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but not in young participants. However, negative results have been 
reported as well (Potter et al., 2009), and the impact of COMT 
genotype on cognition is still a matter of debate (Barnett et al., 
2008; Goldman et al., 2009).

Potential interactions between genetic phenotype and environ-
mental factors have been suggested that render neurons more or 
less vulnerable to aging processes and neurodegenerative changes 
(Mattson et al., 2004b; Lindenberger et al., 2008). For example, 
COMT genotype has been linked with the inter-individual cogni-
tive response to extrinsic manipulation: Cognitive performance, 
in this case working memory, was found to be improved in Val/
Val-carriers after pharmacologically induced dopamine release by 
oral amphetamine administration, whereas performance in Met/
Met-carriers was decreased at high working memory load (Mattay 
et al., 2003). This genotype–drug interaction was also evident in 
functional magnetic resonance imaging (fMRI) during working 
memory tasks in the same study, where Val/Val-carriers showed a 
more efficient activation after amphetamine administration, which 
was similar to the activation seen in Met/Met-carriers after pla-
cebo, and vice versa (Mattay et al., 2003). Similarly, when using a 
behavioral manipulation, Loughead et al. (2009) could demonstrate 

IntroductIon
Previous studies reported genotype-associated variations in both 
brain functions and physiology for a common single nucleotide pol-
ymorphism (SNP) in the catechol-O-methyltransferase (COMT) 
gene, leading to a substitution of valine (Val) to methionine (Met) 
at the codon 158 on chromosome 22q11 (Val158Met; Goldberg 
and Weinberger, 2004). For example, homozygous carriers of the 
Val-allele performed worse in executive and memory tasks than 
carriers of the Met-allele (Egan et al., 2001; Meyer-Lindenberg et al., 
2006; Raz et al., 2009).

This differential cognitive performance might depend on a 
higher activity of the Val-encoded COMT enzyme (Lotta et al., 
1995), playing a unique role for degradation of dopamine in the pre-
frontal cortex (PFC) (Mattay et al., 2003). Due to higher dopamine 
turnover in Val/Val-homozygotes, these individuals may exhibit less 
dopamine availability and therefore less efficient DA-dependent 
signaling in the PFC (Diaz-Asper et al., 2006; Lindenberger et al., 
2008). Moreover, the impact of COMT genotype on cognition is 
supposed to magnify during late adulthood (Diaz-Asper et al., 2006; 
Lindenberger et al., 2008). For example, Nagel et al. (2008) reported 
a clear advantage in cognitive performance of Met-carriers in old, 
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that Val/Val-carriers were more sensitive to a smoking abstinence 
challenge than Met-carriers, with respect to working memory per-
formance and PFC activation.

In a previous interventional study of our group, we showed that 
caloric restriction (CR) improved memory performance in healthy 
elderly subjects (Witte et al., 2009). In that study, CR-associated 
increases in memory performance appeared to be correlated with 
changes in insulin signaling and inflammatory activity. Potential 
interactions with COMT genotype were not assessed.

The aim of the current study was to determine whether the 
response to the dietary intervention with regard to cognition was 
modulated by COMT Val/Met-allele carrier status. To address this 
question, we post hoc assessed COMT Val158Met genotype of sub-
jects of the two intervention groups of the preceding study (Witte 
et al., 2009).

MaterIals and Methods
subjects
Thirty-nine healthy normal-to-overweight elderly subjects who 
completed a dietary intervention period in a previous study (Witte 
et al., 2009) were considered for genotyping.

Briefly, subjects included in the original study were stratified into 
three groups. One group was instructed to reduce caloric intake 
aiming at a reduction of 30% compared to previous habits (CR, 
n = 20), over a period of 3 months. Minimal caloric intake was set 
to 1.200 kcals/day to avoid cognitive problems due to malnutrition. 
Another group was instructed to increase the relative amount of 
unsaturated fatty acid (UFA, n = 20) intake about 20% compared 
to previous habits, over a period of 3 months. The quantity of total 
fat intake was intended to remain unchanged. Participants of the 
two intervention groups were guided by experienced dieticians. The 
third group was instructed not to change dietary habits (control, 
n = 10), those subjects were not genotyped in the present study that 
aimed at examining gene–environment interactions. Demographic 
and anthropometric data, as well as details on dietary compliance 
have been reported elsewhere (see Witte et al., 2009). One subject 
of the CR group did not complete the interventional study (drop-
out). Three subjects had to be excluded due to technical problems 
during genotyping (2 female and 1 male); 1 additional female did 
not consent to genotyping, leaving 35 subjects (CR: n = 18, UFA: 
n = 19) for further analysis, see also Figure 1.

Before and after the intervention, subjects were tested on cog-
nitive performance using parallel German versions of the Rey 
Auditory Verbal Learning Task (AVLT; Helmstaedter and Kurthen, 
2001; Strauss et al., 2006). In short, subjects were asked to learn 
and recall as many words as possible out of a list of 15 words. 
After a delay of 30 min, subjects had to recognize these words in 
a recognition trial, resulting in raw memory scores, as described 
elsewhere (Witte et al., 2009). The primary outcome measure 
“memory score” was the number of retrieved words after adjust-
ing for false-positives (Hochhaus, 1972; Helmstaedter and Kurthen, 
2001; Strauss et al., 2006). Secondary outcome measures were total 
number of retrieved words without adjustment, and total number 
of false-positive errors.

Subjects did also complete trail making tests (TMT) A and B 
(Reitan and Herring, 1985), and forward/backward digit span 
(WMS-R, Markowitsch and Härting, 1996). In addition, all subjects 

filled in a 7 day custom-made dietary record to assess dietary habits. 
Fasting blood samples were collected in the morning to determine 
levels of insulin, glucose, lipid profile (triglycerides, cholesterol, 
LDL, HDL), inflammatory markers [high sensitive C-reactive 
protein (hsCRP) and tumor-necrosis factor (TNF)-alpha], and 
neurotrophins [brain-derived neurotrophic factor (BDNF) and 
insulin-like growth factor 1 (IGF-1)]. Memory scores of subjects 
of the CR group were significantly higher after the intervention, 
whereas scores of the other two group did not change significantly 
[ANOVA

RM
 F

(2, 46)
 = 5.42, P = 0.008; post hoc paired t-test t

(18)
 = 4.73, 

P = 0.0002; published in Witte et al., 2009].
All participants provided written informed consent and received 

reimbursement after participation. The research protocol was 
approved by the Ethics Committee of the University Hospital of 
Münster.

GenotypInG
Genomic DNA was extracted from whole blood using a DNA 
blood mini-kit (Quiagen) for sequencing of COMT Val158Met 
genotype. We used genebank sequences1 to identify the com-
mon coding variant in the COMT gene, a G→ A polymorphism 
responsible for the Val158Met substitution on chromosome 
22q11 (Nagel et al., 2008). We designed sequencing primers 
(primer3)2 (COMT-F GGGGCCTACTGTGGCTACTC; COMT-R 
GGTTTTCAGTGAACGTGGTG) resulting in a 174 bp polymer-
ase chain reaction (PCR) product. Total volume of amplifi-
cation reactions was 50 μl, containing 4 μl of DNA material 
(DNA concentration 34 ng/μl), 5 μl of each primer, 1 μl dNTP 
(Desoxyribonukleosidtriphosphate), 5 μl PCR-buffer (Quiagen) 
and 0.2 μl of Hot Start Taq Polymerase (Quiagen GmbH, Hilden, 
Germany). PCR cycling conditions comprised an initial  denaturation 

Figure 1 | Number of subjects included in the interventional study and 
genetic analyses. Subjects of the intervention groups underwent either 
Caloric restriction (CR) or enhancement of unsaturated fatty acids (UFA).

1http://genome.ucsc.edu
2http://primer3.sourceforge.net/
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Met/Met-carriers) in the two dietary interventions group separately 
(CR, UFA). Unpaired t-tests (two-tailed) were calculated post hoc 
to detect significant differences in diet-induced memory changes. 
Additionally, ANOVA

RM
 or non-parametric tests were calculated 

with secondary outcome parameters as appropriate.
Significance was set at p = 0.05, all data are presented as mean 

with standard error of the mean, unless indicated otherwise.

results
Genetic analysis of COMT Val158Met genotype revealed a distri-
bution of 6 Val/Val-carriers (CR: n = 3, UFA: n = 3) and 29 Met-
carriers (CR: n = 13, UFA: n = 14). Demographic characteristics 
(sex, age, BMI, education) did not differ significantly with regard 
to genotype (p > 0.05); see Table 1 for details.

effects of Genotype at baselIne
There was a significant difference between memory scores of the 
AVLT at baseline when comparing COMT Val158Met genotypes 
(t-test; t

(1, 33)
 = 4.8, p < 0.001; Figure 2), namely that Val/Val-carriers 

performed significantly poorer compared to Met carriers.
In contrast, no significant genotype-dependent differences were 

found regarding executive functions and working memory (Trail 
Making Test A and B, digit span forward and backward; t-tests, all 
p > 0.05). Note that the two dietary interventions did not influence 
these tests in the initial study (Witte et al., 2009).

for 15 min at 95°C, followed by 30 cycles of 94°C for 45 s, 59°C 
for 45 s, 72°C for 45 s and a final extension at 72°C for 10 min. 
PCR products were electrophoresed on a 2.5% agarose gel stain 
(Biozym LE Agarose; Biozym Scientific GmbH) and sequencing was 
completed using the Big Dye Terminator 3.1 chemistry on a 3730 
DNA-Analyzer (Applied Biosystems, Darmstadt, Germany).

Based on their Val–Met-allele carrier status, participants were 
stratified into two genotype groups: homozygous Val/Val-carriers 
(n = 6) vs. one or two Met-allele carriers (n = 29), similar to previ-
ous studies (Mattay et al., 2003; Loughead et al., 2009).

statIstIcal analysIs
To detect significant differences in the AVLT memory score with 
regard to genotype at baseline, unpaired t-tests were calculated with 
dependent variable “memory score” and between-subjects factor 
“COMT Val158Met genotype” (Val/Val-carriers vs. Val/Met- or 
Met/Met-carriers). Secondary outcome measures (additionally 
AVLT measures, TMT A and B, digit span forward and backward), 
as well as demographic parameters and peripheral blood measures 
were compared between “genotype” groups by unpaired t-tests or 
non-parametric tests as appropriate.

To assess significant gene × diet interactions, ANOVA
RM

 were 
conducted with repeated factor “time” (AVLT memory scores 
at baseline vs. after intervention) and between-subjects factor 
“COMT Val158Met genotype” (Val/Val-carriers vs. Val/Met- or 

Table 1 | Demographic characteristics and fasting serum levels of COMT Val158Met genotype groups, dependent on intervention group and allelic 

variant.

 COMT Val158Met genotype

 Val/Val Val/Met or Met/Met

Cr uFA Total Cr uFA Total

ChArACTerisTiCs

n 3 3 6 15 14 29

Women, no. 1 2 3 8 8 14

Age, years ± SD (minimum/

maximum)

56.3 ± 6 (53–63) 61 ± 9 (52–70) 58.7 ± 7 (52–70) 60.3 ± 8 (50–72) 62.4 ± 8 (51–79) 61.8 ± 8 (50–79)

Body mass index, kg/m2 ± SD 

(minimum/maximum)

30.8 ± 2 (28.7–32.8) 23.9 ± 2 

(23.9–26.4)

27.3 ± 4 

(23.9–32.8)

29.7 ± 4 

(23.7–39.3)

27 ± 2 

(23.7–30.6)

28.4 ± 4 

(23.7–39.3)

Education, years ± SD 

(minimum/maximum)

14 ± 2 (13–16) 14 ± 2 (13–16) 14 ± 2 (13–16) 16.3 ± 6 (10–30) 15.7 ± 5 (10–23) 15.8 ± 5 (10–30)

FAsTiNg seruM levels, MeAN ± sD

Triglyceride, mg/dL 183 ± 80 110.7 ± 38 146.8 ± 69 188.2 ± 116 140.2 ± 60 167.9 ± 98

Cholesterol, mg/dL 218.3 ± 34 231.7 ± 14 225 ± 25 257.3 ± 60 244.9 ± 34 252.1 ± 51

HDL cholesterol, mg/dL 54.3 ± 14 73.3 ± 18 63.8 ± 18 57.3 ± 15 58.7 ± 16 57.9 ± 15

LDL cholesterol, mg/dL 127.4 ± 23 136.2 ± 23 131.8 ± 21 162.4 ± 49 158.1 ± 32 160.6 ± 42

Insulin, mU/L 16.6 ± 6.1 6 ± 3.6 11.3 ± 7.3 15.2 ± 15 10.7 ± 4.4 13.3 ± 12.1

Glucose, mg/dL 101.3 ± 1.2 91 ± 9 96.2 ± 8 104.7 ± 26 101.5 ± 10 103.4 ± 20

BDNF, pg/mL 1220 ± 277 1183 ± 136 1202 ± 196 1102 ± 351 1251 ± 333 1165 ± 345

IGF-1, ng/mL* 107.3 ± 34 89.3 ± 7 98.3 ± 24 141.4 ± 34 123.5 ± 55 133.1 ± 45

hs nbCRP, pg/mL 0.13 ± 0.06 0.38 ± 0.3 0.26 ± 0.2 0.42 ± 0.8 0.21 ± 0.2 0.33 ± 0.6

TNF-alpha, pg/mL 1.14 ± 1.5 2.8 ± 4.3 1.99 ± 3 1.8 ± 1.6 3.9 ± 2.7 2.7 ± 2.4

CR, caloric restriction; UFA, unsaturated fatty acids.
*Only IGF-1 concentrations were significantly different between genotype groups at baseline (Val/Val vs. Met; p = 0.02).
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Considering IGF-1, there was an overall significant increase after 
the intervention over the entire study group (Wilcoxon-Ranks test, 
p = 0.021), which was not significantly different with regard to 
genotype group (p > 0.05).

dIscussIon
Our study provides first-time evidence that the cognitive response to 
dietary interventions is dependent on COMT Val158Met genotype. 
At baseline, Val/Val-carriers had significantly lower memory scores 

There were no differences between genotype groups in anthro-
pometric data (age, education, BMI) or fasting serum parameters 
(insulin, glucose, triglycerides, cholesterol, HDL, LDL, hsCRP, BDNF, 
TNF-alpha; Table 1), except for IGF-1: Val/Val-carriers had signifi-
cantly lower concentrations at baseline than Met-carriers (Table 1, 
Mann–Whitney test, p = 0.02). This difference persisted after the 
intervention, namely that Val/Val-carriers again showed lower IGF-1 
concentrations than Met-carriers (Mann–Whitney test, p = 0.02).

Gene × dIet InteractIons
In the CR group, there was a significant COMT genotype × time 
interaction [repeated measures analysis of variance (ANOVA

RM
), 

F
(1, 16)

 = 14.9, p = 0.001; Figure 3]. The CR-induced improve-
ment of memory score was considerably greater in COMT Val/
Val-carriers than in Met-carriers, so that memory scores of both 
genotype groups were no longer significantly different from each 
other after the intervention (post hoc t-test, p > 0.05); however t-test 
of changes in memory score failed to reach significance between 
groups (p = 0.15).

Likewise in the UFA-group, ANOVA
RM

 detected a significant 
interaction effect of COMT genotype × time (F

(1, 15)
 = 6.9, p = 0.019; 

Figure 4). Post hoc t-tests of changes in memory score showed 
that Val/Val-carriers experienced significantly greater improve-
ments due to the intervention than Met-carriers (t

(1, 15)
 = −2.6, 

p = 0.019).
No significant differences were detected for genotype groups 

with regard to changes in anthropometric data or fasting serum 
parameters (see above for details) due to the intervention (all 
p’s > 0.05).

However, an interesting trend emerged for markers of inflam-
mation: Diet-associated reductions in TNF-alpha levels after the 
intervention were more pronounced in Val/Val-carriers (Figure 5), 
however ANOVA

RM
 failed to reach significance.

Figure 2 | Baseline memory scores according to COMT Val158Met 
genotype. Note that Val/Val-carriers had significant lower values than carriers 
of at least one Met-allele. ***, p = 0.001; according to unpaired t-test. Circles 
indicate individual values, solid lines indicate the mean.

Figure 3 | Memory scores according to COMT Val158Met genotype 
pre- vs. post-caloric restriction (Cr). Note that Val/Val-carriers (dashed line) 
nearly reached baseline levels of carriers of at least one Met-allele (gray line) 
after CR. ***, p = 0.001; ***, according to ANOVARM. Error bars indicate 
standard error (SE).

Figure 4 | Memory scores according to COMT Val158Met genotype pre- 
vs. post-enhancement of unsaturated fatty acids (uFA). Note that Val/
Val-carriers (dashed line) nearly reached baseline levels of carriers of at least 
one Met-allele (gray line) after UFA enhancement. *, p = 0.019; *, according to 
ANOVARM. Error bars indicate standard error (SE).
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The COMT gene is widely distributed in the brain (Hong et al., 
1998), including prefrontal and mesotemporal/hippocampal areas 
which are strongly linked with memory performance (Shing et al., 
2010). Notably, COMT is thought to be crucially involved in the 
regulation of dopamine flux in the PFC, due to the minimal role 
of other degrading pathways as, for example, the dopamine trans-
porter in this area (Lewis et al., 2001; Mazei et al., 2002; Morón 
et al., 2002). Therefore, the higher enzymatic activity of the COMT 
enzyme encoded by the Val-allele (Lotta et al., 1995) induces lower 
brain dopamine levels compared to Met-carriers especially in pre-
frontal areas (Diaz-Asper et al., 2006), which could account for 
differences in prefrontal neuronal processing. Notably, decreases in 
memory performance during late adulthood are thought to depend 
on impairments in both prefrontal and mesotemporal/hippocam-
pal processing (Shing et al., 2010), therefore COMT-dependent, 
less efficient prefrontal dopamine signaling could lead to deficits 
in recall and delayed recognition in Val/Val-carriers.

Moreover, the effect of COMT genotype on cognitive processing 
per se is thought to be magnified with advancing age (Lindenberger 
et al., 2008; Nagel et al., 2008). Nagel and colleagues used a test of 
executive function, the WCST, in young and in elderly individu-
als to show that the effect of COMT Val/Val-carrier status is sig-
nificantly more disadvantageous in old than in young age. Their 
findings support the hypothesis that optimal cognitive function is 
associated with optimal brain dopamine levels (Lindenberger et al., 
2008; Nagel et al., 2008). As normal aging is linked with an overall 
decline in dopaminergic neuromodulation (Volkow et al., 1998; 
Backman et al., 2000; Erixon-Lindroth et al., 2005), individuals with 
low dopamine levels even at young age, such as Val/Val-carriers, 
might be more vulnerable to these adverse effects than others. At 
the same time, these individuals may benefit more from dopamine-
enhancing strategies, a hypothesis that already received experimental 
support (e.g., Mattay et al., 2003): In that study, due to dopamine-
enhancing amphetamine administration, Val/Val-carriers showed 
an improvement in working memory tasks as well as more efficient 
brain activation using fMRI, whereas carriers of at least one Met-
allele performed worse after the same drug dosage (Mattay et al., 
2003). Likewise, Val/Val-carriers showed a significant improvement 
of working memory and other cognitive tasks in response to the 
COMT-inhibitor tolcapone (Giakoumaki et al., 2008). Similar results 
were also found for a behavioral intervention testing the response to 
a smoking abstinence challenge in heavy smokers (Loughead et al., 
2009). Here, Val/Val-carriers were more sensitive to an overnight 
smoking cessation than Met-carriers, demonstrated by stronger 
prefrontal blood oxygen level-dependent (BOLD)-signals and by 
slower reaction time during n-back tasks at smoking abstinence in 
Val/Val-carriers only (Loughead et al., 2009).

Gene × dIet InteractIons
In line with these studies, we found a better cognitive response 
to dietary interventions for Val/Val-carriers compared to carriers 
of one or two Met-alleles: The former experienced a considerably 
greater improvement of memory scores after CR and after UFA 
enhancement.

Both CR and UFA may improve neuronal plasticity and cog-
nitive functions such as memory via several pathways, including 
on the one hand direct augmentation of prefrontal dopamine 

compared to Val/Met-carriers and Met/Met-carriers, which is in 
line with previous studies on cognitive performance (e.g., de Frias 
et al., 2004; Bertolino et al., 2006). Overall improvements in memory 
score due to dietary intervention were then significantly greater in 
Val/Val-carriers compared to Met-carriers, leading to comparable 
memory scores in the genetic groups after the intervention.

coMt Genotype and coGnItIon
Our findings of lower memory performance in Val/Val-carriers 
at baseline are consistent with several previous reports, summa-
rized in a recent meta-analysis (Raz et al., 2009). For example, 
in a longitudinal sample of 286 men, Met/Met-carrier status 
was associated with better episodic and semantic memory (de 
Frias et al., 2004). Similarly using an fMRI recognition memory 
paradigm, Bertolino et al. (2006) found poorer performance and 
differential activation in memory-related brain areas such as the 
hippocampus and ventrolateral PFC in Val-carriers compared to 
Met/Met-carriers. Notably, both studies distinguished carriers of 
one or two Val-allele vs. homozygous Met/Met-carriers; but brain 
activation patterns rather depict a dose-dependent relationship of 
Met-alleles in these studies (see, e.g., Figures 2 and 3 in Bertolino 
et al., 2006). Several other behavioral and fMRI studies found, 
similar to our results, a clear distinction between Val/Val vs. Met-
allele carriers (Mattay et al., 2003; Enoch et al., 2009; Loughead 
et al., 2009; Krach et al., 2010).

Considering tasks probing executive functions, working 
memory, and attention, we did not find significant differences 
dependent on COMT genotype, similar to most (see, e.g., meta-
analysis by Barnett et al., 2008), but not all studies (Egan et al., 
2001; Mier et al., 2009). Thus, there is still considerable debate 
about the impact of COMT genotype on specific cognitive func-
tions, and future studies using larger number of subjects will have 
to resolve this issue.

Figure 5 | Differences in TNF-alpha levels pre- vs. post-dietary 
intervention according to COMT val158Met genotype. Note that Val/
Val-carriers exhibited greater reductions of TNF-alpha than Met-carriers, however 
analysis failed to reach significance. Error bars indicate standard error (SE).
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 genotype because of worse performance on executive tasks, but not 
in non-T-allele carriers (Zhang et al., 2009). Taken together, there is 
some evidence that homozygous “at risk”-allele carriers of specific 
plasticity-related polymorphisms (such as COMT Val158Met, or 
BDNF Val66Met) tend to better respond to lifestyle or pharmaco-
logical interventions.

lIMItatIons
Several limitations have to be considered when interpreting our 
results. First, genotyping of the study was retrospective, therefore 
sample size was low, and not all subjects originally included in the 
study could be genotyped. Also, we did not assess other gene × gene 
interactions, which could have exerted influence on dopaminergic 
neurotransmission. For example, the impact of genetic variations 
in the genes encoding the dopamine transporter, the dopamine D2 
receptor, as well as additional COMT locations (Meyer-Lindenberg 
et al., 2006), warrant to be determined in future research.

conclusIons
In this retrospective assessment of COMT Val158Met genotype in 
healthy elderly subjects, we found first-time evidence that the “at 
risk” genotype Val/Val might benefit more from dietary modifica-
tions with regard to cognitive functions than Met-allele carriers. 
Our findings may help to explain inter-individual differences in the 
response to cognition-enhancing interventions, and may constitute 
a first step toward the development of individualized therapies 
in future research (Mayor, 2007). Further studies are now needed 
to help clarifying the mechanisms underlying these effects, which 
will allow to specifically develop new agents and/or lifestyle inter-
ventions targeting the identified mechanisms, with the ultimate 
aim to preserve cognitive functions until old age (Corneveaux 
et al., 2010).
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