+-binding proteins 
(Vitorica and Satrustegui, 1986; Iacopino and Christakos, 1990; 
Martinez-Serrano et al., 1992; de Jong et al., 1996; Satrustegui 
et al., 1996), or enhanced infl ux through voltage-gated Ca2+ 
channels (Landfi eld and Pitler, 1984; Moyer and Disterhoft, 1994; 
Thibault and Landfi eld, 1996; Porter et al., 1997). The elevations 
in [Ca2+]

i
 can lead to further release of Ca2+ from the endoplasmic 

reticulum, and the activation of the caspase-dependent apoptosis 
pathway through changes in mitochondrial membrane perme-
ability (Rizzuto et al., 2003). Also, elevations in [Ca2+]

i
 can activate 

mitochondrial dehydrogenases, inhibit complex I, and cause the 
formation of ROS and, therefore, increase OS (Beal, 1992; Starkov 
et al., 2004). Since progressive, age-associated deterioration of 
[Ca2+]

i
 control processes gradually lead to cellular deterioration 

and organ malfunction (Streicher, 1958; Gibson and Peterson, 
1987; Verkhratsky and Toescu, 1998), Ca2+ dysregulation has 
been regarded as an important contributor to the aging process 
(i.e., the calcium hypothesis of aging) (Foster, 2007; Toescu and 
Vreugdenhil, 2009).

During OS, ROS/RNS usually activate Ca2+ channels and repress 
Ca2+ pumps (Ermak and Davies, 2002), resulting in elevation of 
[Ca2+]

i
 and initiation of downstream events mentioned above. 

Because of the intricate relationship between OS and Ca2+ dys-
function, Ca2+ dysfunction is another mechanistic factor that may 
underlie the selective vulnerability of CNS neurons to OS (Surmeier, 
2007; Surmeier et al., 2010). Currently available literature shows that 
Ca2+-buffering proteins such as calbindin D-28K and parvalbumin, 
which buffer intracellular Ca2+ and attenuate the damaging effects 
of rapidly rising [Ca2+]

i
 in cells, provide a direct link between Ca2+ 

dysregulation and the phenomenon of SNV. In human PD brain, 
neurons containing calbindin D-28K are less vulnerable than those 
without this protein (Yamada et al., 1990; German et al., 1992). 
In several animal models of PD, while the majority of A10 neu-
rons (mostly resistant) contain Ca2+- binding proteins, many fewer 
neurons in A9 (the vulnerable region) contain such Ca2+-buffering 
proteins (Gerfen et al., 1985; Liang et al., 1996a,b). Consistent with 
this regional distribution, gene expression studies also show that 
calbindin D-28K mRNA levels are signifi cantly lower in A9 neurons 
compared with those in A10 (Chung et al., 2005). In addition, the 
lack of calbindin D-28K and parvalbumin is also related to the 
selective vulnerability of motor neurons in ALS (Shaw and Eggett, 
2000). The inverse correlation between the levels of Ca2+-buffering 
proteins in neurons and neuronal vulnerability to OS also holds 
true for neurons within the vulnerable and resistant hippocampal 
subregions (Mattson et al., 1991; Rami et al., 1992).

An important pathway for Ca2+ accumulation in neurons is 
through activation of glutamatergic synapses. The entry of Ca2+ 
through glutamate receptor-ion channels, e.g., NMDA recep-
tors, or through voltage-gated Ca2+ channels, is critical to the 
appearance of LTP or long-term depression (Bear and Abraham, 
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1996; Schiller et al., 1998; Malenka and Nicoll, 1999; Rammsayer, 
2001). With age there is an increase of glutamate levels in the 
extracellular space of the CNS, which can lead to excessive activa-
tion of glutamate receptors and excitotoxicity (Michaelis, 1998). 
And, many of the lost synapses during aging are glutamatergic, 
including those of large neurons that are most vulnerable to age-
associated degeneration (Terry et al., 1987; Masliah et al., 1993). 
Mechanistically, OS plays an important role in the selective loss 
of neurons or synapses from glutamate excitotoxicity (Michaelis, 
1998; Dong et al., 2009). To directly link glutamate excitotoxicity 
to SNV, the effects of exogenous glutamate treatment on in vitro 
neuronal cultures established from different hippocampal regions 
were conducted in a previous study, in which neurons from CA1 
were the most susceptible to excitotoxicity (Mattson and Kater, 
1989). This glutamate-induced selective vulnerability is very 
similar to the pattern of selective cell loss observed in organo-
typic slice cultures exposed to OS (Wilde et al., 1997; Wang et al., 
2005). In another study, real-time monitoring of glutamate release 
from ischemic hippocampal slices also showed more glutamate 
being released from CA1 than CA3 neurons, with CA1 neurons 
being more susceptible to ischemia (Uchino et al., 2001). The 
fact that MK-801, an NMDA receptor blocker, can prevent the 
ischemia-induced selective neuronal death in CA1 (Newell et al., 
1990) also points to an intimate relationship between glutamate 
and the selective sensitivity of certain neurons, such as the CA1 
pyramidal cells, to OS.

Other potential factors
Among other factors that may be linked to SNV associated with 
OS, or SNV in general, is the physical size of neurons. Besides the 
molecular and cellular mechanisms described above, the physical 
size of neurons may, to some degree, determine neuronal vul-
nerability to stress. In general, vulnerable neurons are large in 
size, with axons projecting over long distances to their targets. 
Neuronal populations characterized as being relatively large in size 
and thus particularly susceptible to degeneration associated with 
diseases such as ALS and PD include the upper and lower motor 
 neurons, and dopaminergic neurons in the substantia nigra (Shaw 
and Eggett, 2000; Cleveland and Rothstein, 2001; Rodriguez et al., 
2001). The possible reasons for the susceptibility of large neurons 
include the high demand for energy and mitochondrial activity, 
dependence on long-distance axonal transport, high content of 
neurofi laments which tend to form aggregates, and a relatively 
large surface area for increased exposure to toxicants in the extra-
cellular environment.

CONCLUDING REMARKS AND PERSPECTIVES
Brain aging, as well as associated neurodegenerative conditions 
such as AD and PD, involves a number of neuron-damaging factors, 
including calcium dysfunction, glutamate-induced excitotoxicity, 
mitochondrial dysfunction, protein aggregation, genomic instabil-
ity, and accumulation of OS. As components of the  neurobiological 
system, these factors are inter-connected and cannot be easily sepa-
rated from each other. For example, as outlined above, aberrant 
glutamate neurotransmission can lead to calcium dysregulation, 
altered metabolic states, abnormal generation of ROS/RNS and 
therefore OS. Therefore, as one characteristic of brain aging and 

associated neurodegenerative conditions, SNV is not caused by a 
single factor alone. However, to start understanding the under-
lying mechanisms of SNV it is essential to take a reductionist 
approach to pinpoint those factors that play a causal role in the 
phenomenon of SNV. This review focuses on OS, a stressful con-
dition that may serve as the converging point for many of the 
above factors, and provides an overview on what characteristics 
differentiate OS-vulnerable and -resistant neurons and how OS 
causes SNV in the brain. From this review, it is clear that this 
SNV originates from the intrinsic characteristics of vulnerable 
neurons (Figure 1).

The hypothesis advanced in this review is that the selective vul-
nerability of neurons to OS is the result of high intrinsic OS, high 
demand for ROS/RNS as signaling molecules, chronic infl amma-
tory response, low energy generation and mitochondrial dysfunc-
tion, as well as defi cient DNA damage repair, calcium dysregulation 
and glutamate hyperactivity, in vulnerable neurons (Figure 1). 
The duality of ROS/RNS seems to be one of the root causes of 
OS-induced SNV. On one hand, these highly reactive species are 
damaging to cellular molecules and can wreak havoc in neurons 
when overly produced; on the other hand, they serve as signal mol-
ecules and are benefi cial to neurons. The delicate balance main-
tained in vulnerable neurons can be more readily disrupted than 
in resistant neurons, when challenged by excessive levels of OS 
produced in some neurodegenerative diseases and during aging, 
and therefore more prone to synaptic destruction, dendrite and 
axonal pathology, and eventual neuronal death. Mechanistically, 
the production of such excessive levels of OS under these adverse 
 conditions is most likely mediated by increases in intracellular Ca2+, 
glutamate-induced changes in neuronal excitability, and altered 
mitochondrial function.

Because OS-vulnerable and OS-resistant neurons are located in 
different regions of the brain and have their own unique character-
istics, in order to identify key mechanistic factors that determine 
SNV, it is essential to study multiple populations of vulnerable neu-
rons and focus on their commonalities in comparison with multiple 
populations of resistant neurons. As part of this endeavor, more 
neuronal populations that are vulnerable to OS need to be identi-
fi ed and added to the list of vulnerable neurons. Technologically, to 
have an unbiased understanding of the molecular mechanisms of 
SNV, it is essential that further genomic, proteomic, and metabo-
lomic studies be performed on vulnerable neurons and compared 
to resistant neurons. To a large degree, the functional status of 
each neuronal population is refl ected by its genomic, proteomic 
and metabolomic activities. As demonstrated in this review, this 
high-throughput approach has already begun to provide some 
insights into the causation of SNV. Of course, fi ndings from these 
high-throughput technologies need to be experimentally validated 
and further characterized.

It is a step forward in neuroscience research from studying the com-
monalities of different brain regions or neuronal populations to realiz-
ing the individuality of each region and population. The experimental 
evidence summarized herein of SNV reminds us of the heterogeneity of 
brain neurons. Even inside a seemingly homogeneous brain structure, 
such as the hippocampus or the substantia nigra, there are many types 
of intrinsically different neurons. OS is only an adverse condition under 
which the differences among these neurons are manifested.
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High demand for ROS/RNS 
as signaling molecules

High intrinsic OS

Low ATP production
& mitochondrial dysfunction

Chronic inflammatory response

Deficient DNA repair

Calcium dysregulation & 
glutamate hyperactivity

Selective neuronal death

ROS/RNS are both harmful and 
beneficial (signaling) molecules

Neurons have different levels of needs 
for ROS/RNS as signaling molecules

FIGURE 1 | Molecular and cellular factors that contribute to the selective 

vulnerability of neurons to oxidative stress. ROS/RNS can serve as 
signaling molecules while they cause damages to bio-molecules at increased 
levels. Neurons in different parts of the brain have differential needs for 
ROS/RNS as signaling molecules, with some neurons (such as those in the 
hippocampal CA1 region) having higher demand than others. However, due to 
the duality of ROS/RNS, the high demand for these highly reactive species 
may lead to intrinsically high OS in some neurons, which can make them 
selectively vulnerable when facing increased stress. Vulnerable neurons are 
also characterized by low ATP production and mitochondrial dysfunction, 
possibly because of the high OS state in these neurons, and other factors 
such as calcium dysregulation. Low ATP production can affect DNA repair, 

which, when combined with high DNA oxidation, can cause change of 
genomic activity and decreased metabolic activity in mitochondria. Functional 
genomics studies also suggest existence of chronic infl ammatory response in 
vulnerable neurons, which can further elevate OS within them. Calcium 
dysregulation and glutamate hyperactivity are closely connected to OS 
generation and underlie many adverse conditions that are characterized by 
SNV. There is emerging evidence that directly connects these factors, such as 
low calcium-buffering capacity and glutamate-mediated selective 
neurodegeneration, to the selective vulnerability of neurons. The colored 
arrows that link these mechanistic factors in the fi gure denote direct 
relationships between them. In addition, vulnerable neurons tend to be large 
in size, with long projecting axons to their targets.
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