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levels of polyunsaturated fatty acids, high oxygen consumption, 
high content in transition metals, and poor antioxidant defenses 
(Nunomura et al., 2006).

Although exaggerated mitochondrial ROS production has 
been associated with mitochondrial dysfunction and neuronal 
cell degeneration and death, it has also been shown that a slight 
rise of mitochondrial ROS levels can trigger preconditioning-
 mediated brain tolerance, suggesting that mitochondria might 
be gateways on endogenous neuroprotection (Ravati et al., 2000, 
2001; Dirnagl and Meisel, 2008; Jou, 2008; Dirnagl et al., 2009). 
Further, mitochondrial ATP-sensitive potassium (mitoK

ATP
) 

channels activation has also been involved in the precondition-
ing phenomenon (Busija et al., 2008). It was demonstrated that 
antioxidants and mitoK

ATP
 blockers abolish preconditioning-

induced protection (Vanden Hoek et al., 1998; Oldenburg et al., 
2002). Jou (2008) proposed that this “minor” mitochondrial ROS 
generation induces fission and fusion of mitochondria and relo-
cates mitochondrial network to form a mitochondria free gap, 
which may play a crucial role in mitochondrial ROS-mediated 
protective “preconditioning” by preventing propagation of ROS 
during oxidative insult.

In light of these evidences, we may say that mitochondria take 
a center stage in both neurodegeneration and neuroprotection. 
Herein, we review the current knowledge pertaining to mitochon-
drial dysfunction involvement on the onset and progression of 

IntroductIon
Neurodegenerative diseases represent one of the major health 
problems. In fact, the prevalence of neurodegenerative diseases 
is rising dramatically due to the increase in life expectancy and 
demographic changes in the population. The etiology of most neu-
rodegenerative disorders is complex and multifactorial, involving 
genetic  predisposition, environmental and endogenous factors 
(Przedborski et al., 2003; Correia and Moreira, 2010; Migliore and 
Coppedè, 2009). Nevertheless, mitochondria have emerged as a 
pivotal “convergence point” for neurodegeneration (Lin and Beal, 
2006; Moreira et al., 2010).

Mitochondria play a critical role in the regulation of both cell 
survival and death (Green and Kroemer, 2004; Beal, 2005). These 
organelles are essential for the production of ATP through oxida-
tive phosphorylation and regulation of intracellular calcium (Ca2+) 
homeostasis. Thus, dysfunction of mitochondrial energy metabo-
lism culminates in ATP production and Ca2+ buffering impair-
ment and exacerbated generation of reactive oxygen species (ROS; 
Beal, 2005). High levels of ROS cause, among other things, dam-
age of cell membranes through lipid peroxidation and accelerate 
the high mutation rate of mitochondrial DNA (mtDNA; Petrozzi 
et al., 2007). Accumulation of mtDNA mutations enhances oxida-
tive damage, causes energy depletion and increases ROS produc-
tion, in a vicious cycle (Petrozzi et al., 2007). Moreover, the brain is 
especially prone to oxidative stress-induced damage due to its high 
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chronic neurodegenerative disorders, namely Alzheimer’s disease 
(AD) and Parkinson’s disease (PD), and cerebral ischemic stroke. 
We also intend to explore the crucial role of mitochondria in pre-
conditioning-induced neuroprotection, putting focus on the role 
of mitochondrial ROS and mitoK

ATP
 channels.

MItochondrIal dysfunctIon as a crItIcal event 
IMplIcated In neurodegeneratIon
It is well established that mitochondria have a prominent role 
in neuronal physiology. Neurons are cells with extremely high 
energy demands, since mitochondrial oxidative phosphorylation 
is essential for neurons to meet their high ATP requirements. 
Therefore, neurons are very vulnerable to bioenergetic crisis 
and dysfunction of mitochondrial machinery (Murphy et al., 
1999; Moreira et al., 2009; Simpkins et al., 2009). Data from 
postmortem brain tissue and genetic analysis in humans and bio-
chemical and pathological studies in in vitro and in vivo models 
of neurodegeneration suggest that mitochondrial dysfunction 
is a common and critical event involved in neurodegenerative 
processes. The following subsections are devoted to highlight 
the involvement of mitochondrial malfunction in AD, PD, and 
cerebral ischemic stroke.

alzheIMer’s dIsease and MItochondrIal dysfunctIon
Alzheimer’s disease is the most common neurodegenerative dis-
ease, being characterized by the progressive neuronal impairment 
and loss and cognitive decline. The pathological hallmarks of AD 
are the formation of extracellular senile plaques, mainly composed 
of amyloid-β (Aβ) peptide, and intracellular neurofibrillary tan-
gles (NFT) containing hyperphosphorylated tau protein (Selkoe, 
2001; Moreira et al., 2006, 2007). Aβ peptides are generated by 
successive proteolysis of amyloid-β precursor protein (AβPP), 
a large transmembrane glycoprotein that is initially cleaved by 
the β-site AβPP-cleaving enzyme 1 (BACE1) and subsequently 
by γ-secretase in the transmembrane domain (Greenfield et al., 
2000; Findeis, 2007).

Mitochondrial dysfunction and bioenergetics failure have been 
demonstrated to be early events implicated in the pathogenesis 
of AD (Figure 1). In fact, it was observed an impairment in the 
activities of the three key tricarboxylic acid cycle (TCA) enzyme 
complexes, pyruvate dehydrogenase, isocitrate dehydrogenase, 
and α-ketoglutarate dehydrogenase in postmortem AD brain and 
fibroblasts from AD patients (Huang et al., 2003; Bubber et al., 
2005). In addition, a decline in respiratory chain complexes I, III, 
and IV activities is seen in platelets and lymphocytes from AD 

Figure 1 | Mitochondrial dysfunction in Alzheimer’s disease (AD) and 
Parkinson’s disease (PD). Mitochondrial dysfunction has been implicated in 
the etiology of AD and PD. In AD, it has been shown that amyloid β peptide 
(Aβ) impairs the activity of respiratory chain complex IV, leading to increased 
reactive oxygen species (ROS) levels and ATP depletion. Moreover, 
mitochondrial DNA (mtDNA) mutations have also been implicated in 
mitochondrial dysfunction that occurs in AD. PD is associated with an 
impairment of mitochondrial complex I activity. It has been demonstrated that 
the pharmacological inhibition of this complex with rotenone or 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes degeneration of the nigral 

dopaminergic neurons and PD symptoms in in vivo models. The familial forms 
of PD are associated with mutations in leucine-rich repeat kinase 2 (LRRK2), 
α-synuclein, parkin, DJ1, and PTEN-induced putative kinase 1 (PINK1), these 
proteins being associated with the mitochondrial outer membrane (OM) and 
involved in ROS production or defense. High temperature requirement A2 
(HtrA2) is another protein that is mutated in familial PD and is localized in the 
intermembrane space (IMS) of mitochondria. ADP, adenosine diphosphate; 
Cyt c, cytochrome c; IM, inner membrane; NAD+, oxidized nicotinamide 
adenine dinucleotide; NADH, reduced nicotinamide adenine dinucleotide; H+, 
proton.
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patients and postmortem AD brain tissue (Kish et al., 1992; Parker 
et al., 1994; Bosetti et al., 2002; Valla et al., 2006). Several lines 
of evidence also reported increased free radical production, lipid 
peroxidation, oxidative DNA damage, oxidative protein damage, 
and decreased ATP production and cell viability in AD brains com-
pared to age-matched control subjects (Smith et al., 1996; Gibson 
et al., 1998; Maurer et al., 2000; Wang et al., 2005; Devi et al., 2006; 
Sultana et al., 2006).

Mitochondrial DNA mutations have also been implicated in 
mitochondrial dysfunction in the pathogenesis of AD. It was detected 
20 point mutations in the mitochondrial-encoded cytochrome c 
oxidase subunits I, II, and III genes in AD patients (Hamblet et al., 
2006). Similarly, Qiu et al. (2001) identified two missense muta-
tions in the mtDNA of cytochrome c oxidase in a patient with AD. 
Further, a high aggregate burden of somatic mtDNA mutations was 
observed in postmortem brain tissue from AD patients (Lin et al., 
2002; Coskun et al., 2004).

Accumulating evidence also indicate that Aβ and AβPP could 
directly target mitochondria. Mitochondrial dysfunction was 
linked to the accumulation of full-length and carboxy- terminally 
truncated AβPP across mitochondrial import channels in brain 
tissue from AD patients (Devi et al., 2006). The authors also 
observed that this accumulation of AβPP inhibited the entrance 
of nuclear-encoded cytochrome c oxidase subunits IV and Vb 
proteins, which was associated with a decrease in cytochrome 
c oxidase activity and increased hydrogen peroxide (H

2
O

2
) 

production (Devi et al., 2006). Anandatheerthavarada et al. 
(2003) reported an accumulation of full-length AβPP in the 
mitochondrial compartment in a transmembrane-arrested 
form that impaired mitochondrial functionality and energy 
metabolism. Also detected was a progressive accumulation of 
Aβ monomers and oligomers within the mitochondria of both 
transgenic mice overexpressing mutant AβPP and postmortem 
brain from AD patients (Caspersen et al., 2005; Crouch et al., 
2005; Devi et al., 2006; Manczak et al., 2006). Indeed, Aβ can 
disrupt mitochondrial cytochrome c oxidase activity (Crouch 
et al., 2005; Takuma et al., 2005) in a sequence- and confor-
mation-dependent manner (Crouch et al., 2005). A direct link 
between Aβ-induced toxicity and mitochondrial dysfunction in 
AD pathology has been suggested by the interaction between 
mitochondrial Aβ and the mitochondrial protein, Aβ-binding 
alcohol dehydrogenase (ABAD; Lustbader et al., 2004; Yan and 
Stern, 2005). It was observed that this interaction culminates 
in mitochondrial failure via changes in mitochondrial mem-
brane permeability and a reduction in the activities of enzymes 
involved in mitochondrial respiration (Lustbader et al., 2004). 
Hansson Petersen et al. (2008) have also shown that Aβ peptide 
is imported into mitochondria via the translocase of the outer 
membrane (TOM) import machinery and localized to mito-
chondrial cristae. Thus, it has been suggested that the transport 
of Aβ species to mitochondria cause mitochondrial dysfunction 
and oxidative damage and, consequently, damage neurons both 
structurally and functionally (Caspersen et al., 2005; Crouch 
et al., 2005; Devi et al., 2006; Manczak et al., 2006; Hansson 
Petersen et al., 2008). Previous in vitro studies from our labo-
ratory also show an increased susceptibility to mitochondrial 
permeability transition pore (MPTP) induction promoted by 

Aβ peptides (Moreira et al., 2001, 2002). Accordingly, Du et al. 
(2008) provide a plausible mechanism underlying Aβ-induced 
mitochondrial dysfunction, in which Aβ interacts with cyclophi-
lin D, a critical molecule involved in MPTP formation and cell 
death. The authors showed that the interaction of cyclophilin 
D with mitochondrial Aβ potentiates mitochondrial, neuronal 
and synaptic stress (Du et al., 2008). In contrast, cyclophilin D 
ablation protects neurons from Aβ-induced MPTP opening and 
the resultant mitochondrial and cellular stress (Du et al., 2008). 
Additionally, cyclophilin D deficiency substantially improves 
learning and memory and synaptic function in an AD mouse 
model and alleviates Aβ-mediated reduction of long-term poten-
tiation (LTP; Du et al., 2008). Another study reported that the 
presequence protease (PreP) is responsible for the degradation 
of the accumulated Aβ in mitochondria, supporting the associa-
tion of Aβ with mitochondria and mitochondrial dysfunction 
in AD (Falkevall et al., 2006).

Recent studies also demonstrated that Aβ induce mitochon-
drial dynamic changes, including mitochondrial fission/fusion 
perturbations (Wang et al., 2008a). Wang et al. (2008a) reported 
abnormal mitochondrial fission and fusion in AD fibroblasts. It 
was found that fibroblasts from sporadic AD patients express 
lower levels of dynamin-related protein 1 (Drp1), a key regula-
tor of mitochondrial fission and display elongated mitochon-
dria, which form collapsed perinuclear networks (Wang et al., 
2008a, 2009a). It was also observed that AβPP overexpression 
in M17 neuroblastoma cells resulted in predominantly frag-
mented mitochondria, decreased Drp1 and optic atrophy protein 
1 (OPA1) levels, and a defect in neuronal differentiation (Wang 
et al., 2008b). Moreover, reduced levels of Drp1, OPA1, mito-
fusin (Mfn)1 and 2 and increased mitochondria fission protein 1 
(Fis1) levels were found in hippocampal tissues from AD patients 
compared with age-matched controls (Wang et al., 2009b). These 
studies suggest that Aβ potentiates mitochondrial fission/fusion 
imbalance and, consequently, mitochondrial fragmentation and 
abnormal distribution contributing to mitochondrial and neu-
ronal dysfunction in AD.

parkInson’s dIsease and MItochondrIal dysfunctIon
Parkinson’s disease is the second most prevalent neurodegenerative 
disease, affecting approximately 2% of individuals over 65 years 
of age. PD is characterized by a progressive and massive loss of 
midbrain dopaminergic neurons of the substantia nigra pars 
compacta (de Rijk et al., 1997; de Lau et al., 2004; Cardoso et al., 
2005). Consequently, substantia nigra pars compacta dopaminer-
gic neuronal loss leads to the degeneration of neurons terminals 
and dopamine (DA) depletion in the striatum, which is required 
for normal motor function. One of the pathological hallmarks of 
PD and related synucleinopathies is the presence of intracellular 
inclusions called Lewy bodies (LBs), which are constituted by 
aggregates of the presynaptic soluble protein called α-synuclein 
(Cardoso et al., 2005).

Over the last decades, evidence indicates that mitochondrial 
dysfunction plays a critical role in the etiology of PD (Figure 1) 
(Schapira, 2008; Banerjee et al., 2009). Indeed, an impairment of 
mitochondrial complex I activity has been observed in the sub-
stantia nigra (Schapira et al., 1989; Mann et al., 1994), platelets 
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proteins in the mitochondria, defective mitochondrial respiration 
and enhanced ROS production, which contribute to the induction 
of CHOP expression and neuronal cell death (Moisoi et al., 2009). 
Previous studies also showed that the overexpression of α-synuclein 
in cell culture and in transgenic mice impairs mitochondrial func-
tion and increases the susceptibility to MPTP induction (Hsu et al., 
2000; Song et al., 2004). In contrast, α-synuclein-null mice are 
resistant to respiratory chain inhibitors implicating an involvement 
of mitochondria in α-synuclein-mediated toxicity (Dauer et al., 
2002; Klivenyi et al., 2006).

cerebral IscheMIc stroke and MItochondrIal dysfunctIon
Stroke is one of the major causes of death and severe long-term 
disability in adults. According to the World Health Organization, 
15 million people suffer stroke worldwide each year (http://www.
strokecenter.org/patients/stats.htm). Due to a dramatic increase 
in life expectancy and demographic changes in the population, 
the burden will increase greatly during the next 20 years (Donnan 
et al., 2008). Of all strokes, 87% are ischemic, 10% are intracer-
ebral hemorrhage, and 3% are subarachnoid hemorrhage strokes 
(Bolaños et al., 2009). In cerebral ischemic stroke, the reduction 
in blood supply to brain tissue results in a decrease in the avail-
ability of glucose and oxygen, which are necessary for normal 
brain function (Lipton, 1999; Lo et al., 2003; Rami et al., 2008). 
The mechanisms underlying neuronal cell death after cerebral 
ischemia are very complex. However, mitochondrial dysfunction 
is known to occur after cerebral ischemia and play an important 
role in mediating ischemic neuronal cell death via either necrosis 
or apoptosis (Figure 2) (Green and Reed, 1998; Nicotera and 
Lipton, 1999; Fiskum, 2000; Chan, 2004). Apoptotic cell damage, 
concomitant with necrotic cell loss, was found in postmortem 
brain tissue from a cohort of human ischemic stroke patients 
(Sairanen et al., 2006). A recent postmortem analysis of brain 
tissue from stroke patients also revealed an involvement of mito-
chondrial signaling in cerebral ischemia pathobiology (Mitsios 
et al., 2007). One of the key events intimately involved with 
mitochondrial dysfunction is the abnormal increase in intracel-
lular Ca2+ levels (Puka-Sundvall et al., 2000; Schild et al., 2003). 
Transient ischemia is accompanied by a gradual rise in intracel-
lular Ca2+ levels, by Ca2+ sequestration in mitochondria and by 
mitochondrial bioenergetic failure (Dux et al., 1987; Sims and 
Pulsinelli, 1987; Silver and Erecinska, 1992; Zaidan and Sims, 
1994). Indeed, evidence from the literature demonstrated that 
during brain ischemia the activities of the complexes I, II, and III 
of the mitochondrial respiratory chain are decreased (Sims, 1991; 
Allen et al., 1995). Despite the fact that ischemia does not affect 
complex IV activity, it has been shown that its activity is remark-
ably inhibited by a long period of reperfusion, which suggests an 
irreversible damage of this mitochondrial complex probably due 
to the production of free radicals (Nelson and Silverstein, 1994; 
Allen et al., 1995; Almeida et al., 1995). Consequently, the main-
tenance of ATP levels and other high-energy metabolites after 
ischemia is affected, leading to an energy crisis (Siesjö et al., 1995; 
Kuroda et al., 1996). Excessive mitochondrial Ca2+ accumulation 
following the raise in intracellular Ca2+ is also responsible for 
ischemia-induced exacerbated ROS production (Murphy et al., 
1999). It has been shown that the extensive Ca2+ accumulation 

(Parker et al., 1989; Krige et al., 1992; Haas et al., 1995; Blandini 
et al., 1998), lymphocytes (Yoshino et al., 1992; Barroso et al., 
1993), and skeletal muscle tissue (Taylor et al., 1994; Penn 
et al., 1995) from PD patients. Consistently, cybrids containing 
mtDNA from PD patients present a significant impairment in 
complex I activity associated with increased oxidative stress levels 
(Swerdlow et al., 1996), suggesting mtDNA encoded defects in 
PD. Additionally, it was observed that LBs within these cybrids 
also react positively with cytochrome c antibodies, which imply 
a mitochondrial origin (Trimmer et al., 2004). Mitochondrial 
involvement in the etiology of PD is also provided by the use 
of specific complex I inhibitors, such as 1-methyl-4-phenyl-
 1,2,3,6-tetrahydropyridine, rotenone and 6-hydroxydopamine 
(6-OHDA) which cause degeneration of the nigral dopamin-
ergic neurons and PD symptoms in in vivo models (Betarbet 
et al., 2000; Gash et al., 2007; Sherer et al., 2007). Furthermore, 
a proteomic analysis of mitochondria-enriched fractions from 
postmortem PD substantia nigra revealed differential expression 
of multiple mitochondrial proteins in PD brain as compared to 
control, including complex I subunits and mitochondrial crea-
tine kinase (Jin et al., 2006). It was also reported that mortalin, 
a mitochondrial stress protein, is substantially decreased in PD 
brains and cellular models of PD (Jin et al., 2006). Manipulations 
of mortalin levels in dopaminergic neurons resulted in significant 
changes in sensitivity to PD phenotypes via pathways involving 
mitochondrial and proteasomal function as well as oxidative stress 
(Jin et al., 2006). Decreased immunostaining for mitochondrial 
α-ketoglutarate was also observed in postmortem brain from PD 
patients (Mizuno et al., 1994).

Genetic evidence reveals that mutations in genes encoding both 
mitochondrially targeted proteins and proteins involved in mito-
chondrial function and/or oxidative stress responses also play a 
role in the pathogenesis of PD (Thomas and Beal, 2007). Ekstrand 
et al. (2007) created conditional knockout “MitoPark” mice, which 
have a disrupted mitochondrial transcription factor A (Tfam) gene 
in dopaminergic neurons. The authors observed that these knock-
out mice have reduced mtDNA expression and respiratory chain 
deficiency in midbrain dopaminergic neurons, which lead to a 
Parkinsonism phenotype with adult onset and characterized by 
slowly progressive impairment of motor function accompanied by 
the formation of intraneuronal inclusions and dopamine nerve cell 
death (Ekstrand et al., 2007). Moreover, familial forms of PD are 
associated with mutations in leucine-rich repeat kinase 2 (LRRK2), 
α-synuclein, parkin, DJ1, and PTEN-induced putative kinase 1 
(PINK1), these proteins being associated with the mitochondrial 
outer membrane and involved in ROS production or defense (Knott 
et al., 2008). High temperature requirement A2 (HtrA2) is another 
protein that is mutated in familial PD and localizes in the inter-
membrane space of mitochondria (Knott et al., 2008). In vitro cell 
culture studies showed that mutant PINK1 or PINK1 knock-down 
induce mitochondrial respiration, ATP synthesis and proteasome 
function impairment and increased α-synuclein aggregation (Liu 
et al., 2009). Additionally, it was reported that HtrA2 loss results 
in transcriptional upregulation of nuclear genes characteristic of 
the integrated stress response, including the transcription factor C/
EBP homologous protein (CHOP), selectively in the brain (Moisoi 
et al., 2009). HtrA2 loss also induces accumulation of unfolded 
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apoptotic mechanism involved in ischemia-triggered mitochon-
drial dysfunction and neuronal cell death (Dirnagl et al., 1999; 
Lipton, 1999; Fiskum, 2000; Liou et al., 2003; Lo et al., 2003). It 
has been shown that cyclosporine A (CsA), which inhibits MPTP, 
has neuroprotective effects against ischemia-induced brain injury 
(Soane et al., 2007; Tsujimoto and Shimizu, 2007). Cyclophilin 
D-knockout mice display a dramatic reduction in the size of brain 
infarcts (Schinzel et al., 2005).

by mitochondria induces MPTP opening, which can mediate the 
release of cytochrome c, favoring superoxide anion ( O2

− ) forma-
tion at complex I and leading to mitochondrial membrane poten-
tial (∆Ψm) collapse, mitochondrial swelling, and rupture of the 
mitochondrial outer membrane (Nicholls, 2009). The release of 
cytochrome c and apoptosis inducing factor (AIF) from the mito-
chondria together with caspase-9 and caspase-3 activation follow-
ing ischemia suggest that the induction of MPTP is an integral 

Figure 2 | Schematic representation of the mitochondrial mechanisms 
involved in neuronal cell death following cerebral ischemia. Mitochondrial 
dysfunction has been shown to be a critical player in mediating ischemic neuronal 
cell death via either necrosis or apoptosis. During cerebral ischemia, the absence 
of glucose and oxygen causes exacerbated intracellular and mitochondrial 
calcium (Ca2+) uptake, leading to mitochondrial dysfunction and bioenergetic 

failure. The extensive Ca2+ accumulation by mitochondria has been shown to 
increase the susceptibility to mitochondrial permeability transition pore (MPTP) 
opening, favoring reactive oxygen species (ROS) formation, mitochondrial 
membrane potential (∆Ψm) collapse, mitochondrial swelling, and rupture of the 
mitochondrial outer membrane. MPTP opening can also trigger the release of 
pro-apoptotic proteins, leading to neuronal cell death by apoptosis.
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apoptosis induced by subsequent lethal oxidative stress (Tang et al., 
2005a). Moreover, the mechanisms behind H

2
O

2
-induced neuropro-

tective effects include blockage of ∆Ψm loss, increase in ROS genera-
tion and overexpression of Bcl-2 (Tang et al., 2005b). Accordingly, 
Furuichi et al. (2005) demonstrated that the generation of H

2
O

2
 

during brief oxygen–glucose deprivation (OGD) is the main trigger 
involved in the mechanism of preconditioning-induced neuronal 
protection. Recently, it was reported a preconditioning effect of an 
in situ administration of H

2
O

2
 inside the brain cortex which sug-

gests a direct implication of ROS during the triggering phase of 
cerebral preconditioning (Simerabet et al., 2008). Also found was a 
relationship between mitoK

ATP
 channels and ROS since the protec-

tion induced by H
2
O

2
 against cerebral ischemia-reperfusion injury 

was blocked by mitoK
ATP

 channels antagonist and the antioxidant 
N-acetyl-cysteine (NAC) blocked protection induced by diazoxide, 
a mitoK

ATP
 channels opener (Simerabet et al., 2008). The strong 

relationship observed between ROS and mitoK
ATP

 suggests a central 
position of mitochondria in the neuroprotection induced by delayed 
cerebral preconditioning (Simerabet et al., 2008). Additionally, it has 
been shown that the inhibition of succinate dehydrogenase (SDH) 
with 3-nitropropionic acid (3-NPA), an agent known to increase the 
production of ROS probably at mitochondrial complex I, induces 
tolerance to focal cerebral ischemia (Wiegand et al., 1999) implicat-
ing mitochondrial ROS in cerebral preconditioning. Horiguchi et al. 
(2003) also demonstrated that 3-NPA is able to induce delayed pre-
conditioning in rats when administered 3 days after transient mid-
dle cerebral artery occlusion (MCAO) by reducing infarct volume 
by about 20%. More recently, it was observed that NS1619, which 
inhibits complex I of mitochondrial respiratory chain, induces neu-
ronal preconditioning by increasing ROS production and mitochon-
drial depolarization (Gáspár et al., 2008a, 2009). The same authors 
observed that ROS scavenging during the preconditioning phase 
significantly reduces the neuroprotective effect of NS1619 (Gáspár 
et al., 2009), which emphasizes the role of mitochondria and mito-
chondrial ROS in the preconditioning phenomenon. Moreover, it 
was demonstrated that immediate NS1619 preconditioning include 
decreased Ca2+ influx through glutamate receptors, increased SOD 
activity, reduced ROS response during glutamate stimulation, and 
a better preservation of ATP levels (Gáspár et al., 2009).

One key transcription factor involved in preconditioning-induced 
brain tolerance is the hypoxia-inducible factor 1 (HIF-1). HIF-1 is a 
heterodimeric protein composed of a constitutively expressed HIF-1β 
subunit and an inducible HIF-1α subunit. Under normoxia, HIF-1α 
is hydroxylated by prolyl hydroxylase enzymes (PHDs) and rapidly 
degraded by the ubiquitin-proteasome system. On the other hand, 
under hypoxic conditions the PHDs enzymatic inhibition abrogates 
HIF-1α proteasomal degradation, resulting in HIF-1α stabilization 
and translocation to the nucleus. In the nucleus, HIF-1α recruits 
HIF-1β and modulates the expression of several target genes involved 
in angiogenesis, metabolism, apoptosis and cell survival (Correia 
and Moreira, 2010). Accumulating evidence demonstrated that 
HIF-1 induction has neuroprotective effects in cerebral ischemic 
stroke and chronic neurodegenerative disorders, such as AD and PD 
(Correia and Moreira, 2010). Mitochondria and mitochondrial ROS 
seems to be critical players involved in HIF-1α stabilization. Indeed, 
Klimova and Chandel (2008) suggested that mitochondrial ROS are 
essential to HIF-1α protein stabilization and activation. There is a 

These studies indicate that during cerebral ischemia the absence 
of glucose and oxygen causes exacerbated intracellular and mito-
chondrial Ca2+ uptake, which ultimately causes mitochondrial dys-
function and bioenergetic failure compromising neuronal function 
and survival in ischemic brain (Figure 2).

Mitochondrial preconditioning-Mediated 
neuroprotection: triggers and Mediators
Preconditioning is a phenomenon in which the brain protects itself 
against future injury by adapting to low doses of noxious insults. 
It has been shown that certain stimuli such as ischemia, low doses 
of endotoxin and hypoxia can induce preconditioning-depend-
ent protective responses (Cadet and Krasnova, 2009). Despite 
the molecular mechanisms underlying preconditioning remain 
unclear, it has been postulated that mitochondria actively partici-
pate in the preconditioning signaling pathway by the generation 
of ROS (Kowaltowski, 2000; Suleiman et al., 2001; Ravagnan et al., 
2002). It has also been shown that preconditioning can be pre-
vented with the pharmacological inhibition of mitoK

ATP
 channels 

and activated by mitoK
ATP

 agonists, which emphasize the crucial 
involvement of mitochondria in the preconditioning phenomenon 
(Auchampach et al., 1992; Yao and Gross, 1993; Garlid et al., 1997; 
Jaburek et al., 1998). Interestingly, oxidant signals contribute to the 
activation of the mitoK

ATP
 (Ardehali and O’Rourke, 2005). ROS, 

particularly O2
−, may directly activate mitoK

ATP
 channels (Zhang 

et al., 2001). It was shown in a transient focal cerebral ischemia 
model that mitoK

ATP
 opening was not followed by ROS generation 

suggesting that ROS signaling acts upstream of mitoK
ATP

 (Mayanagi 
et al., 2007a). On the other hand, there is also evidence that ROS 
act downstream of mitoK

ATP
 activation in preconditioning (Patel 

and Gross, 2001). The next subsections intend to discuss the role 
of mitochondria as major integrators of preconditioning-induced 
endogenous neuroprotection.

Mitochondrial ros production as a signaling MechanisM 
underlying preconditioning-induced neuroprotection
Mitochondria are one of the major sources of ROS. Within the 
four protein complexes associated with the respiratory chain, the 
primary sites of ROS production and release are complexes I and 
III (Zhang and Gutterman, 2007). As mentioned above, ROS have 
been implicated in the preconditioning phenomenon (Ohtsuki et al., 
1992; Peters et al., 1998; Ravati et al., 2000). Mitochondria regulate 
several signaling pathways through the generation of moderate levels 
of ROS (Allen and Tresini, 2000; Droge, 2002; Zhang and Gutterman, 
2007). Ravati et al. (2000) demonstrated that preconditioning stimu-
lated by moderate ROS levels protect cultured neurons against dif-
ferent damaging agents and prevent against the subsequent massive 
oxygen radical formation. Moreover, an immediate and constant 
radical scavenger abolishes this ROS-induced neuronal precondi-
tioning (Ravati et al., 2000). It was also shown that preconditioning 
with xanthine/xanthine oxidase (X/XO) and ferrous sulfate (FeSO

4
) 

protected cultured neurons against staurosporine-induced damage 
by an increase in ROS followed by the activation of transcription 
factor nuclear factor-κB (NF-κB) and the subsequent increase in 
NF-κB-regulated gene expression, namely manganese superoxide 
dismutase (MnSOD; Ravati et al., 2001). Preconditioning with low 
concentrations of H

2
O

2
 was also shown to protect PC12 cells against 
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tissues, including the brain (Figure 4)(Bajgar et al., 2001; Debska 
et al., 2001; Kulawiak and Bednarczyk, 2005). The physiological role 
mitoKATP channels has been proposed to buffer potential perturba-
tions of matrix volume and the intermembrane space, consequently 
ATP synthesis and transport fulfill cellular demands. For instance, 
during high rates of ATP production, increased current flow through 
the electron transport system will cause ∆Ψm to fall, thus inhibiting 
K+ diffusion into the matrix and osmotically contracting the matrix 
(Garlid et al., 2003). Brain mitochondria contain seven times more 
mitoK

ATP
 channels than liver or heart mitochondria, which reflect 

the importance of these channels in neuronal functionality and 
integrity (Bajgar et al., 2001). Accumulating evidence suggests a key 
role for the mitoK

ATP
 channels as both triggers and end effectors of 

acute and delayed neuroprotection of preconditioning (Busija et al., 
2008; Dirnagl and Meisel, 2008). Indeed, activation of mitoK

ATP
 

channels with pharmacological agents mimics the protective 
effects mediated by preconditioning (Garlid et al., 1997; Szewczyk 
and Wojtczak, 2002). On the other hand, it has been shown that 
physiological or chemical preconditioning is abrogated by mitoK

ATP
 

channels blockers, such as glibenclamide and 5-hydroxydecanoate 
(5-HD; Szewczyk and Wojtczak, 2002). It has been hypothesized 
that mitoK

ATP
 channels opening may decrease ∆Ψm, promoting 

an increase in the electron transport chain rate, and, consequently, 
increasing ATP production (Inoue et al., 1991). Wu et al. (2006) 
demonstrated that the activation of mitoK

ATP
 channels protects the 

brain against injury through the attenuation of mitochondrial Ca2+ 
overload and, thus, preventing MPTP induction. More recently, it 

crucial role of ROS generated by the Q
0
 site of complex III in the 

hypoxia-mediated survival signaling (Bell et al., 2007). Additionally, 
mitochondrial ROS generation was shown to be able to prevent the 
hydroxylation of HIF-1α, thereby stabilizing HIF-1α and allowing 
its translocation to the nucleus and dimerization with HIF-1β, ini-
tiating the transcription of target genes (Figure 3) (Brunelle et al., 
2005; Guzy et al., 2005; Bell et al., 2007). Several studies show that 
the exogenous application of H

2
O

2
 can induce HIF-1α under nor-

moxic conditions and ROS scavengers can block hypoxic induction 
of HIF (Guzy et al., 2005; Mansfield et al., 2005). Moreover, it was 
demonstrated that mitochondrial DNA-depleted (ρ0) cells, with-
out a functional mitochondrial respiratory chain, failed to increase 
ROS generation and HIF-1α accumulation under hypoxic conditions 
(Chandel et al., 1998, 2000). Chandel et al. (2000) also found that 
low levels of H

2
O

2
 stabilize HIF-1α protein during normoxia and 

increase hypoxia responsive element (HRE)-luciferase expression in 
ρ0 cells (Chandel et al., 2000).

Collectively these findings reinforce the critical involvement of 
mitochondria and mitochondrial ROS on neuroprotective mecha-
nisms triggered by preconditioning.

MechanIsMs of neuroprotectIon MedIated by MItokatp 
channels openIng
The mitoK

ATP
 channels are heteromultimers consisting of a 55-kDa 

inwardly rectifying potassium (K+) channel, mitoKIR, and a 63-kDa 
sulfonylurea receptor, mitoSUR and are localized in the inner mito-
chondrial membrane, regulating mitochondrial function in several 

Figure 3 | Schematic illustration of the involvement of mitochondrial reactive oxygen species (rOS) in hypoxia-inducible factor 1 (HiF-1) stabilization. 
Mitochondrial ROS production has been shown to inhibit prolyl hydroxylase enzymes (PHDs) activity, thus preventing HIF-1α proteasomal degradation. Consequently, 
HIF-1α is stabilized and translocated to the nucleus, where it dimerizes with HIF-1β, initiating the transcription of HIF-1 responsiveness genes.
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suggesting that mitoK
ATP

 channels activation may stabilize mito-
chondrial function by differentially modulating pro- apoptotic 
and anti-apoptotic proteins (Liu et al., 2002). Some in vivo stud-
ies also revealed that the acute and delayed preconditioning with 
diazoxide had a neuroprotective effect against transient focal 
cerebral ischemia (Shimizu et al., 2002; Mayanagi et al., 2007b). 
Moreover, Goodman and Mattson (1996) demonstrated that 
diazoxide is effective in protecting hippocampal neurons against 
oxidative injury induced by exposure to FeSO

4
 and Aβ, leading to 

a suppression of intracellular peroxide formation. Accordingly, 
a protective effect of diazoxide against Aβ-induced cytotoxicity 
in endothelial cells was observed (Chi et al., 2000). Ma and Chen 
(2004) reported that diazoxide counteracts the effects of Aβ

1-42
, 

protecting neurons against the increase of ∆Ψm and intracellular 
ROS levels induced by this amyloidogenic peptide. A recent study 
reported that exposure to Aβ

1-42
 enhances the expression of K

ATP
 

channel subunits in cholinergic neurons, being suggested that 
the change in the composition of K

ATP
 channels may contribute 

to the dysfunction of K
ATP

 channels and membrane excitability 
disturbance (Ma et al., 2009). Moreover, it was demonstrated 
that the pretreatment with diazoxide reverses the Aβ

1-42
-induced 

enhancement in the expression of K
ATP

 channels subunits (Ma 
et al., 2009). In an in vitro model of PD, it was also observed that 
diazoxide protects neurons against MPP+-induced cytotoxicity via 
inhibition of ROS overproduction, which improve mitochondrial 
function (Xie et al., 2009). Similarly, Yang et al. (2006) found that 
this mitoK

ATP
 opener improves both parkinsonian symptoms and 

neurochemistry alterations found in rats treated with rotenone, a 
model of PD. These results suggest that mitoK

ATP
 activation could 

provide a new therapeutic strategy for the treatment of early PD. 
The authors also observed that 5-HD abolishes all  neurorestorative 

was also observed that the signal transduction pathways initiated 
by epsilon protein kinase C (εPKC) mediate preconditioning-in-
duced neuroprotection through the activation of mitoK

ATP
 channels 

(Raval et al., 2007). The authors observed that the inhibition of 
both mitoK

ATP
 channels or εPKC abolishes the beneficial effects of 

preconditioning (Raval et al., 2007).
Diazoxide has been suggested to induce mild oxidative stress 

and preconditioning-like neuroprotection (Samavati et al., 2002). 
Diazoxide is a selective mitoK

ATP
 channels opener (Kis et al., 2003; 

Lacza et al., 2003; Nagy et al., 2004; Busija et al., 2005). However, 
it has been shown that high doses of diazoxide also inhibit SDH, 
the complex II of the mitochondrial respiratory chain, leading 
to the release of ROS in a mitoK

ATP
 channel-independent man-

ner (Kis et al., 2003). Recently, Busija et al. (2008) proposed that 
diazoxide is the most potent inducer of preconditioning-mediated 
protection due to the combined effects: mitochondrial membrane 
depolarization and enhanced ROS production through SDH inhi-
bition. It was also demonstrated that the immediate precondition-
ing induced by low doses of diazoxide preserves neuronal and 
vascular function after cerebral ischemia (Domoki et al., 1999). 
Moreover, it was observed that this immediate preconditioning 
with diazoxide protects against ischemia-reperfusion injury by 
preventing mitochondrial swelling and Ca2+ accumulation in brain 
cells (Domoki et al., 2004). Diazoxide also induces delayed precon-
ditioning in neurons via acute generation of O2

−
 and activation 

of protein kinases protecting against the oxidative stress induced 
by OGD, which is a well-established in vitro model of cerebral 
ischemia-reperfusion (Kis et al., 2003). It was also demonstrated 
that diazoxide protects neurons against ischemia-induced death by 
increasing mitochondrial Bcl-2 levels and suppressing Bax trans-
location to mitochondria and subsequent cytochrome c release, 

Figure 4 | Schematic illustration of the mitochondrial ATP-sensitive K+-channel. The mitochondrial ATP-sensitive K+-channel (mitoKATP) channels are 
heteromultimers consisting of a 55-kDa inwardly rectifying potassium (K+) channel, mitoKIR, and a 63-kDa sulfonylurea receptor, mitoSUR and are localized in the 
inner mitochondrial membrane (MIM).
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preconditioning via selective opening of mitoK

ATP
 channels without 

ROS generation.



Frontiers in Aging Neuroscience www.frontiersin.org August 2010 | Volume 2 | Article 138 | 10

Correia et al. Mitochondria as gateways to neuroprotection

Greenfield, J. P., Gross, R. S., Gouras, G. 
K., and Xu, H. (2000). Cellular and 
molecular basis of beta-amyloid pre-
cursor protein metabolism. Front. 
Biosci. 5, 72–83.

Guzy, R. D., Hoyos, B., Robin, E., Chen, H., 
Liu, L., Mansfield, K. D., Simon, M. C., 
Hammerling, U., and Schumacker, P. 
T. (2005). Mitochondrial complex III 
is required for hypoxia-induced ROS 
production and cellular oxygen sens-
ing. Cell Metab. 1, 401–408.

Haas, R. H., Nasirian, F., Nakano, K., Ward, 
D., Pay, M., Hill, R., and Shults, C. W. 
(1995). Low platelet mitochondrial 
complex I and complex II/III activity 
in early untreated Parkinson’s disease. 
Ann. Neurol. 37, 714–722.

Hamblet, N. S., Ragland. B., Ali, M., 
Conyers, B., and Castora, F. J. (2006). 
Mutations in mitochondrial-encoded 
cytochrome c oxidase subunits I, II, 
and III genes detected in Alzheimer’s 
disease using single-strand conforma-
tion polymorphism. Electrophoresis 27, 
398–408.

Hansson Petersen, C. A., Alikhani, N., 
Behbahani, H., Wiehager, B., Pavlov, 
P. F., Alafuzoff, I., Leinonen, V., 
Ito, A., Winblad, B., Glaser, E., and 
Ankarcrona, M. (2008). The amy-
loid beta-peptide is imported into 
mitochondria via the TOM import 
machinery and localized to mito-
chondrial cristae. Proc. Natl. Acad. 
Sci. U.S.A. 105, 13145–13150.

Horiguchi, T., Kis, B., Rajapakse, N., 
Shimizu, K., and Busija, D. W. 
(2003). Opening of mitochondrial 
ATP-sensitive potassium channels is 
a trigger of 3-nitropropionic acid-
induced tolerance to transient focal 
cerebral ischemia in rats. Stroke 34, 
1015–1020.

Hsu, L. J., Sagara, Y., Arroyo, A., 
Rockenstein, E., Sisk, A., Mallory, M., 
Wong, J., Takenouchi, T., Hashimoto, 
M., and Masliah, E. (2000). Alpha-
synuclein promotes mitochondrial 
deficit and oxidative stress. Am. J. 
Pathol. 157, 401–410.

Huang, H. M., Ou, H. C., Xu, H., Chen, 
H. L., Fowler, C., and Gibson, G. E. 
(2003). Inhibition of alpha-ketoglu-
tarate dehydrogenase complex pro-
motes cytochrome c release from 
mitochondria, caspase-3 activation, 
and necrotic cell death. J. Neurosci. 
Res. 74, 309–317.

Inoue, I., Nagase, H., Kishi, K., and Higuti, 
T. (1991). ATP-sensitive K channel 
mitochondrial inner membrane. 
Nature 352, 244–247.

Jaburek, M., Yarov-Yarovoy, V., Paucek, 
P., and Garlid, K. D. (1998). State-
dependent inhibition of the mitochon-
drial KATP channel by glyburide and 
5-hydroxydecanoate. J. Biol. Chem. 
273, 13578–13582.

Fiskum, G. (2000). Mitochondrial par-
ticipation in ischemic and traumatic 
neuronal cell death. J. Neurotrauma 
17, 843–855.

Furuichi, T., Liu, W., Shi, H., Miyake, 
M., and Liu, K. J. (2005). Generation 
of hydrogen peroxide during brief 
 oxygen–glucose deprivation induces 
preconditioning neuronal protec-
tion in primary cultured neurons. J. 
Neurosci. Res. 79, 816–824.

Garlid, K. D., Dos Santos, P., Xie, Z. J., 
Costa, A. D., and Paucek P. (2003). 
Mitochondrial potassium transport: 
the role of the mitochondrial ATP-
sensitive K+ channel in cardiac func-
tion and cardioprotection. Biochim. 
Biophys. Acta 1606, 1–21.

Garlid, K. D., Paucek, P., Yarov-Yarovoy, 
V., Murray, H. N., Darbenzio, R. B., 
D’Alonzo, A. J., Lodge, N. J., Smith, 
M. A., and Grover, G. J. (1997). 
Cardioprotective effect of diazoxide 
and its interaction with mitochondrial 
ATP-sensitive K+ channels. Possible 
mechanism of cardioprotection. Circ. 
Res. 81, 1072–1082.

Gash, D. M., Rutland, K., Hudson, N. 
L., Sullivan, P. G., Bing, G., Cass, W. 
A., Pandya, J. D., Liu, M., Choi, D. Y., 
Hunter, R. L., Gerhardt, G. A., Smith, C. 
D., Slevin, J. T., and Prince, T. S. (2007). 
Trichloroethylene: Parkinsonism and 
complex 1 mitochondrial neurotoxic-
ity. Ann. Neurol. 63, 184–192.

Gáspár, T., Domoki, F., Lenti, L., Katakam, 
P. V., Snipes, J. A., Bari, F., and Busija, 
D. W. (2009). Immediate neuronal 
preconditioning by NS1619. Brain 
Res. 1285, 196–207.

Gáspár, T., Katakam, P., Snipes, J. A., Kis, 
B., Domoki, F., Bari, F., and Busija, 
D. W. (2008a). Delayed neuronal 
preconditioning by NS1619 is inde-
pendent of calcium activated potas-
sium channels. J. Neurochem. 105, 
1115–1128.

Gáspár, T., Snipes, J. A., Busija, A. R., Kis, 
B., Domoki, F., Bari, F., and Busija, 
D. W. (2008b). ROS-independent 
preconditioning in neurons via acti-
vation of mitoKATP channels by 
BMS-191095. J. Cereb. Blood Flow 
Metab. 28, 1090–1103.

Gibson, G. E., Sheu, K. F., and Blass, J. P. 
(1998). Abnormalities of mitochon-
drial enzymes in Alzheimer disease. J. 
Neural Transm. 105, 855–870.

Goodman, Y., and Mattson, M. P. (1996). 
K+ channel openers protect hip-
pocampal neurons against oxidative 
injury and amyloid beta-peptide toxic-
ity. Brain Res. 706, 328–332.

Green, D. R., and Kroemer, G. (2004). The 
pathophysiology of mitochondrial cell 
death. Science 305, 626–629.

Green, D. R., and Reed, J. C. (1998). 
Mitochondria and apoptosis. Science 
281, 1309–1312.

Dirnagl, U., Becker, K., and Meisel, A. 
(2009). Preconditioning and toler-
ance against cerebral ischaemia: from 
experimental strategies to clinical use. 
Lancet Neurol. 8, 398–412.

Dirnagl, U., Iadecola, C., and Moskowitz, 
M. A. (1999). Pathobiology of ischae-
mic stroke: an integrated view. Trends 
Neurosci. 22, 391–397.

Dirnagl, U., and Meisel, A. (2008). 
Endogenous neuroprotection: mito-
chondria as gateways to cerebral pre-
conditioning? Neuropharmacology 55, 
334–344.

Domoki, F., Bari, F., Nagy, K., Busija, D. W., 
and Siklos, L. (2004). Diazoxide pre-
vents mitochondrial swelling and Ca 
(2+) accumulation in CAI pyramidal 
cells after cerebral ischemia in new-
born pigs. Brain Res. 1019, 97–104.

Domoki, F., Perciaccante, J. V., Veltkamp, 
R., Bari, F., and Busija, D. W. (1999). 
Mitochondrial potassium chan-
nel opener diazoxide preserves 
 neuronal-vascular function after cer-
ebral ischemia in newborn pigs. Stroke 
30, 2713–2718.

Donnan, G. A., Fisher, M., Macleod, M., 
and Davis, S. M. (2008). Stroke. Lancet 
371, 1612–1623.

Droge, W. (2002). Free radicals in the 
physiological control of cell function. 
Physiol. Rev. 82, 47–95.

Du, H., Guo, L., Fang, F., Chen, D., 
Sosunov, A. A., McKhann, G. M., Yan, 
Y., Wang, C., Zhang, H., Molkentin, J. 
D., Gunn-Moore, F. J., Vonsattel, J. P., 
Arancio, O., Chen, J. X., and Yan, S. 
D. (2008). Cyclophilin D deficiency 
attenuates mitochondrial and neu-
ronal perturbation and ameliorates 
learning and memory in Alzheimer’s 
disease. Nat. Med. 14, 1097–1105.

Dux, E., Mies, G., Hossmann, K. A., and 
Siklos, L. (1987). Calcium in the mito-
chondria following brief ischemia 
of gerbil brain. Neurosci. Lett. 78, 
295–300.

Ekstrand, M. I., Terzioglu, M., Galter, D., 
Zhu, S., Hofstetter, C., Lindqvist, E., 
Thams, S., Bergstrand, A., Hansson, 
F. S., Trifunovic, A., Hoffer, B., 
Cullheim, S., Mohammed, A. H., 
Olson, L., and Larsson, N. G. (2007). 
Progressive parkinsonism in mice with 
 respiratory-chain-deficient dopamine 
neurons. Proc. Natl. Acad. Sci. USA. 
104, 1325–1330.

Falkevall, A., Alikhani, N., Bhushan, 
S., Pavlov, P. F., Busch, K., Johnson, 
K. A., Eneqvist, T., Tjernberg, L., 
Ankarcrona, M., and Glaser, E. (2006). 
Degradation of the amyloid beta-
protein by the novel mitochondrial 
peptidasome, PreP. J. Biol. Chem. 281, 
29096–29104.

Findeis, M. A. (2007). The role of amyloid 
beta peptide 42 in Alzheimer’s disease. 
Pharmacol. Ther. 116, 266–286.

Chandel, N. S., McClintock, D. S., Feliciano, 
C. E., Wood, T. M., Melendez, J. A., 
Rodriguez, A. M., and Schumacker, 
P. T. (2000). Reactive oxygen species 
generated at mitochondrial complex 
III stabilize hypoxia-inducible factor-
1alpha during hypoxia: a mechanism 
of O2 sensing. J. Biol. Chem. 275, 
25130–25138.

Chi, X., Sutton, E. T., Hellermann, G., and 
Price, J. M. (2000). Potassium channel 
openers prevent beta-amyloid toxic-
ity in bovine vascular endothelial cells. 
Neurosci. Lett. 290, 9–12.

Correia, S. C., and Moreira, P. I. (2010). 
Hypoxia-inducible factor 1: a new 
hope to counteract neurodegenera-
tion? J. Neurochem. 112, 1–12.

Coskun, P. E., Beal, M. F., and Wallace, 
D. C. (2004). Alzheimer’s brains har-
bor somatic mtDNA control-region 
mutations that suppress mitochon-
drial transcription and replication. 
Proc. Natl. Acad. Sci. U.S.A. 101, 
10726–10731.

Crouch, P. J., Blake, R., Duce, J. A., Ciccotosto, 
G. D., Li, Q. X., Barnham, K. J., Curtain, 
C. C., Cherny, R. A., Cappai, R., Dyrks, 
T., Masters, C. L., and Trounce, I. A. 
(2005). Copper-dependent inhibi-
tion of human cytochrome c oxidase 
by a dimeric conformer of amyloid-
 beta1-42. J. Neurosci. 25, 672–679.

Dauer, W., Kholodilov, N., Vila, M., Trillat, 
A. C., Goodchild, R., Larsen, K. E., 
Staal, R., Tieu, K., Schmitz, Y., Yuan, 
C. A., Rocha, M., Jackson-Lewis, V., 
Hersch, S., Sulzer, D., Przedborski, 
S., Burke, R., and Hen, R. (2002). 
Resistance of alpha-synuclein null 
mice to the parkinsonian neurotoxin 
MPTP. Proc. Natl. Acad. Sci. U.S.A. 99, 
14524–14529.

Debska, G., May, R., Kicinska, A., Szewczyk, 
A., Elger, C. E., and Kunz, W. S. (2001). 
Potassium channel openers depolarize 
hippocampal mitochondria. Brain Res. 
892, 42–50.

de Lau, L. M., Giesbergen, P. C., de Rijk, 
M. C., Hofman, A., Koudstaal, P. J., and 
Breteler, M. M. (2004). Incidence of 
parkinsonism and Parkinson disease 
in a general population: the Rotterdam 
Study. Neurology 63, 1240–1244.

de Rijk, M. C., Rocca, W. A., Anderson, D. 
W., Melcon, M. O., Breteler, M. M., and 
Maraganore, D. M. (1997). A popula-
tion perspective on diagnostic criteria 
for Parkinson’s disease. Neurology 48, 
1277–1281.

Devi, L., Prabhu, B. M., Galati, 
D. F., Avadhani, N. G., and 
Anandatheerthavarada, H. K. (2006). 
Accumulation of amyloid precursor 
protein in the mitochondrial import 
channels of human Alzheimer’s dis-
ease brain is associated with mito-
chondrial dysfunction. J. Neurosci. 
26, 9057–9068.



Frontiers in Aging Neuroscience www.frontiersin.org August 2010 | Volume 2 | Article 138 | 11

Correia et al. Mitochondria as gateways to neuroprotection

H., Edwards, R. E., Teismann, P., 
Esposti, M. D., Morrison, A. D., Wood, 
N. W., Downward, J., and Martins, L. 
M. (2009). Mitochondrial dysfunction 
triggered by loss of HtrA2 results in 
the activation of a brain-specific tran-
scriptional stress response. Cell Death 
Differ. 16, 449–464.

Moreira, P. I., Duarte, A. I., Santos, M. S., 
Rego, A. C., and Oliveira, C. R. (2009). 
An integrative view of the role of oxi-
dative stress, mitochondria and insulin 
in Alzheimer’s disease. J. Alzheimers 
Dis. 16, 741–761.

Moreira, P. I., Honda, K., Zhu, X., 
Nunomura, A., Casadesus, G., Smith, 
M. A., and Perry, G. (2006). Brain and 
brawn: parallels in oxidative strength. 
Neurology 66, 97–101.

Moreira, P. I., Santos, M. S., Moreno, 
A., and Oliveira, C. (2001). Amyloid 
beta-peptide promotes permeability 
transition pore in brain mitochondria. 
Biosci. Rep. 21, 789–800.

Moreira, P. I., Santos, M. S., Moreno, A., 
Rego, A. C., and Oliveira, C. (2002). 
Effect of amyloid beta-peptide on 
permeability transition pore: a com-
parative study. J. Neurosci. Res. 69, 
257–267.

Moreira, P. I., Santos, M. S., and Oliveira, 
C. R. (2007). Alzheimer’s disease: 
a lesson from mitochondrial dys-
function. Antioxid. Redox Signal. 9, 
1621–1630.

Moreira, P. I., Zhu, X., Wang, X., Lee, H. 
G., Nunomura, A., Petersen, R. B., 
Perry, G., and Smith, M. A. (2010). 
Mitochondria: a therapeutic target in 
neurodegeneration. Biochim. Biophys. 
Acta 1802, 212–220.

Murphy, A. N., Fiskum, G., and Beal, M. 
F. (1999). Mitochondria in neurode-
generation: bioenergetic function in 
cell life and death. J. Cereb. Blood Flow 
Metab. 19, 231–245.

Nagy, K., Kis, B., Rajapakse, N. C., Bari, 
F., and Busija, D. W. (2004). Diazoxide 
preconditioning protects against 
neuronal cell death by attenuation of 
oxidative stress upon glutamate stimu-
lation. J. Neurosci. Res. 76, 697–704.

Nelson, C., and Silverstein, F. S. (1994). 
Acute disruption of cytochrome oxi-
dase activity in brain in a perinatal rat 
stroke model. Pediatr. Res. 36, 12–19.

Nicholls, D. G. (2009). Mitochondrial 
calcium function and dysfunction in 
the central nervous system. Biochim. 
Biophys. Acta 1787, 1416–1424.

Nicotera, P., and Lipton, S. A. (1999). 
Excitotoxins in neuronal apoptosis 
and necrosis. J. Cereb. Blood Flow 
Metab. 19, 583–591.

Nunomura, A., Honda, K., Takeda, A., 
Hirai, K., Zhu, X., Smith, M.A., and 
Perry, G. (2006). Oxidative damage to 
RNA in neurodegenerative diseases. J. 
Biomed. Biotechnol. 2006, 82323.

 counteracted A beta 1-42-induced 
cytotoxicity. Neuroreport 15, 
1813–1817.

Ma , G., Gao, J., Fu, Q., Jiang, L., Wang, 
R., Zhang, Y., and Liu, K. (2009). 
Diazoxide reverses the enhanced 
expression of K(ATP) subunits in 
cholinergic neurons caused by expo-
sure to Abeta(1-42). Neurochem. Res. 
(in press).

Manczak, M., Anekonda, T. S., Henson, E., 
Park, B. S., Quinn, J., and Reddy, P. H. 
(2006). Mitochondria are a direct site 
of Abeta accumulation in Alzheimer’s 
disease neurons: implications for free 
radical generation and oxidative dam-
age in disease progression. Hum. Mol. 
Genet. 15, 1437–1449.

Mann, V. M., Cooper, J. M., Daniel, S. E., 
Srai, K., Jenner, P., Marsden, C. D., 
and Schapira, A. H. (1994). Complex 
I, iron, and ferritin in Parkinson’s dis-
ease substantia nigra. Ann. Neurol. 36, 
876–881.

Mansfield, K. D., Guzy, R. D., Pan, Y., 
Young, R. M., Cash, T. P., Schumacker, 
P. T., and Simon, M. C. (2005). 
Mitochondrial dysfunction resulting 
from loss of cytochrome c impairs 
cellular oxygen sensing and hypoxic 
HIF-α activation. Cell Metab. 1, 
393–399.

Maurer, I., Zierz, S., and Möller, H. J. 
(2000). A selective defect of cyto-
chrome c oxidase is present in brain of 
Alzheimer disease patients. Neurobiol. 
Aging 21, 455–462.

Mayanagi, K., Gaspar, T., Katakam, P. 
V., Kis, B., and Busija, D. W. (2007a). 
The mitochondrial K(ATP) channel 
opener BMS-191095 reduces neuronal 
damage after transient focal cerebral 
ischemia in rats. J. Cereb. Blood Flow 
Metab. 27, 348–355.

Mayanagi, K., Gaspar, T., Katakam, P. V., 
and Busija, D. W. (2007b). Systemic 
administration of diazoxide induces 
delayed preconditioning against tran-
sient focal cerebral ischemia in rats. 
Brain Res. 1168, 106–111.

Migliore, L., and Coppedè, F. (2009). 
Environmental-induced oxidative 
stress in neurodegenerative disorders 
and aging. Mutat. Res. 674, 73–84.

Mitsios, N., Gaffney, J., Krupinski, J., 
Mathias, R., Wang, Q., Hayward, S., 
Rubio, F., Kumar, P., Kumar, S., and 
Slevin, M. (2007). Expression of sign-
aling molecules associated with apop-
tosis in human ischemic stroke tissue. 
Cell Biochem. Biophys. 47, 73–86.

Mizuno, Y., Matuda, S., Yoshino, H., Mori, 
H., Hattori, N., and Ikebe, S. (1994). 
An immunohistochemical study on 
alpha-ketoglutarate dehydrogenase 
complex in Parkinson’s disease. Ann. 
Neurol. 35, 204–210.

Moisoi, N., Klupsch, K., Fedele, V., East, P., 
Sharma, S., Renton, A., Plun-Favreau, 

Investigation of the subunit compo-
sition and the pharmacology of the 
mitochondrial ATP-dependent K+ 
channel in the brain. Brain Res. 19, 
27–36.

Lin, M. T., and Beal, M. F. (2006). 
Mitochondrial dysfunction and oxi-
dative stress in neurodegenerative 
diseases. Nature 443, 787–795.

Lin, M. T., Simon, D. K., Ahn, C. H., 
Kim, L. M., and Beal, M. F. (2002). 
High aggregate burden of somatic 
mtDNA point mutations in aging and 
Alzheimer’s disease brain. Hum. Mol. 
Genet. 11, 133–145.

Liou, A. K., Clark, R. S., Henshall, D. C., 
Yin, X. M., and Chen, J. (2003). To die 
or not to die for neurons in ischemia, 
traumatic brain injury and epilepsy: a 
review on the stress-activated signal-
ing pathways and apoptotic pathways. 
Prog. Neurobiol. 69, 103–142.

Lipton, P. (1999). Ischemic cell death 
in brain neurons. Physiol. Rev. 79, 
1431–1568.

Liu, D., Lu, C., Wan, R., Auyeung, W. W., 
and Mattson, M. P. (2002). Activation 
of mitochondrial ATP-dependent 
potassium channels protects neurons 
against ischemia-induced death by a 
mechanism involving suppression of 
Bax translocation and cytochrome c 
release. J. Cereb. Blood Flow Metab. 
22, 431–443.

Liu, W., Vives-Bauza, C., Acín-Peréz-, R., 
Yamamoto, A., Tan, Y., Li, Y., Magrané, 
J., Stavarache, M. A., Shaffer, S., Chang, 
S., Kaplitt, M. G., Huang, X. Y., Beal, 
M. F., Manfredi, G., and Li, C. (2009). 
PINK1 defect causes mitochondrial 
dysfunction, proteasomal deficit and 
alpha-synuclein aggregation in cell 
culture models of Parkinson’s disease. 
PLoS ONE 4, 4597. doi:10.1371/jour-
nal.pone.0004597.

Liu, X., Wu, J. Y., Zhou, F., Sun, X. L., 
Yao, H. H., Yang, Y., Ding, J. H., and 
Hu, G. (2006). The regulation of 
 rotenone-induced inflammatory fac-
tor production by ATP-sensitive potas-
sium channel expressed in BV-2 cells. 
Neurosci. Lett. 394, 131–135.

Lo, E. H., Dalkara, T., and Moskowitz, M. 
A. (2003). Mechanisms, challenges 
and opportunities in stroke. Nat. Rev. 
Neurosci. 4, 399–415.

Lustbader, J. W., Cirilli, M., Lin, C., 
Xu, H. W., Takuma, K., Wang, N., 
Caspersen, C., Chen, X., Pollak, S., 
Chaney, M., Trinchese, F., Liu, S., 
Gunn-Moore, F., Lue, L. F., Walker, 
D. G., Kuppusamy, P., Zewier, Z. L., 
Arancio, O., Stern, D., Yan, S. S., and 
Wu, H. (2004). ABAD directly links 
Abeta to mitochondrial toxicity in 
Alzheimer’s disease. Science 304, 
448–452.

Ma, G., and Chen, S. (2004). Diazoxide 
and N omega-nitro-l-arginine 

Jin, J., Hulette, C., Wang, Y., Zhang, T., Pan, 
C., Wadhwa, R., and Zhang, J. (2006). 
Proteomic identification of a stress 
protein, mortalin/mthsp70/GRP75: 
relevance to Parkinson disease. Mol. 
Cell. Proteomics 5, 1193–1204.

Jou, M. J. (2008). Pathophysiological 
and pharmacological implications of 
mitochondria-targeted reactive oxy-
gen species generation in astrocytes. 
Adv. Drug Deliv. Rev. 60, 1512–1526.

Kis, B., Nagy, K., Snipes, J. A., Rajapakse, N., 
Horiguchi, T., Grover, G. J., and Busija, 
D. W. (2004). The mitochondrial 
KATP channel opener BMS191095 
induces neuronal preconditioning. 
Neuroreport 15, 345–349.

Kis, B., Rajapakse, N., Snipes, J. A., Nagy, 
K., Horiguchi, T., and Busija, D. W. 
(2003). Diazoxide induces delayed 
preconditioning in cultured rat 
cortical neurons. J. Neurochem. 87, 
969–980.

Kish, S. J., Bergeron, C., Rajput, A., Dozic, 
S., Mastrogiacomo, F., Chang, L. J., 
Wilson, J. M., DiStefano, L. M., and 
Nobrega, J. N. (1992). Brain cyto-
chrome oxidase in Alzheimer’s disease. 
J. Neurochem. 59, 776–779.

Klimova, T., and Chandel, N. S. (2008). 
Mitochondrial complex III regulates 
hypoxic activation of HIF. Cell Death 
Differ. 15, 660–666.

Klivenyi, P., Siwek, D., Gardian, G., Yang, 
L., Starkov, A., Cleren, C., Ferrante, 
R. J., Kowall, N. W., Abeliovich, A., 
and Beal, M. F. (2006). Mice lacking 
alpha-synuclein are resistant to mito-
chondrial toxins. Neurobiol. Dis. 21, 
541–548.

Knott, A. B., Perkins, G., Schwarzenbacher, 
R., and Bossy-Wetzel, E. (2008). 
Mitochondrial fragmentation in neu-
rodegeneration. Nat. Rev. Neurosci. 9, 
505–518.

Kowaltowski, A. J. (2000). Alternative 
mitochondrial functions in cell physi-
opathology: beyond ATP production. 
Braz. J. Med. Biol. Res. 33, 241–250.

Krige, D., Carroll, M. T., Cooper, J. M., 
Marsden, C. D., and Schapira, A. H. 
(1992). Platelet mitochondrial func-
tion in Parkinson’s disease. The Royal 
Kings and Queens Parkinson Disease 
Research Group. Ann. Neurol. 32, 
782–788.

Kulawiak, B., and Bednarczyk, P. (2005). 
Reconstitution of brain mitochon-
dria inner membrane into planar 
lipid bilayer. Acta Neurobiol. Exp. 65, 
271–276.

Kuroda, S., Katsura, K. I., Tsuchidate, R., 
and Siesjo, B. K. (1996). Secondary 
bioenergetic failure after transient 
focal ischaemia is due to mitochon-
drial injury. Acta Physiol. Scand. 156, 
149–150.

Lacza, Z., Snipes, J. A., Kis, B., Szabo, C., 
Grover, G., and Busija, D. W. (2003). 



Frontiers in Aging Neuroscience www.frontiersin.org August 2010 | Volume 2 | Article 138 | 12

Correia et al. Mitochondria as gateways to neuroprotection

Sultana, R., Perluigi, M., and Butterfield, 
D. A. (2006). Protein oxidation and 
lipid peroxidation in brain of sub-
jects with Alzheimer’s disease: insights 
into mechanism of neurodegeneration 
from redox proteomics. Antioxid. 
Redox Signal. 8, 2021–2037.

Swerdlow, R. H., Parks, J. K., Miller, S. W., 
Tuttle, J. B., Trimmer, P. A., Sheehan, 
J. P., Bennett, J.P. Jr., Davis, R. E., and 
Parker, W. D. Jr. (1996). Origin and 
functional consequences of the com-
plex I defect in Parkinson’s disease. 
Ann. Neurol. 40, 663–671.

Szewczyk, A., and Wojtczak, L. (2002). 
Mitochondria as a pharmacological 
target. Pharmacol. Rev. 54, 101–127.

Tai, K. K., McCrossan, Z. A., and Abbott, 
G. W. (2003). Activation of mito-
chondrial ATP-sensitive potassium 
channels increases cell viability 
against rotenone-induced cell death. 
J. Neurochem. 84, 1193–1200.

Tai, K. K., and Truong DD. (2002). Activation 
of adenosine triphosphate-sensitive 
potassium channels confers protection 
against rotenone-induced cell death: 
therapeutic implications for Parkinson’s 
disease. J. Neurosci. Res. 69, 559–566.

Takuma, K., Yao, J., Huang, J., Xu, H., Chen, 
X., Luddy, J., Trillat, A. C., Stern, D. 
M., Arancio, O., and Yan, S. S. (2005). 
ABAD enhances Abeta-induced cell 
stress via mitochondrial dysfunction. 
FASEB J. 19, 597–598.

Tang, X. Q., Chen, J., Tang, E. H., Feng, J. 
Q., and Chen, P. X. (2005a). Hydrogen 
peroxide preconditioning protects 
PC12 cells against apoptosis induced 
by oxidative stress. Sheng Li Xue Bao 
57, 211–216.

Tang, X. Q., Feng, J. Q., Chen, J., Chen, 
P. X., Zhi, J. L., Cui, Y., Guo, R. X., 
and Yu, H. M. (2005b). Protection 
of oxidative preconditioning against 
apoptosis induced by H2O2 in PC12 
cells: mechanisms via MMP, ROS, and 
Bcl-2. Brain Res. 1057, 57–64.

Taylor, D. J., Krige, D., Barnes, P. R., 
Kemp, G. J., Carroll, M. T., Mann, V. 
M., Cooper, J. M., Marsden, C. D., and 
Schapira, A. H. (1994). A 31P magnetic 
resonance spectroscopy study of mito-
chondrial function in skeletal muscle 
of patients with Parkinson’s disease. J. 
Neurol. Sci. 125, 77–81.

Thomas, B., and Beal, M. F. (2007). 
Parkinson’s disease. Hum. Mol. Genet. 
16, 183–194.

Trimmer, P. A., Borland, M. K., Keeney, P. 
M., Bennett, J.P. Jr., and Parker, W. D. 
Jr. (2004). Parkinson’s disease trans-
genic mitochondrial cybrids generate 
Lewy inclusion bodies. J. Neurochem. 
88, 800–812.

Tsujimoto, Y., and Shimizu, S. (2007). 
Role of the mitochondrial membrane 
permeability transition in cell death. 
Apoptosis 12, 835–840.

etiologies of Parkinson’s disease. J. 
Neurochem. 100, 1469–1479.

Shimizu, K., Lacza, Z., Rajapakse, N., 
Horiguchi, T., Snipes, J., and Busija, 
D. W. (2002). MitoKATP opener, dia-
zoxide, reduces neuronal damage after 
middle cerebral artery occlusion in the 
rat. Am. J. Physiol. 283, 1005–1011.

Siesjö, B. K., Katsura, K. I., Zhao, Q., 
Folbergrova, J., Pahlmark, K., Siesjö, P., 
and Smith, M. L. (1995). Mechanisms 
of secondary brain damage in global 
and focal ischemia: a speculative syn-
thesis. J. Neurotrauma 12, 943–956.

Silver, I. A., and Erecinska, M. (1992). 
Ion homeostasis in rat brain in vivo: 
intra- and extracellular [Ca2+] and 
[H+] in the hippocampus during 
recovery from short-term, transient 
ischemia. J. Cereb. Blood Flow Metab. 
12, 759–772.

Simerabet, M., Robin, E., Aristi, I., 
Adamczyk, S., Tavernier, B., Vallet, 
B., Bordet, R., and Lebuffe, G. (2008). 
Preconditioning by an in situ adminis-
tration of hydrogen peroxide: involve-
ment of reactive oxygen species and 
mitochondrial ATP-dependent potas-
sium channel in a cerebral ischemia-
reperfusion model. Brain Res. 1240, 
177–184.

Simpkins, J. W., Yi, K. D., Yang, S., and 
Dykens, J. A. (2009). Mitochondrial 
mechanisms of estrogen neuropro-
tection. Biochim. Biophys. Acta (in 
press).

Sims, N. R. (1991). Selective impairment 
of respiration in mitochondria iso-
lated from brain subregions following 
transient forebrain ischemia in the rat. 
J. Neurochem. 56, 1835–1844.

Sims, N. R., and Pulsinelli, W. A. (1987). 
Altered mitochondrial respiration in 
selectively vulnerable brain subre-
gions following transient forebrain 
ischemia in the rat. J. Neurochem. 49, 
1367–1374.

Smith, M. A., Perry, G., Richey, P. L., 
Sayre, L. M., Anderson, V. E., Beal, M. 
F., and Kowall, N. (1996). Oxidative 
damage in Alzheimer’s. Nature 382, 
120–121.

Soane, L., Kahraman, S., Kristian, T., 
and Fiskum, G. (2007). Mechanisms 
of impaired mitochondrial energy 
metabolism in acute and chronic neu-
rodegenerative disorders. J. Neurosci. 
Res. 85, 3407–3415.

Song, D. D., Shults, C. W., Sisk, A., 
Rockenstein, E., and Masliah, E. 
(2004). Enhanced substantia nigra 
mitochondrial pathology in human 
alpha-synuclein transgenic mice after 
treatment with MPTP. Exp. Neurol. 
186, 158–172.

Suleiman, M. S., Halestrap, A. P., and 
Griffiths, E. J. (2001). Mitochondria: 
a target for myocardial protection. 
Pharmacol. Ther. 89, 29–46.

organelles and their weapons. J. Cell. 
Physiol. 192, 131–137.

Raval, A. P., Dave, K. R., Defazio, R. A., 
and Pérez-Pinzón, M. A. (2007). 
EpsilonPKC phosphorylates the mito-
chondrial K(+) (ATP) channel during 
induction of ischemic precondition-
ing in the rat hippocampus. Brain Res. 
1184, 345–353.

Ravati, A., Ahlemeyer, B., Becker, A., 
Klumpp, S., and Krieglstein, J. (2001). 
Preconditioning-induced neuropro-
tection is mediated by reactive oxygen 
species and activation of the transcrip-
tion factor nuclear factor-kappaB. J. 
Neurochem. 78, 909–919.

Ravati, A., Ahlemeyer, B., Becker, A., and 
Krieglstein, J. (2000). Preconditioning-
induced neuroprotection is mediated 
by reactive oxygen species. Brain Res. 
866, 23–32.

Sairanen, T., Karjalainen-Lindsberg, M. 
L., Paetau, A., Ijas, P., and Lindsberg, 
P. J. (2006). Apoptosis dominant in the 
periinfarct area of human ischaemic 
stroke–a possible target of antiapop-
totic treatments. Brain 129, 189–199.

Samavati, L., Monick, M. M., Sanlioglu, 
S., Buettner, G. R., Oberley, L. W., 
and Hunninghake, G. W. (2002). 
Mitochondrial K(ATP) channel 
openers activate the ERK kinase by an 
oxidant-dependent mechanism. Am. J. 
Physiol. Cell Physiol. 283, 273–281.

Schapira, A. H. (2008). Mitochondria 
in the aetiology and pathogenesis of 
Parkinson’s disease. Lancet Neurol. 7, 
97–109.

Schapira, A. H., Cooper, J. M., Dexter, D., 
Jenner, P., Clark, J. B., and Marsden, 
C. D. (1989). Mitochondrial complex 
I deficiency in Parkinson’s disease. 
Lancet 1, 1269.

Schild, L., Huppelsberg, J., Kahlert, S., 
Keilhoff, G., and Reiser, G. (2003). Brain 
mitochondria are primed by moderate 
Ca2+rise upon hypoxia/reoxygena-
tion for functional breakdown and 
morphological disintegration. J. Biol. 
Chem. 278, 25454–25460.

Schinzel, A. C., Takeuchi, O., Huang, 
Z., Fisher, J. K., Zhou, Z., Rubens, J., 
Hetz, C., Danial, N. N., Moskowitz, 
M. A., and Korsmeyer, S. J. (2005). 
Cyclophilin D is a component of mito-
chondrial permeability transition and 
mediates neuronal cell death after focal 
cerebral ischemia. Proc. Natl. Acad. Sci. 
U.S.A. 102, 12005–12010.

Selkoe, D. J. (2001). Alzheimer’s disease 
results from the cerebral accumula-
tion and cytotoxicity of amyloid beta-
 protein. J. Alzheimers Dis. 3, 75–80.

Sherer, T. B., Richardson, J. R., Testa, C. 
M., Seo, B. B., Panov, A. V., Yagi, T., 
Matsuno-Yagi, A., Miller, G. W., and 
Greenamyre, J. T. (2007). Mechanism 
of toxicity of pesticides acting at com-
plex I: relevance to  environmental 

Ohtsuki, T., Matsumoto, M., Kuwabara, 
K., Kitagawa, K., Suzuki, K., Taniguchi, 
N., and Kamada, T. (1992). Influence 
of oxidative stress on induced toler-
ance to ischemia in gerbil hippocam-
pal neurons. Brain Res. 599, 246–252.

Oldenburg, O., Cohen, M. V., Yellon, 
D. M., and Downey, J. M. (2002). 
Mitochondrial KATP channels: role 
in cardioprotection. Cardiovasc. Res. 
55, 429–437.

Parker, W. D. Jr., Boyson, S. J., and Parks, 
J. K. (1989). Abnormalities of the 
electron transport chain in idiopathic 
Parkinson’s disease. Ann. Neurol. 26, 
719–723.

Parker, W. D. Jr., Mahr, N. J., Filley, C. M., 
Parks, J. K., Hughes, D., Young, D. A., 
and Cullum, C. M. (1994). Reduced 
platelet cytochrome c oxidase activity 
in Alzheimer’s disease. Neurology 44, 
1086–1090.

Patel, H. H., and Gross, G. J. (2001). 
Diazoxide induced cardioprotection: 
what comes first, KATP channels or 
reactive oxygen species? Cardiovasc. 
Res. 51, 633–636.

Penn, A. M., Roberts, T., Hodder, J., Allen, 
P. S., Zhu, G., and Martin, W. R. (1995). 
Generalized mitochondrial dysfunc-
tion in Parkinson’s disease detected by 
magnetic resonance spectroscopy of 
muscle. Neurology 45, 2097–2099.

Peters, O., Back, T., Lindauer, U., Busch, C., 
Megow, D., Dreier, J., and Dirnagl, U. 
(1998). Increased formation of reac-
tive oxygen species after permanent 
and reversible middle cerebral artery 
occlusion in the rat. J. Cereb. Blood 
Flow Metab. 18, 196–205.

Petrozzi, L., Ricci, G., Giglioli, N. J., 
Siciliano, G., and Mancuso, M. (2007). 
Mitochondria and neurodegeneration. 
Biosci. Rep. 27, 87–104.

Przedborski, S., Vial, M., and Jackson-
Lewis, V. (2003). Neurodegeneration: 
what is it and where are we? J. Clin. 
Invest. 111, 3–10.

Puka-Sundvall, M., Gajkowska, B., 
Cholewinski, M., Blomgren, K., 
Lazarewicz, J. W., and Hagberg, H. 
(2000). Subcellular distribution of 
calcium and ultrastructural changes 
after cerebral hypoxia-ischemia in 
immature rats. Brain Res. Dev. Brain 
Res. 125, 31–41.

Qiu, X., Chen, Y., and Zhou, M. (2001). 
Two point mutations in mitochondrial 
DNA of cytochrome c oxidase coex-
ist with normal mtDNA in a patient 
with Alzheimer’s disease. Brain Res. 
893, 261–263.

Rami, A., Bechmann, I., and Stehle, J. H. 
(2008). Exploiting endogenous anti-
apoptotic proteins for novel therapeu-
tic strategies in cerebral ischemia. Prog. 
Neurobiol. 85, 273–296.

Ravagnan, L., Roumier, T., and Kroemer, 
G. (2002). Mitochondria, the killer 



Frontiers in Aging Neuroscience www.frontiersin.org August 2010 | Volume 2 | Article 138 | 13

Correia et al. Mitochondria as gateways to neuroprotection

Zhang, D. X., Chen, Y. F., Campbell, W. 
B., Zou, A. P., Gross, G. J., and Li, P. 
L. (2001). Characteristics and super-
oxide-induced activation of recon-
stituted myocardial mitochondrial 
ATP-sensitive potassium channels. 
Circ. Res. 89, 1177–1183.

Conflict of Interest Statement: The 
authors declare that the research was 
conducted in the absence of any com-
mercial or financial relationships that 
could be construed as a potential conflict 
of interest.

Received: 29 December 2009; paper pend-
ing published: 14 July 2010; accepted: 11 
August 2010; published online: 26 August 
2010.
Citation: Correia SC, Carvalho C, Cardoso 
S, Santos RX, Santos MS, Oliveira CR, 
Perry G, Zhu X, Smith MA and Moreira 
PI (2010) Mitochondrial precondition-
ing: a potential neuroprotective strategy. 
Front. Ag. Neurosci. 2:138. doi: 10.3389/
fnagi.2010.00138
Copyright © 2010 Correia, Carvalho, 
Cardoso, Santos, Santos, Oliveira, Perry, 
Zhu, Smith and Moreira. This is an open-
access article subject to an exclusive license 
agreement between the authors and the 
Frontiers Research Foundation, which 
permits unrestricted use, distribution, and 
reproduction in any medium, provided the 
original authors and source are credited.

Alzheimer’s disease: role of amyloid-
beta peptide alcohol dehydroge-
nase (ABAD). Int. J. Exp. Pathol. 86, 
161–171.

Yang, Y., Liu, X., Long, Y., Wang, F., 
Ding, J. H., Liu, S. Y., Sun, Y. H., Yao, 
H. H., Wang, H., Wu, J., and Hu, G. 
(2006). Activation of mitochondrial 
ATP-sensitive potassium channels 
improves rotenone-related motor and 
neurochemical alterations in rats. Int. 
J. Neuropsychopharmacol. 9, 51–61.

Yao, Z., and Gross, G. J. (1993). Role of 
nitric oxide, muscarinic receptors, 
and the ATP-sensitive K+ channel in 
mediating the effects of acetylcholine 
to mimic preconditioning in dogs. 
Circ. Res. 73, 1193–1201.

Yoshino, H., Nakagawa-Hattori, Y., 
Kondo, T., and Mizuno, Y. (1992). 
Mitochondrial complex I and II activi-
ties of lymphocytes and platelets in 
Parkinson’s disease. J. Neural Transm. 
Park. Dis. Dement. Sect. 4, 27–34.

Zaidan, E., and Sims, N. R. (1994). The 
calcium content of mitochondria 
from brain subregions following 
short-term forebrain ischemia and 
recirculation in the rat. J. Neurochem. 
63, 1812–1819.

Zhang, D. X., and Gutterman, D. D. 
(2007). Mitochondrial reactive oxy-
gen species-mediated signaling in 
endothelial cells. Am. J. Physiol. Heart 
Circ. Physiol. 292, 2023–2031.

Wang, X., Su, B., Zheng, L., Perry, G., 
Smith, M. A., and Zhu, X. (2009a). 
The role of abnormal mitochon-
drial dynamics in the pathogenesis 
of Alzheimer’s disease. J. Neurochem. 
109, 153–159.

Wang, X., Su, B., Lee, H. G., Li, X., Perry, 
G., Smith, M. A., and Zhu, X. (2009b). 
Impaired balance of mitochondrial fis-
sion and fusion in Alzheimer’s disease. 
J. Neurosci. 29, 9090–9103.

Wiegand, F., Liao, W., Busch, C., Castell, 
S., Knapp, F., Lindauer, U., Megow, 
D., Meisel, A., Redetzky, A., Ruscher, 
K., Trendelenburg, G., Victorov, I., 
Riepe, M., Diener, H. C., and Dirnagl, 
U. (1999). Respiratory chain inhibi-
tion induces tolerance to focal cerebral 
ischemia. J. Cereb. Blood Flow Metab. 
19, 1229–1237.

Wu, L., Shen, F., Lin, L., Zhang, X., Bruce, 
I. C., and Xia, Q. (2006). The neuro-
protection conferred by activating 
the mitochondrial ATP-sensitive K+ 
channel is mediated by inhibiting the 
mitochondrial permeability transition 
pore. Neurosci. Lett. 402, 184–189.

Xie, J., Duan, L., Qian, X., Huang, X., Ding, 
J., and Hu, G. (2009). K(ATP) channel 
openers protect mesencephalic neu-
rons against MPP(+)-induced cytotox-
icity via inhibition of ROS production. 
J. Neurosci. Res. 88, 428–437.

Yan, S. D., and Stern, D. M. (2005). 
Mitochondrial dysfunction and 

Valla, J., Schneider, L., Niedzielko, T., Coon, 
K. D., Caselli, R., Sabbagh, M. N., Ahern, 
G. L., Baxter, L., Alexander, G., Walker, 
D. G., and Reiman, E. M. (2006). 
Impaired platelet mitochondrial activ-
ity in Alzheimer’s disease and mild 
cognitive impairment. Mitochondrion 
6, 323–330.

Vanden Hoek, T. L., Becker, L. B., Shao, Z., 
Li, C., and Schumacker, P. T. (1998). 
Reactive oxygen species released 
from mitochondria during brief 
hypoxia induce preconditioning in 
cardiomyocytes. J. Biol. Chem. 273, 
18092–18098.

Wang, J., Xiong, S., Xie, C., Markesbery, W. 
R., and Lovell, M. A. (2005). Increased 
oxidative damage in nuclear and mito-
chondrial DNA in Alzheimer’s disease. 
J. Neurochem. 93, 953–962.

Wang, X., Su, B., Fujioka, H., and Zhu, 
X. (2008a). Dynamin-like protein 1 
reduction underlies mitochondrial 
morphology and distribution abnor-
malities in fibroblasts from sporadic 
Alzheimer’s disease patients. Am. J. 
Pathol. 173, 470–482.

Wang, X., Su, B., Siedlak, S. L., Moreira, 
P. I., Fujioka, H., Wang, Y., Casadesus, 
G., and Zhu, X. (2008b). Amyloid-
beta overproduction causes abnormal 
mitochondrial dynamics via differen-
tial modulation of mitochondrial fis-
sion/fusion proteins. Proc. Natl. Acad. 
Sci. U.S.A. 105, 19318–19323.




