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What NeurogeNetic StudieS caN offer
Knowledge of genetic influences on cognitive aging can constrain 
and guide interventions aimed at limiting age-related cognitive 
decline in older adults. Progress in understanding the neural basis 
of age-related cognitive change will also depend on a better under-
standing of the neurogenetics of cognition and of neurobiological 
mechanisms underlying normal and pathological aging. Recent 
studies have pointed to considerable plasticity and capacity for 
reorganization in aging brains, both at behavioral and neuronal 
levels (Greenwood, 2007; Park and Reuter-Lorenz, 2009; Payton, 
2009). An important challenge for future research, and a focus 
of this review article, is to determine how knowledge of genetic 
influences can be used to develop or modify interventions aimed 
at limiting age-related cognitive decline through a better under-
standing of the neural impact of genetic variants relevant to cog-
nitive aging.

The central role of genetics in cognitive aging is supported by 
empirical evidence from twin studies that point to a high degree 
of heritability of both general cognitive ability (McClearn et al., 
1997; Deary et al., 2006, 2009a,b) and specific cognitive functions 
(Fan et al., 2001; Swan and Carmelli, 2002). Heritability estimates 
for cognitive traits tend to increase with age from early childhood 
to adolescence and young adulthood, and the additive genetic con-
tribution to general cognitive ability and broad cognitive traits 
remains high (greater than 50%) in middle and old age. High esti-
mates of heritability are also found for global brain morphomet-

iNtroductioN
As a group, older individuals typically perform more poorly than 
younger adults in most (but not all) tests of mental functioning. 
Empirical investigations and reviews highlight speed of process-
ing, executive functioning, and working memory as central to nor-
mal, age-related decline (Park and Reuter-Lorenz, 2009). Episodic 
memory is also affected, but more so in disorders of aging such as 
Alzheimer’s disease (AD) than in normal aging (Buckner, 2004). 
There is some debate as to when, on average, such cognitive aging is 
first detectable. Longitudinal research indicates that age-related cog-
nitive decline begins only after about 60 years, while cross-sectional 
studies propose an earlier onset, perhaps as early as 30 years (Park 
et al., 2002; Salthouse, 2009; Schaie, 2009). But irrespective of the age 
at which cognitive decline is first seen, researchers agree that there are 
substantial individual differences in cognitive aging: Some persons 
show considerable deterioration in cognitive performance as they age 
while others show little or no decline, and a small minority may even 
be superior to their younger counterparts (Hillman et al., 2006).

What are the factors contributing to such individual variation 
in the pattern of cognitive aging? Furthermore, what can be done 
to develop appropriate preventative efforts directed at those most 
likely to exhibit cognitive decline? Changes in brain plasticity – 
whether due to genetic or environmental factors, or a combination 
of the two – probably play an important role in explaining such 
individual variability in cognitive aging (Kramer et al., 2004; Burke 
and Barnes, 2006).

Neurogenetic effects on cognition in aging brains: a window 
of opportunity for intervention?

Ivar Reinvang1, Ian J. Deary2, Anders M. Fjell1, Vidar M. Steen3,4, Thomas Espeseth1 and Raja Parasuraman5*
1 Department of Psychology, University of Oslo, Oslo, Norway
2 Department of Psychology, University of Edinburgh, Edinburgh, UK
3 Department of Clinical Medicine, University of Bergen, Bergen, Norway
4 Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
5 Department of Psychology, George Mason University, Fairfax, VA, USA

Knowledge of genetic influences on cognitive aging can constrain and guide interventions aimed 
at limiting age-related cognitive decline in older adults. Progress in understanding the neural basis 
of cognitive aging also requires a better understanding of the neurogenetics of cognition. This 
selective review article describes studies aimed at deriving specific neurogenetic information 
from three parallel and interrelated phenotype-based approaches: psychometric constructs, 
cognitive neuroscience-based processing measures, and brain imaging morphometric data. 
Developments in newer genetic analysis tools, including genome wide association, are also 
described. In particular, we focus on models for establishing genotype–phenotype associations 
within an explanatory framework linking molecular, brain, and cognitive levels of analysis. Such 
multiple-phenotype approaches indicate that individual variation in genes central to maintaining 
synaptic integrity, neurotransmitter function, and synaptic plasticity are important in affecting 
age-related changes in brain structure and cognition. Investigating phenotypes at multiple levels 
is recommended as a means to advance understanding of the neural impact of genetic variants 
relevant to cognitive aging. Further knowledge regarding the mechanisms of interaction between 
genetic and preventative procedures will in turn help in understanding the ameliorative effect 
of various experiential and lifestyle factors on age-related cognitive decline.

Keywords: aging, cognition, genetics, interventions, neuroimaging, psychometrics

Edited by:
Arthur F. Kramer, University of Illinois at 
Urbana-Champaign, USA

Reviewed by:
Naftali Raz, Wayne State University, 
USA
Terry E. Goldberg, Feinstein Institute/
AECOM, USA

*Correspondence:
Raja Parasuraman, Department of 
Psychology, George Mason University, 
4400 University Drive, MS 3F5, Fairfax, 
VA 22030, USA.
e-mail: rparasur@gmu.edu



Frontiers in Aging Neuroscience www.frontiersin.org November 2010 | Volume 2 | Article 143 | 2

Reinvang et al. Neurogenetics of cognitive aging

the discovery of neural circuitry that translates genetic effects into 
behavior. These investigators were less concerned with heritability 
of the imaging probe used, so long as it instantiates a plausible 
neurobiological mechanism, which in the present context would 
be a relationship to cognitive aging. Greenwood and Parasuraman 
(2003) expressed a similar view, stating that, for several functions, 
knowledge of brain networks and corresponding innervation can 
be used to guide selection of SNPs in neurotransmitter genes. They 
argued that good phenotype candidates for revealing genetic asso-
ciations can be derived from cognitive neuroscience paradigms. 
Deary et al. (2010) and the Consortium for Neuropsychiatric 
Phenomics (CNP, Sabb et al., 2009) use statistical and informat-
ics tools to systematize and distil shared functional components 
from psychometric test batteries from which a large amount of 
information is available from generations of clinical and aging 
studies of large samples. While poorly defined phenotypes are 
most clearly evident at the level of cognitive concepts, ill-defined 
phenotypes occur at all levels of inquiry, including neural systems 
(Sabb et al., 2009).

Variation in sample characteristics represents another important 
factor that can limit the efficacy of genetic association studies of 
cognitive aging (Payton, 2009). Representative population-based 
samples typically differ significantly from convenience-based sam-
ples, which in Western European countries contain an overrepre-
sentation of well educated women and participants with above 
average IQ. Ethnicity is also important, and for genes of interest 
with respect to cognitive aging such as APOE, there are major dif-
ferences in allele frequencies between ethnic groups. At least in the 
context of pathology these variations have different associations 
with risk, so that a population with a high incidence of APOE ε4 
may show a weak effect of ε4 carrier status on risk of dementia 
(Gureje et al., 2006), which in other populations are associated 
with a high risk effect (Raber et al., 2004). These are general issues 
affecting the whole field of cognitive and neuropsychiatric genetics. 
With respect to the neurogenetics of cognitive aging, considera-
tions of what are the typical and possibly most plastic age-related 
changes must constrain further discussion.

overvieW of the PreSeNt article
This paper presents efforts to derive specific neurogenetic infor-
mation from multi-phenotype-based approaches. Psychometric 
constructs, cognitive neuroscience-based processing measures, and 
brain imaging morphometric data represent three key approaches 
that can be interrelated to better explore the neurogenetics of cogni-
tive aging. In addition, interpreting the results in a genetic context 
requires an update of developments in genetic analysis tools, and 
models for establishing genotype–phenotype association within an 
explanatory framework including plausible links between molecu-
lar, brain, and cognitive levels of analysis. Accordingly, after describ-
ing representative results from the three approaches, we discuss the 
implications of the newly emerging genetic tools for the cognitive 
neurogenetics of aging.

Several broad and comprehensive reviews of this field have 
recently been published (Greenwood and Parasuraman, 2003; 
Payton, 2009; Deary et al., 2010). Furthermore, reports of new 
genetic association findings are continuously being published. 
Many of these prove to not be replicable (Payton, 2009). The present 

(Toga and Thompson, 2005; Deary et al., 2010) and, with some 
 variation, also for anatomical subdivisions of the brain (Sullivan 
et al., 2001). Brain markers of cognitive processing such as event-
related potentials (ERPs) likewise show substantial heritability 
(Almasy et al., 2001), as do components of the electroencephalo-
gram (EEG) (Posthuma et al., 2001; Smit et al., 2010).

limitatioNS aNd ProblemS iN NeurogeNeticS
Over a century of behavior genetic studies using the twin method 
and the last decade of molecular genetic studies of normal adults 
and neuropsychiatric groups have provided an extensive database 
of findings on genetic contributions to variation in cognitive func-
tioning (Plomin and Crabbe, 2000; Goldberg and Weinberger, 2004; 
Parasuraman and Greenwood, 2004; Green et al., 2008). Despite 
this extensive research, efforts to identify genetic mechanisms at 
the single gene level for traits with high heritability have run into 
considerable problems (Payton, 2009; Deary et al., 2010). Similar 
difficulties have plagued genetic studies of numerous neuropsy-
chiatric disorders (Tan et al., 2008).

Single gene studies have faced problems of small effect sizes and 
frequent lack of replication. Genetic association studies of neuropsy-
chiatric disease, for example, often report very low (∼0.01) effect 
sizes (Ioannidis et al., 2001). This has lead to the current rush toward 
expensive, large-scale genome wide association studies (GWAS), 
which we discuss in a later section of this paper. To date, the GWAS 
approach has not provided clear solutions to the problems associ-
ated with genetic association studies of normal cognition or disease. 
Despite this, one fact provides an encouraging sign with respect to 
future progress in genetic studies of cognitive aging – that individual 
differences in cognitive functioning remain highly heritable in older 
adults. Such heritability could reflect largely stable traits present 
from the time of childhood. A more likely possibility – since cogni-
tive heritability increases with age – is that genetic contributions to 
individual differences in cognitive functioning in older adults reflect 
specific age-related influences that are absent in (or different to) 
that in younger individuals. The APOE gene, whose influences on 
cognition we discuss in later sections of this paper, could represent 
one such major age-specific genetic effect. That is, if apolipoprotein 
E is involved in neuronal repair after damage (Mahley et al., 2006), 
and if variants of the gene produce isoforms with different repair 
efficiency, then it would be expected that differential effects in neural 
and cognitive functions might emerge only after years in which the 
cumulative effects of these differences became apparent. Such age-
dependent penetrance of a phenotypic effect is commonly observed 
in many monogenic disorders.

Another critical issue for progress in neurogenetic studies of 
cognitive aging is the identification and selection of appropriate 
phenotypes. Several researchers have discussed this issue, with 
differing recommendations (Bilder et al., 2009). Goldberg and 
Weinberger (2004) proposed criteria for considering cognition-
based phenotypes as good candidates for a genetic association study, 
including evidence for heritability, good test–retest reliability, and 
known neurobiology that can plausibly be related to candidate gene 
effects. From the point of view of the current article, one would 
add that the phenotype should also be sensitive to aging, including 
accelerated age-related decline. Meyer-Lindenberg and Weinberger 
(2006) advocate functional neuroimaging phenotypes as a guide to 
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in normal cognitive aging, where cholinergic, noradrenergic, and 
glutamatergic mechanisms may be associated with function in spe-
cific cognitive domains (Fan et al., 2003; Greenwood et al., 2005a, 
2009a,b; Parasuraman et al., 2005; Espeseth et al., 2007; Winterer 
et al., 2008).

modelS for geNe-cogNitive agiNg aSSociatioNS
Models by which an increase or change in the pattern of genetic 
influence may be seen in old compared to young adults persons may 
firstly recognize the plasticity of gene function, and the possibility 
that patterns of gene expression changes with age. This may result in 
a finding of age-specific gene-cognition association patterns. Recent 
studies of gene expression in brain tissue from several regions of 
the brain indicate that there are indeed substantial differences in 
gene expression in old compared to young persons, and that the 
frontal lobes show the most marked differences (Berchtold et al., 
2008). However, the changes involve a large and highly variable set 
of genes, so it seems unlikely that, based on changes in gene expres-
sion, one could find a consistent age-cognition pattern associated 
with a single SNP or even with a single gene. In line with this, it 
should be noted that global gene expression studies of human corti-
cal areas have reported large inter-individual variations (Watakabe 
et al., 2001; Khaitovich et al., 2004), and such variation between 
individuals seems to be larger among humans than among chim-
panzees (Khaitovich et al., 2004).

Age-related findings may result from SNP variation in genes 
that in themselves have small effect sizes in young people, but may 
assume greater importance because of age dependent biological 
changes. An example would be that COMT is associated with 
small variations in efficiency of dopaminergic functions, which 
may assume increasing functional significance with increasing age-
related reduction in synthesis of dopamine and loss of dopaminer-
gic synapses (Lindenberger et al., 2008). The same line of argument 
may be used for cholinergic function, in which age-related loss of 
nicotinic receptors is well documented (Court et al., 1997; Mitsis 
et al., 2009). In this model the relevant SNP has age-invariant func-
tions, but the effect of the SNP variation increases because of nor-
mal age-related neurobiological changes in brain resources.

This line of thinking may be extended to include pathological age-
related changes. While the distinction between normal and patho-
logical neurobiological mechanisms in aging is fuzzy, most would 
agree that accumulation of proteinopathies (β amyloid and tau) in 
the brain is pathological. Studies by Braak and Braak (1995) indicate 
that a significant proportion (30–40%) of cognitively normal persons 
have some accumulation of these proteins in the brain before age 
60. APOE polymorphisms affect the efficiency of β amyloid syn-
thesis and clearance in the brain, thus paving the way for complex 
interactions of effects of the same gene on both normal (synaptic) 
and pathological processes affecting cognition. In this scenario there 
would be age dependent effects of APOE, but the findings would be 
variable according to the load of additional pathological factors.

rePreSeNtative NeurogeNetic StudieS
PSychometric StudieS
Psychometric cognitive tasks have properties of standardization 
and documented reliability and validity that make them suit-
able in research on individual differences. Furthermore, data are 

article will focus on a selection of the most intensively studied 
genetic variants, for which data are available from all the three 
approaches discussed here. We also highlight data mainly from 
studies by the present group of authors, who are collaborating on a 
joint project examining the contributions of cognitive neuroscience 
and neurogenetics to the study of cognitive aging. Our focus dif-
fers from previous reviews in that we emphasize the importance of 
investigating phenotypes at multiple levels: such an approach allows 
for an assessment of the neural impact of genetic variants that are 
relevant to an understanding of cognitive aging and of interventions 
aimed at reducing age-related cognitive decline.

geNeS aNd geNotyPeS
The apolipoprotein E gene (APOE) is the most intensively studied 
gene in the cognitive aging and neurogenetics literature. There are 
three different alleles (ε2, ε3, and ε4) of APOE. Carriers of the ε4 
allele are at increased risk for developing AD in a gene dose depend-
ent manner (Corder et al., 1993) and also have a dose dependent 
increased risk of an earlier disease onset (Raber et al., 2004). In 
addition to the impact on AD pathology, apolipoprotein E can 
influence normal brain structure and function by affecting synaptic 
generation and other restorative mechanisms involving cholesterol 
transport and metabolism (Mahley et al., 2006). Cognitively nor-
mal older adults with the ε4 allele show lowered cerebral glucose 
metabolism as indexed by positron emission tomography (PET) 
in the same cortical regions as clinically diagnosed AD patients 
(Reiman et al., 1996). The same regional abnormalities were 
reported in a study of healthy young ε4 carriers in their 20s and 
30s (Reiman et al., 2004), pointing to the possibility of a very long 
prodromal period for AD development. Recent findings (Reiman 
et al., 2009; Small et al., 2009) indicate that increased accumulation 
of AD pathology (fibrillar amyloid β and tau proteins) is found in 
cognitively normal APOE ε4 carriers of age 60–70, indicating that a 
clear distinction between normal and pathological effects of APOE 
ε4 on typical cognitive aging may not be possible.

Brain-derived neurotrophic factor (BDNF) has a well-
 documented function in hippocampal learning mechanisms (Egan 
et al., 2003; Gooney et al., 2004) and plays an important role in 
brain development. Studies by Hariri et al. (2003) and Pezawas 
et al. (2004) have indicated an effect of a specific SNP in this gene 
(rs6265) on episodic memory performance and on brain morphol-
ogy, including hippocampal volume and prefrontal cortex volume. 
BDNF is integrated in a cascade of genetic effects influenced by SNP 
variation in regulatory genes (Le Hellard et al., 2009).

Cathecol-O-methyl-transferase (COMT) is a gene controlling 
bioavailability of dopamine in the synaptic cleft, where a specific 
SNP (rs4680) is associated with a less stable form of the enzyme. 
Variation in this SNP has been associated with working memory 
capacity and activation of prefrontal cortex during tasks requiring 
short-term retention and manipulation of information. COMT is 
the most widely studied member of the class of neurotransmission-
related genes, and increased focus on this gene is partly influenced 
by the strong interest in dopaminergic mechanisms in neuropsy-
chiatry. Payton (2009) observed that studies of neurotransmitter 
genes (including BDNF) account for two-thirds of the publica-
tions in the field of cognitive neurogenetics in healthy popula-
tions. Other neurotransmission genes may be of equal relevance 
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 psychophysical measures (e.g., inspection time). A specific aim of 
further investigation is to discover whether speed of  information 
processing mediates the genetic influences on cognition at age 70.

Studies of smaller follow-up samples from the Scottish Mental 
Surveys of 1932 and 1947 have reported significant contributions to 
variance in normal cognitive aging from variation in APOE (Deary 
et al., 2002), COMT (Harris et al., 2005), and BDNF (Harris et al., 
2006). APOE provided a clear example of a genetic polymorphism 
that in the same sample was related to cognitive ability in old age 
but not in youth (Deary et al., 2002). Harris et al. (2006) found that 
BDNF genotype was significantly associated with later life Raven 
scores, controlling for sex and childhood IQ. This study indicated 
that BDNF genotype contributes to age-related changes in reason-
ing skills, which are closely related to general intelligence. However, 
the Met homozygotes scored significantly higher than heterozygotes 
and Val homozygotes, in contrast to findings that Met carriers have 
poorer memory. Starr et al. (2007) studied three waves of repeated 
testing between ages 64 and 68 years in a cohort of community vol-
unteers (the Aberdeen Birth Cohort 1936, who had taken part in the 
Scottish Mental Survey of 1947) who had validated childhood IQ 
data. After adjusting for childhood IQ, wave of testing, and specific 
test type, COMT Val158Met polymorphism had a significant overall 
effect on cognition. The study adds to the evidence that the Val/Val 
genotype has a detrimental effect on cognition.

The LBC36 cohort has recently been extensively studied as a 
testing ground for replication of cognitive gene association find-
ings. Luciano et al. (2009b) examined the association of APOE to 
memory and, of the eight measures tested, spatial span forward was 
significantly associated with APOE ε4 variation when adjusting for 
childhood IQ, whereas Logical memory immediate was associated 
with APOE ε4 variation in the analysis not controlling for child-
hood IQ. Neither of these tests was significant when a correction 
for multiple testing was applied. The authors concluded that APOE 
ε4 does not influence memory abilities in a normal population of 
70-year-olds. In another report Luciano et al. (2009a) analyzed 
APOE in relation to measures of speed of processing and working 
memory and found that APOE was associated with the general 
cognitive factor, two non-verbal tests, and choice RT variability. 
As expected, the ε4 allele was the risk allele. With the exception 
of choice RT variability, they did not observe any main effect of 
APOE on the processing speed measures. However, the correla-
tion between childhood ability and speed was lower in ε4 allele 
carriers. The investigators concluded that APOE has an influence 
on non-verbal cognition in old age and interacts with childhood 
IQ to influence processing speed. Houlihan et al. (2009) selected 
19 SNPs from 10 genes previously found to be associated with 
cognition, including BDNF and COMT, and examined them both 
individually and for additive effects in the Lothian Birth Cohort 
1936. No effects of BDNF were found, but for COMT associations 
with reasoning ability and fluency were noted. They acknowledged 
the failure to replicate findings from a smaller sample (Harris et al., 
2005, 2006) in this larger sample.

The Norwegian Cognitive Neurogenetics sample (NCNG) is 
a convenience sample of healthy participants in the age range 
20–80, which allows for assessment of age effects in different age 
ranges (Espeseth et al., 2006). The behavioral data include tests of 
intelligence, attention, working memory, and episodic memory, 

 available from several studies with large numbers of participants, 
laying the ground for meta-analyses and evaluation of replicability. 
Batteries of psychometric tests have been extensively analyzed to 
reveal a latent structure of underlying factors that are candidates 
for explanatory constructs. These constructs must have biologi-
cal plausibility and neural correlates in order to have explanatory 
value and avoid the fallacy of reification (Deary, 2000). Deary 
et al. (2010) point out that there is only a small proportion of test 
variance that is explained by domain specific cognitive factors, 
with most of the variance being attributable to a common factor 
to all tests (g) or by highly test-specific factors. Attempts to inte-
grate genetic association studies in terms of cognitive domains like 
memory, attention etc. based on conceptual grouping of reported 
test findings are therefore sensitive to confounding by g or test 
specific factors. In this view, any finding of an association between 
a genetic variant and scores on a test of a specific cognitive domain 
must bear in mind that the association could be due to the genetic 
contribution to general cognitive ability (especially) or to test-
specific variation (less so).

Comprehensive reviews of association studies with APOE 
have been published by Small et al. (2004) and recently updated 
by Wisdom et al. (2009), including 77 studies of more than 
40,000 participants. They conclude that for memory there is a 
moderate size association with APOE carrier status, and addi-
tional associations of APOE with executive function and global 
cognitive ability. The difference between ε4 carriers and non-
carriers increase with increasing age for memory and  global 
cognitive ability. Sabb et al. (2009) use a literature-based infor-
matics approach to define latent constructs for which there seem 
to be sufficient agreement about operational definitions. They 
find that within the cognitive domain there is sufficient consen-
sus for memory and intelligence to operationally define stable 
phenotypes. They review the results of association studies for 
APOE, BDNF, and COMT and conclude that for intelligence 
there is a weak effect of APOE, and small effects of BDNF and 
COMT. For memory about 75% of 22 included studies show an 
association of APOE ε4 with poorer memory, but the effect sizes 
are small. For BDNF and COMT only four studies with adequate 
phenotypes were found, and the results are mixed. For COMT, 
the available results for more than 40 studies have been sum-
marized by Barnett et al. (2008), who conclude that only a weak 
association with intelligence can withstand rigorous statistical 
tests. This conclusion has been challenged by Goldman et al. 
(2009) on the ground that neurobiological plausibility must be 
taken into consideration.

Among several Scottish and UK population-based cohorts the 
Lothian Birth Cohort 1936 (LBC36, Deary et al., 2007) is unique in 
that it includes a representative sample of 1,000 individuals born in 
1936, and for whom cognitive data are available both at age 11 and 
age 70–80. At age 70 (and a further follow up at age 73 is complete) 
data are available for tests of intellectual function (Wechsler Adult 
Intelligence Scales III), for memory (Wechsler Memory Scales III) 
and for reaction time (RT) paradigms. Processing speed measures 
applied to human subjects range from psychometric behavioral 
type tests (e.g., the Digit Symbol and Symbol Search subtests of 
the Wechsler Adult Intelligence Scales), through cognitive experi-
mental assessments (e.g., simple and choice RT  procedures), to 
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A good example of the modular cognitive neuroscience approach 
is Posner’s influential “attentional network” theory. Three separate 
attentional functions – orienting, alerting, and executive function – 
are linked to the activation of separate but overlapping cortical 
and subcortical networks (Posner and Petersen, 1990; Posner and 
Girolamo, 1998; Fan et al., 2005). Given evidence that at least some 
of these putative cognitive modules are heritable (Fan et al., 2001; 
Swan and Carmelli, 2002), this approach proposes that behavioral 
assays of these attentional networks can serve as phenotypes for 
molecular genetic studies. Such cognitive neuroscience phenotypes 
may be useful for examining genetic contributions not only to 
variation in normal cognition (Greenwood et al., 2000, 2005a,c; 
Fossella et al., 2002; Fan et al., 2003; Parasuraman et al., 2005; 
Parasuraman and Espeseth, 2007; Posner et al., 2007), but also to 
cognitive changes associated with aging and neurodegenerative dis-
ease (Parasuraman et al., 2002; Greenwood et al., 2005b; Espeseth 
et al., 2006).

Genetic studies using the cognitive neuroscience approach have 
their limitations. One is that sample sizes can be small because of fac-
tors such as the time needed to administer information- processing 
paradigms with many variables or the high cost of neuroimaging 
techniques such as MRI. Also, effect sizes in some studies are low, 
and there have been some failures to replicate (Green et al., 2008). 
But, as discussed previously, other methods share these limitations 
as well.

The major advantage of the approach is that the growing theo-
retical and empirical knowledge base in cognitive neuroscience 
can be used to guide and refine phenotypes for molecular genetic 
studies. Furthermore, information-processing and neuroimag-
ing studies of cognitive functions can also be profitably linked to 
lesion, electrophysiological, and pharmacological studies of the 
same functions in rodent or monkey models, as a result of which 
clearer inter-relationships can be forged between genes, SNPs, gene 
expression, and neurotransmitter innervation of neurocognitive 
networks. With some exceptions, such human and animal linkages 
are difficult to establish for psychometric tests.

Consider visuospatial attention – the “orienting” component 
of Posner’s attentional networks – as an example. Versions of the 
basic Posner orienting task have been administered to healthy 
adults, infants, and children, patients with brain lesions and neu-
rodegenerative disorders, as well as to monkeys and rats (Posner, 
2004). Neuroimaging studies have shown that a distributed brain 
network centered on the posterior parietal cortex plays a critical 
role in attentional orienting to spatial locations (Corbetta et al., 
2000; Yantis et al., 2002; Fan et al., 2005). At the same time, the 
neurochemical innervation of this brain region and its role in atten-
tional function has been established in animal studies that point 
to the importance of nicotinic cholinergic receptors (Everitt and 
Robbins, 1997). Nicotinic receptors (nAChRs) are important in 
regulating fast synaptic transmission (Alkondon et al., 2000) and 
play a role in attention (Levin and Simon, 1998). These receptors 
are composed of combinations of several alpha and beta subunits. 
The alpha-4 nAChR subunit is a component of the most widely 
distributed nicotinic receptor in the brain, including the posterior 
parietal cortex, alpha-4/beta-2 (Flores et al., 1996). In a PET study, 
Mentis et al. (2001) also showed predominant expression of nico-
tinic receptors in parietal cortex.

in addition to experimental cognitive paradigms. The use of the 
latter experimental tests of cognitive components contrasts with 
the general cognitive ability tests used in the LBC36 studies. The 
use of these tests, as well as the cognitive neuroscience-based tests 
described in the next section, is illustrative of the multiple pheno-
type approach discussed in this paper.

In the NCNG sample with well above average IQ (mean = 118), 
APOE ε4 carriers showed no memory deficits at initial testing, but 
in a follow-up interval of 3–5 years ε4 carriers of age 60 and older 
exhibited greater decline in some measures of delayed verbal recall 
(Reinvang et al., 2010b). Reinvang et al. (2010a) used tasks of con-
text updating and interference control to test functions involving 
working memory, and found that effects of APOE were modu-
lated by gender, with reduced performance found only in male ε4 
carriers. Gender-related differences in age of onset of aging gene 
expression patterns, and evidence of interaction of APOE with 
androgen levels were suggested as neurobiological substrates for 
gender effects.

Studies of neurotransmission-related genes in the NCNG sam-
ple have so far focused on cholinergic receptor genes and inter-
action between APOE and a nicotinic receptor gene (CHRNA4). 
The evidence indicates that cognitively simple speeded tasks are 
sensitive to SNP variation in CHRNA4, perhaps more so in partici-
pants of age above 70 (Reinvang et al., 2009). Interaction (epistasis) 
of CHRNA4 with APOE influences a wider range of cognitively 
more complex tasks, including episodic memory (Reinvang et al., 
2010b). Recognizing that BDNF is enveloped in a complex cas-
cade of regulatory mechanisms, animal studies used to identify 
genes that were upregulated by BDNF during long-term potentia-
tion (LTP) in the hippocampus, to select candidate genes for their 
possible influence on cognitive functioning in healthy individuals 
(Wibrand et al., 2006). SNPs from these genes were identified in 
the NCNG, LBC1921 and LBC1936 samples, and markers in the 
doublecortin- and calmodulin kinase like 1 (DCLK1) gene, were 
found to be significantly associated with general cognition (IQ 
scores) and verbal memory function in all cohorts (Le Hellard et al., 
2009). Evidence for three regulatory associated regions on the gene 
was found. The findings suggest that re-analysis of the possible 
BDNF–DCLK1 interaction might improve the interpretation of 
conflicting results from BDNF association studies. Miyajima et al. 
(2008b) also focused on genes interacting with BDNF, and exam-
ined the RE1-silencing transcription factor (REST) gene, having 
the ability to downregulate the expression of a number of genes 
including BDNF. They found evidence of additive genetic effects 
in a sample that in a previous study has shown that the presence of 
the Met allele in BDNF Val66Met reduced performance on several 
cognitive tests (Miyajima et al., 2008a).

cogNitive NeuroScieNce StudieS
Genetic studies using phenotypes based on cognitive neuroscience 
research provide an additional and complementary strategy to 
the psychometric methods described in the previous section. This 
approach capitalizes on the breakthroughs in understanding the 
neural bases of cognition that have been made possible by modern 
cognitive neuroscience research, particularly neuroimaging studies, 
which have largely followed a modular view of cognition (Fodor, 
1983; Poldrack, 2008).
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receptors in attention (Levin and Simon, 1998) and the fact that 
cortical synthesis of acetylcholine is dependent on local availability 
of lipids, which are strongly influenced by APOE (Poirier, 2000). 
Furthermore, the interaction was stronger in the middle-aged 
participants than in the older participants. Previous research has 
also suggested that among older adults, APOE effects on cogni-
tion decrease with age (Small et al., 2004), including effects on the 
cued letter discrimination task (Negash et al., 2009). Espeseth et al. 
(2006) also found a trend for individuals with combined APOE-ε4/
CHRNA4 TT genotypes to show both lower white matter volume 
and slower overall RT on the attention task. The interaction of a 
neurotransmission gene (CHRNA4) and an Alzheimer’s suscepti-
bility gene (APOE) suggests that the efficiency of neuronal repair 
mechanisms may modulate the cholinergic system to influence 
attentional function in middle-aged and older adults.

Structural braiN imagiNg StudieS
Volumetric and other structural brain measures provide a third 
category of phenotype for use in neurogenetic studies of cognitive 
aging. Twin studies have shown that characteristics of both gray 
matter (GM) (Toga and Thompson, 2005) and white matter (WM) 
(Pfefferbaum et al., 2001; Chiang et al., 2009) are highly heritable. 
Further, the relationships between brain structure and cognitive 
performance are to a substantial degree mediated by genetic fac-
tors (Thompson et al., 2001; Posthuma et al., 2002; Chiang et al., 
2009). Such findings have understandably generated wide interest 
in studying the effects of inter-individual genetic variations on 
brain function and structure. Imaging genomics is the term used 
for the field of research that aims to connect genetic research with 
imaging studies of brain structure and function.

As, with the other phenotypes, there are some limitations of 
the structural brain approach. Petrella et al. (2008) argued recently 
that most studies have been limited by small convenience samples. 
In addition, research in this area has typically been cross-sectional 
in nature as opposed to the more desirable longitudinal design. A 
final limitation is that many studies are exploratory in nature and 
lack long-term clinical correlations. Adding to the complexity is 
that there are almost certainly numerous genes that affect each 
brain structure. Selection of well-defined and biologically valid 
phenotypes, therefore, remains a common problem in imaging 
genomics as it is for cognitive neurogenetics.

Effects of APOE alleles
As in the case of cognitive studies, the ε4 allele of APOE gene has 
also been the focus of the largest number of studies of normal aging. 
Due to its multiple functions, APOE may impact both GM and 
WM in healthy aging (Bartzokis et al., 2007). However, the direct 
effects of APOE on brain structure have been difficult to establish in 
healthy samples. Some studies have found negative effects of APOE 
ε4 on brain volumes in older adults, especially in the hippocampus 
(Plassman et al., 1996; Tohgi et al., 1997; den Heijer et al., 2002; 
Lemaitre et al., 2005; Lind et al., 2006; Wishart et al., 2006; Mueller 
et al., 2008), while others have not (Reiman et al., 1998; Bigler et al., 
2003; Cherbuin et al., 2008). Even if volume differences do exists, it 
is not clear whether APOE has a direct effect on aging, or whether 
the differences are related to earlier developmental factors. Thinner 
entorhinal cortex has been found in young children and teenagers who 

These findings indicate that identifying genes that are expressed 
in parietal cortex and influence nicotinic cholinergic function 
would be particularly suitable candidates for association studies 
of attention. One such gene is the CHRNA4 gene, which is found 
on chromosome 20 and is involved in the assembly of the alpha4-
beta-2 subunits that form the major nicotinic receptor in parietal 
cortex and other cortical regions (Flores et al., 1996). Accordingly, 
Parasuraman et al. (2005) investigated whether polymorphisms 
in this gene would be associated with individual variation in per-
formance of a visuospatial attention task that has been linked to 
activation of posterior parietal cortex. They examined a polymor-
phism involving a common C to T substitution at position 1545 
(CHRNA4 C1545T) in a sample of 89 healthy adults. Participants 
were administered a cued letter discrimination task modeled after 
the orienting task introduced by Posner (1980). Cue validity (valid, 
invalid, neutral) was varied so that both benefits (neutral cue RT – 
valid cue RT) and costs (invalid cue RT – neutral cue RT) of cueing 
could be obtained. Both RT benefits of valid cues and RT costs of 
invalid cues on letter discrimination varied in a systematic manner 
with CHRNA4 genotype. With an increased “gene dose” of the C 
allele (from 0 to 1 to 2 C alleles) RT benefits increased progressively, 
whereas RT costs decreased, also in a similarly progressive man-
ner. The results provided evidence for an association between the 
CHRNA4, and individual differences in the efficiency of shifting 
spatial attention in response to location cues, but the small sam-
ple size calls for replication. A subsequent study showed that the 
association between the CHRNA SNP and efficiency of visuospatial 
attention was not restricted to cued attention shifting, but was also 
obtained for a cued visual search task requiring changes in the size 
of attentional focus (Greenwood et al., 2005a). Such an associa-
tion is well interpreted within a cognitive neuroscience framework 
because visual search also requires activation of the same posterior 
parietal cortical region (Corbetta et al., 1995).

These CHRNA4-attention studies were not specifically targeted 
at examining genetic effects in older adults. However, a subsequent 
study by Espeseth et al. (2006) did examine CHNRA4 effects on vis-
uospatial attention in a sample of 230 middle-aged and older adults, 
both in isolation and in interaction with the APOE gene. Such an 
investigation was justified given evidence that the alpha-4/beta-2 
nAChR is implicated in both normal and pathological aging. Aging 
in mice is associated with almost complete depletion of alpha-4 
nAChR subunits in the hippocampus (Rogers et al., 1998). Human 
postmortem studies have shown that alpha-4 expression exhib-
its age-related depletion (Tohgi et al., 1998), with an additional 
decrease associated with AD (Martin-Ruiz et al., 1999).

Espeseth et al. (2006) administered the same cued letter discrim-
ination task used by Parasuraman et al. (2005) to participants who 
were genotyped for both the CHNRNA C1545T SNP and for APOE. 
Relative to non-APOE-ε4 carriers, individuals with the APOE-ε4 
allele had increased RT costs of invalid cuing, thereby replicating 
in a Norwegian sample earlier findings obtained with the same 
visuospatial attention task in United States samples (Greenwood 
et al., 2000, 2005c). An interaction was also observed between APOE 
and CHRNA4. Participants who carried the APOE-ε4 allele and 
who were also CHRNA4 TT homozygotes showed disproportion-
ately slowed RT following invalid location cues. The interaction 
is interpretable given the important role of nicotinic cholinergic 
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found Met-BDNF carriers to show larger age-related reductions 
of prefrontal cortical volume (Nemoto et al., 2007) and amygdala 
volume (Sublette et al., 2008), and generally smaller hippocampal 
and prefrontal volumes independently of age (Pezawas et al., 2004). 
Differences in hippocampal volume between Val and Met carriers 
could be due to differences in dendritic complexity, fewer neuronal 
and supporting cells, and increased cell death or decreased neuro-
genesis during embryological development or over the life-span 
(Bath and Lee, 2006).

Neuregulin 1: Of possible importance for the life-span trajectories 
of WM changes is a specific variant of the Neuregulin 1 (NRG1) 
gene, associated with reduced white matter density and anisotropy 
(McIntosh et al., 2008). WM development is a very slow devel-
opmental process (Lebel et al., 2008), which makes genes regu-
lating myelin possibly important for cognitive development and 
aging. Cellular studies have related NRG1 to myelination (Taveggia 
et al., 2008), and some diffusion tensor imaging (DTI) studies exist 
(McIntosh et al., 2008; Winterer et al., 2008; Konrad et al., 2009). 
NRG1 has also been related to RT measures in a attention task, 
which can be interpreted to mean that this gene is related to the 
capacity for fast transfer of information in the brain, probably 
though its effect on myelin (Konrad et al., 2009). Its role in brain 
aging is still mainly unknown.

Other genes of established or possible significance for cognitive 
functions are COMT, serotonergic genes, KIBRA, and GRM3 (gluta-
mate receptor, metabotropic), but the significance of these genes 
for brain structure, or, more importantly, whether they modulate 
the relationship between changes in brain structure and changes in 
cognitive abilities in aging, is not known (Petrella et al., 2008).

In sum, there is to date relatively sparse evidence for effects of 
specific SNPs on brain aging. There may be several reasons for this. 
One may be that it is difficult to distinguish pure genetic influ-
ence from gene × environment interactions. Thus, factors such as 
nutrition, physical exercise, cognitive activity, etc. may affect brain 
morphometry and how the brain is influenced by aging, and indi-
vidual differences in the level of these factors may be affected by 
genetic variations. Thus, the genetic influence on brain structure 
may partly be indirect through the influence on modulating fac-
tors. Second, different brain parameters may be related to different 
genes. For instance, a recent study found both cortical surface area 
(0.89) and thickness (0.81) to be highly heritable, but that they were 
essentially unrelated genetically (Panizzon et al., 2009). Thus, corti-
cal volume, a typical measure in neuroimaging genetics, combines 
two distinct sources of genetic influences, and this may confound 
the underlying genetic architecture of brain structure. In line with 
this, a recent study found that common sequence variations in a 
region in and around MECP2 were associated with cortical sur-
face area but not cortical thickness, specific to male gender and 
were related to only restricted cortical regions (cuneus, fusiform 
gyrus, pars triangularis) (Joyner et al., 2009). Most studies on the 
effects of specific SNPs on brain aging are cross-sectional, but due 
to large inter-individual variability, it is likely that SNPs affecting 
age-trajectories of different brain areas will be stronger predictors 
of brain change than brain differences. Some evidence for this is 
seen when effects of APOE are studied in cross-sectional versus 
longitudinal samples.

were ε4 carriers, indicating  possible life-long influences of APOE on 
brain structure (Shaw et al., 2007). However, the effect size was small, 
and only barely statistically significant (p = 0.03) with more than 530 
scans analyzed. Based on cross-sectional data, Espeseth et al. (2008) 
found thicker cortex but steeper estimated decline in several areas in 
healthy middle-aged ε4 carriers, indicating both developmental and 
age-related effects. In a follow-up study the same sample were tested 
with an attention task while ERPs were recorded. Increased thickness 
in cortical areas was associated with reduced ERP amplitudes, which 
in turn was associated with lower behavioral accuracy (Espeseth et al., 
2010). These results indicate that ε4 related increased cortical thick-
ness in ε4 carriers may be part of a dysfunctional process associated 
with advanced aging or AD, or a compensatory response to such proc-
esses. Honea et al. (2009) recently used cross-sectional data to show 
reduced GM volume in ε4 carriers, i.e. hippocampus and amygdala, 
as well as white matter diffusion (reduced fractional anisotropy, FA) 
in left parahippocampal gyrus. Still, opposite effects were also seen, 
e.g., in middle temporal and inferior frontal gyri. Thus, so far it seems 
that effects of APOE on brain volume in healthy elderly are modest, 
if existing at all, and to the degree that they are found, relationships 
appear stronger for the hippocampus than for e.g., whole-brain vol-
ume (Tohgi et al., 1997; den Heijer et al., 2002).

Some longitudinal studies have found greater rates of hippoc-
ampal atrophy in APOE ε4 carriers compared to non-carriers in 
non-demented elderly (Cohen et al., 2001; Jak et al., 2007). Crivello 
et al. (2009) published the largest study to date on effects of APOE 
on brain aging, using a longitudinal cohort of 1,186 healthy elderly. 
Accelerated atrophy with increasing age was seen in the ε4 homozy-
gotes only, with no evidence for a dose effect. Thus, it is possible 
that longitudinal studies are capable of identifying subtle effects of 
APOE on brain structure that are hidden in cross-sectional studies. 
This was supported by Jak et al. (2007), where cross-sectional com-
parisons revealed no effect of APOE on hippocampal volume, while 
longitudinal atrophy was significantly greater for the participants 
with at least one APOE ε4 allele.

There have been fewer studies addressing effects of APOE on 
WM characteristics, even though the function of APOE as involved 
in lipid transport indicates that effects on WM integrity may be as 
likely as effects on GM. Some studies have shown effects of APOE 
on diffusion properties of posterior corpus callosum and medial 
temporal lobe (Persson et al., 2006) and parahippocampal gyrus 
(Nierenberg et al., 2005) in healthy elderly. A recent study found 
higher correlations between corpus callosum volumes and age in 
ε4-carriers than non-carriers (Filippini et al., 2009). Interestingly, 
the volume of the different ROIs was generally not different between 
the APOE groups, only the age-slope, indicating that APOE exerts its 
effects on white matter volume through life. Although not explicitly 
tested, the data seems to indicate an opposite relationship between 
APOE status and WM volume in the early (ε4 > ε3) versus the late 
(ε4 < ε3) phase of adult life. Future research will settle the issue of 
whether effects of APOE are larger on WM than on GM in aging, 
and longitudinal studies will be especially important.

Effects of other candidate genes and brain aging
Neurotrophins. Neurotrophins include nerve growth factor (NGF), 
BDNF, neurotrophin 3 (NT-3) and neurotrophin 4/5 (NT-4/5), and 
the most studied SNP of the BDNF gene is the Val66Met. One study 
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Still, there are so far few published data on genome wide studies 
of cognition. Butcher et al. (2008) examined a sample of 7,000 chil-
dren who were tested for general cognitive ability (g), using more 
than 500,000 SNPs in a two-stage approach. Six SNPs yielded nomi-
nally significant associations across the normal distribution of g, of 
which only one remained significant after correction with a false 
discovery rate of 0.05. Interestingly, none of the SNPs accounted 
for more than 0.4% of the variance of g, in line with the expected 
polygenic nature of cognition. A recent, relatively small GWAS 
study (N = 514) of Digit Symbol (processing speed) and Stroop 
Color-Word (attention) performance found no genetic variants 
of large effect (Cirulli et al., in press). A larger study, which used 
over 350,000 SNPs and DNA pooling to test cognitive extremes 
in a sample of almost 8,000 children and followed up with indi-
vidual genotyping in over 3000, found no associations that survived 
multiple testing (Davis et al., in press). Their recommendations 
following these disappointing results were: use larger sample sizes, 
denser SNP arrays, and multiple replications. Since the estimated 
heritability of cognitive traits tend to increase with increasing 
age, it may be assumed that GWAS of older healthy individuals is 
more likely to further pinpoint the genetics of cognitive aging. The 
above-mentioned NCNG and LBC samples have all been subjected 
to genome-wide association studies, using Illumina microarrays 
(unpublished data).

Recently, it has been discovered that copy number variation 
(CNV) in the genome could be at least as important as SNPs for 
phenotypic variation among subjects in the population, involving 
both gain (duplication) and loss (deletion) of genomic material. 
Such CNVs have been associated with neurogenetic diseases as 
schizophrenia and autism (Sebat et al., 2007; Stefansson et al., 2008), 
and a specific CNV may predispose for several phenotypes, such as 
the 16p11.2 microdeletion that implies markedly increased risk for 
autism, mental retardation, schizophrenia and even severe obesity 
(Kumar et al., 2008; Weiss et al., 2008; Bijlsma et al., 2009; McCarthy 
et al., 2009; Merikangas et al., 2009). Genome-wide CNV informa-
tion can be extracted from the GWAS SNP data. It is therefore timely 
to explore relevant data sets for the potential role of copy number 
variation for cognitive functioning in older adults.

The newest wave of high-throughput genomics is represented by 
massively parallel sequencing technology, also named “deep sequenc-
ing”, which aims at producing the complete DNA sequence of larger 
selected parts (e.g., targeted resequencing or exome sequencing) 
or the whole genome from single subjects (for review, see Metzker, 
2010). Although the costs of such methods are still substantial 
(but rapidly declining), it is thus possible to obtain information 
about almost all genomic variants in a certain individual, including 
SNPs, CNVs, and more complex rearrangements. This approach 
has already disclosed a surprisingly high level of private DNA vari-
ants, in addition to millions of more common well known SNPs 
and CNVs, and new disease genes with monogenic inheritance are 
being identified (Ng et al., 2010). The relevance of deep sequencing 
studies for cognitive genetics remains to be seen.

SummiNg uP the StatuS of NeurogeNetic StudieS
The approaches documented above show that although each 
have limitations and problems, there is convergent information 
that individual variation in genes central to maintaining  synaptic 

Promising MR phenotypes in future studies would be cortical 
thickness and surface area measures, but not volume, since the latter 
probably confounds several sources of genetic influence. Further, 
DTI measures are very promising phenotypes, since the heritability 
of DTI is high and the development of WM is protracted through 
large parts of the adult life-span (Westlye et al., 2010). Of the com-
monly used DTI measures, however, fractional anisotropy (FA) is 
probably a less suitable candidate than the constituting diffusion 
eigenvectors (axial and radial diffusion), since it is likely that FA 
confounds distinct genetic influences.

PromiSeS aNd challeNgeS With geNome-Wide techNologieS iN 
NeurogeNetic StudieS
Although this article mainly focuses on neurogenetic data obtained 
from examination of single genes or only a few genes, the number 
of genes and SNPs that are included in association studies in general 
has undergone a tremendous increase over the last decade. Some 
years ago, technological and database developments made whole 
or genome-wide association studies (GWAS) a reality, making it 
possible to examine from 300,000 to more than one million SNPs 
over the whole genome, covering or tagging most human genes. 
The major advantage of this method is that it allows, in principle, 
for screening all genes in the genome for association to a particular 
disease or trait in a hypothesis free way, thereby permitting global 
genetic scanning and analysis of gene–gene interactions and path-
way analysis, among other possibilities.

On the down side, the GWAS approach poses various challenges. 
The inherent massive number of statistical tests represents a huge 
risk for false-positive results, which is usually solved by imple-
menting a very conservative threshold for genome-wide statistical 
significance around p = 10−8. In the range between 10−8 and nominal 
significance, there might be numerous highly interesting genetic 
determinants of the phenotype that are incorrectly assigned as non-
significant in the ocean of false negative SNPs. It is also important 
to note that with increasingly heterogenous or “non-specific” phe-
notypes, gradually larger numbers of subjects are needed, with 
resulting high costs for GWAS studies.

An early and highly cited general example is the Wellcome Trust 
Case Control Consortium (WTCCC) that performed GWAS for 
coronary heart disease, hypertension, type 1 diabetes, type 2 dia-
betes, Crohn’s disease, rheumatoid arthritis, and bipolar disorder 
(WTCCC, 2007). This study successfully uncovered many new 
susceptibility genes for most of the diseases in question, but the 
results on bipolar disorder were quite disappointing. There are 
now several published GWAS data and meta-analyses for other 
cognition-relevant neuropsychiatric diseases, such as AD, schizo-
phrenia, and autism (e.g., Bertram and Tanzi, 2009; Harold et al., 
2009; Purcell et al., 2009; Shi et al., 2009; Wang et al., 2009; Weiss 
et al., 2009). They have pointed at novel disease genes, all of small 
effect sizes. It is also worth noticing that GWAS data can be used 
to demonstrate shared genetic contribution across phenotypes, 
such as between schizophrenia and bipolar disorder, although the 
sobering tale is that the model fits better the larger the number of 
genes included (Purcell et al., 2009). This is interesting for cogni-
tion research, since the degree of genetic overlap between various 
inter-related cognitive parameters can be examined in a genome-
wide manner.
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it would be of interest to conduct additional studies in which the 
psychometric, cognitive neuroscience, or structural brain imaging 
measures described in this paper were used in studies of exercise 
or other interventions.

Further knowledge regarding the mechanisms of interactions 
between genotype and preventative factors will help in understand-
ing how the ameliorative effect of various experiential and lifestyle 
factors on age-related cognitive decline differ between individuals. 
Animal studies (Berchtold et al., 2010) indicate that the beneficial 
effect of exercise on cognition may be mediated by BDNF, indicat-
ing that further studies in humans are important.

Cognition enhancing drugs may also have genotype depend-
ent effects. Marchand et al. (2010) found that APOE ε4 carriers 
showed a greater cognitive benefit from nicotinic stimulation than 
did non-carriers. These results are interesting in view of the interac-
tion between APOE and cholinergic receptor genes cited previously 
(Espeseth et al., 2006; Parasuraman and Espeseth, 2007; Reinvang 
et al., 2010b). Raber et al. (2002) found that androgens protect 
against APOE-related cognitive decline in rodents. Burkhardt et al. 
(2006) found an interaction between testosterone levels and APOE 
in healthy cognitively normal males. For tests of executive func-
tions, but not for tests of episodic memory, ε4 carriers with high 
testosterone levels performed worse than ε4 carriers with low tes-
tosterone levels, cautioning that androgen supplementation may 
not be beneficial for this group.

Park and Reuter-Lorenz (2009) suggest that frontal lobe func-
tions form an important substrate for the scaffolding mechanisms 
believed to support normal function in the face of neurological 
damage and deterioration. That should imply that functions sub-
sumed under cognitive control and executive attention would be 
good targets for preventive intervention with a view to promote 
adaptive function. Data from the present authors and others 
indicate that there are replicable findings of influence by neu-
rotransmission genes on executive attention (Greenwood et al., 
2005b; Parasuraman et al., 2005; Espeseth et al., 2006), reasoning 
(Harris et al., 2006), and working memory (Parasuraman et al., 
2005; Greenwood et al., 2009b; Reinvang et al., 2009). The work of 
Kramer and colleagues (Colcombe and Kramer, 2003; Colcombe 
et al., 2004; Hillman et al., 2006) has indeed found that the benefits 
of aerobic exercise on cognitive functioning and in older adults are 
greatest for frontal-cortex mediated functions such as executive 
control and working memory. Accordingly, it would be of interest 
to examine whether individual differences in the degree of ben-
efit conferred by exercise and other preventative treatments can 
be parsed by neurotransmission genes that influence frontal lobe 
function. Neurotrophic and neuronal repair genes such as BDNF 
and APOE may play a similar moderating role.

Reduced hippocampal activation in concert with increased fron-
tal activation is seen in studies of older participants with normal 
memory functions. Memory impairment with changes in hippoc-
ampal activation or reduction in hippocampal volume is indica-
tive of pathological factors affecting cognitive aging negatively. 
Preventive intervention would have a focus on slowing or pre-
venting deterioration or limiting the influence of a pathognomonic 
agent. Data from the present authors and others indicate that there 
are replicable findings of influence by neurotrophic genes (BDNF) 
on episodic memory (Le Hellard et al., 2009) as well as of APOE.

integrity, neurotransmitter function, and synaptic plasticity are 
important in affecting age-related changes in brain structure and 
cognition. Studies of cognitive phenotypes may be advanced by 
clarification of contributions from general versus domain-related 
phenotypes and from closer integration of phenotypes with 
neurobiological mechanisms across animal and human studies. 
Selection of genotypes for further studies also warrants criti-
cal scrutiny. An exclusive focus on isolated SNPs disregard the 
complexity of variations within single genes, where a haplotype 
or whole-gene-based approach may have a greater likelihood of 
attaining reproducible results. Biological and genetic information 
on expression in brain tissue and regional brain differences may 
be used to a larger extent in selecting genes of interest, includ-
ing information on age-related differences. Since the majority of 
studies so far suffer from limited number of participants, and it 
is not likely that really large scales samples including very com-
prehensive information will become available in the foreseeable 
future although, replication across existing samples is a viable 
intermediate term strategy.

imPlicatioNS for cogNitive agiNg aNd iNterveNtioN
Neurogenetic studies of cognitive aging offer the promise of 
improving our understanding of how various experiential and 
life style factors may help limit cognitive decline in older adults. 
As evidence of the older brain’s plasticity mounts (Cotman and 
Berchtold, 2002; Burke and Barnes, 2006), activities such as aerobic 
exercise, engagement in cognitively stimulating tasks, etc. have been 
found to reduce cognitive decline in older adults (Kramer et al., 
1999; Hillman et al., 2006; Mahncke et al., 2006; Hertzog et al., 
2009). While, on average, older individuals may benefit from such 
preventative efforts, some may benefit more, while others may not. 
Given the evidence for APOE as a major risk gene for dementia and 
for age-related cognitive decline, interventions targeted to carriers 
of the ε4 allele are of primary interest. Carriers of ε4 constitute 
20–40% of the population in the western world and have about a 
risk of receiving a diagnosis of Alzheimer’s disease 2–8 year earlier, 
depending on ε4 dose (Raber et al., 2004, Table 4). Interventions 
that could delay onset of dementia by even months would have a 
significant impact on quality of life and health costs.

As an example of an intervention or life style factor, consider 
aerobic exercise. The beneficial effects of exercise may vary with 
APOE genotype. In a recent randomized clinical trial study, 
Lautenschlager et al. (2008) assigned older adults (mean age 68) 
with self-reported memory problems (but not meeting criteria for 
dementia) to either a 6-month home-based program of physical 
activity or a “usual care” program. Among those who participated 
in physical activity, general cognitive function was higher in those 
without the APOE-ε4 allele than in ε4 carriers. Epidemiological 
studies (Kivipelto et al., 2008) also find that midlife physical activ-
ity has a positive effect on dementia risk, and more so in APOE 
ε4 carriers.

The Lautenschlager et al. (2008) results are interesting and of 
value because of the use of a randomized trial design, which is 
rare in studies on examining factors that may influence or limit 
age-related cognitive decline (Hertzog et al., 2009). However, the 
dependent measure used in this study was a relatively crude index 
of cognition, the Alzheimer’s Disease Assessment Scale (ADAS), and 
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