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INTRODUCTION

The brain is an incredibly complex organ that has an equally
unique metabolic need. In humans, although the brain only com-
poses about 2% of body mass, it consumes approximately 25% of
the energy output. The excessive proportion of metabolic activity
occurring in the brain, compared to the whole body is seen in
numerous examples of metal-mediated cellular function. Metal-
loenzymes are important for all aspects of physiology, including
mitochondrial function, transcriptional regulation, catabolism,
and, for the brain, the production of the important secondary
messenger nitric oxide (NO) by NO synthase, which depends on
Fe and Zn (Mayer etal., 1991; Li etal., 1999). In line with the
brain’s tendency for excess, the production of NO is about 20
times greater for the central nervous system compared to the
vasculature (Salter etal., 1991; Garthwaite and Boulton, 1995;
Pacher etal., 2007). Further, the actual signaling pathway for NO
is dependent on Fe bound to a heme in soluble guanylate cyclase
(Gerzer etal., 1981; Ignarro etal., 1982). The role of metals in
NO production and signaling is just one example of the vital role
trace elements have in biology. Indeed, life itself would not exist
without oxygen produced by chloroplasts, and transport through
our body by hemoglobin, both of which require a metal ion for
function.

Despite the intense amount of research into cellular mech-
anisms metalloenzymes have largely been overlooked, yet the
“metalloproteome” dictates much of the reactivity within a cell.
The targeted investigation of metalloproteins in the central ner-
vous system will provide mechanistic insights into how reported
changes in total levels of trace elements translates to specific
proteins.

Trace elements are required for a variety of normal biological functions. As our understand-
ing of neurodegenerative disease advances we are identifying a number of metalloenzymes
involved in disease process. Thus, the future of metals in neurobiology will rely more
on detailed information regarding what metalloenzymes are present and how they are
involved in the pathophysiology of disease. To gain this detailed information, we will
rely less on bulk measures of the amount of a trace elements in a particular tissue and
turn to metalloproteomic techniques to help elucidate both metalloprotein structure and
function. Recent advances in metalloproteomics will translate to a richer understanding of
the mechanism and precise role of metalloenzymes and proteins in the brain.
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WHAT IS “METALLOPROTEOMICS™?
Over a decade ago, Glen Evans commented on the “omic” sci-
ence revolution, stating that the advent of post-genomic sciences
was brought about by a need to “analyze the components of a
living organism in its entirety” (Evans, 2000). As systems biol-
ogy has become more integrated into the modern laboratory the
traditional streams of “omic” sciences have diversified to include
specific fields of study examining the functional components of
biomolecules, rather than simply their presence or structure.
Metalloproteomics is one such newly established area of study,
which amalgamates proteomic and metallomic approaches to
biology (Barnett etal., 2012). Proteomics is the large-scale inves-
tigation of the structural and functional properties of proteins
(Anderson and Anderson, 1998), whereas metallomics encom-
passes the “comprehensive analysis of the entirety of metal and
metalloid species within a cell or tissue type” (Szpunar, 2005). We
believe the term “metalloproteomics” is more suited to the field
than metallomics alone, as it recognizes the important relation-
ship between biometals and proteins, rather than focusing solely
on the presence of an individual metal species. In 2004, Hiroki
Haraguchi first described metallomics as “integrated biometal sci-
ence” (Haraguchi, 2004), though it is only in recent years that the
potential of integrating high-end atomic spectrometry techniques
into typical proteomics workflows is beginning to gain attention.
It is estimated that around one-third of all proteins in the
human body require a metal cofactor for functionality (Andreini
etal., 2008; Waldron etal., 2009; Barnett etal., 2012). Redox
properties of metal ions mediate a plethora of cellular processes,
from the electron transport mechanisms within mitochondria to
the formation of myelin in developing nerve cells. Metals have

Frontiers in Aging Neuroscience

www.frontiersin.org

July 2013 | Volume 5 | Article 35 | 1


http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/Aging_Neuroscience/editorialboard
http://www.frontiersin.org/Aging_Neuroscience/editorialboard
http://www.frontiersin.org/Aging_Neuroscience/editorialboard
http://www.frontiersin.org/Aging_Neuroscience/about
http://www.frontiersin.org/Aging_Neuroscience/10.3389/fnagi.2013.00035/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=AmberLothian&UID=94978
http://community.frontiersin.org/people/DominicHare/60208
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=BlaineRoberts&UID=92563
mailto:blaine.roberts@florey.edu.au
http://www.frontiersin.org/Aging_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Aging_Neuroscience/archive

Lothian etal.

Metalloproteomics

the ability to interact with multiple proteins, all with varying
functions, located in every cell of the human body. Due to the
abundance of proteins that are estimated to require a metal cofac-
tor for function, this is an area that requires extensive work to be
done in order to characterize the vital role metals may play in the
molecular basis of disease.

Unlike glycosylation and phosphorylation, which do not always
have a one-to-one relationship with protein function (Jensen,
2006), the presence of a metal cofactor is intimately linked with
enzymatic function. For example the function of Cu,ZnSOD is
dependent on the presence of both metals. The Zn-only containing
enzyme does occur in transgenic animal models overexpressing the
enzyme (Lelie etal., 2011; Rhoads etal., 2011), though it does not
pose any superoxide scavenging ability without Cu. SOD can even
produce superoxide rather than scavenge it in the absence of Zn
(Estévez etal., 1999). Bottom-up proteomics neglect information
on non-covalent cofactors, including metals. The overall goal of
systems biology or proteomics is to measure how proteins change
to help elucidate function, hence the interest in glycosylation
and phosphorylation and other post-translational modifications.
However, the functional importance of non-covalent cofactors has
the promise to determine the functional output of proteins, and
cannot be overlooked.

HOW BIG IS THE “METALLOPROTEOME"?

The proportion of metalloproteins in the proteome is still widely
unknown. Even in relatively simple single-cellular organisms,
the number of metalloproteins that have been comprehensively
identified is only a fraction of the one-third of all proteins pre-
dicted to bind metals, most likely due to technical limitations.
This suggests that studying the human metalloproteome will
encounter significant difficulties, as the number of metallopro-
teins that it will encode for is larger then that of relatively simple
prokaryotes.

Relatively few research groups are applying new technologies
to metalloproteomics. One such group that has been actively
conducting research in this field and has confirmed the lack of
characterization of metalloproteins is that lead by John Tainer
and Michael Adams. Their recent study of metalloproteins in
Pyrococcus furiosus illustrates the difficulties involved in identi-
fying metalloproteins found in even the most basic of life forms
(Cvetkovic etal., 2010). It is estimated that there are around 2,000
encoded proteins in the P. furiosus genome (Lee etal., 2009), and
if, as stated previously, one-third of them are expected to be
metalloproteins, around 600 metalloproteins should be present.
However, experiments conducted by the Tainer and Adams group
demonstrated that only 50% of the metal peaks they analyzed
contained a protein that could be linked to a known metal-
loprotein (Cvetkovic etal., 2010). This study demonstrates the
large gap in our knowledge of what proteins even utilize a metal
ion.

A conservative interpretation of these results is that for any
organism yet to have it’s metalloproteome mapped, 50% of these
metalloproteins will have the metal association incorrectly pre-
dicted or it will not yet be known. In the human proteome,
which consists of around 20,000 protein-encoding genes, an esti-
mated number of unknown or misidentified metalloproteins can

be predicted. About 6,600 protein-encoding genes will encode for
metalloproteins (Waldron et al., 2009). Using P. furiosus as a guide,
3,300 of these will have a predicted metal association, of which a
further three-quarter will exhibit a correctly predicted metal asso-
ciation. This leaves an estimated 4,125 metalloprotein-encoding
genes that will have an incorrect metal association predicted,
by current bioinformatic tools, or display no metal interactions
(Figure 1). The complexity of a multi-cellular complex organ-
ism like the human body is expected to have a wider range of
metal-protein interactions than those observed in P. furiosus. It
should, however, serve as an indication of the complex task at
hand that faces scientists embarking on the next phase of sys-
tems biology that encompasses this functional component of an
organism.

WHAT ARE THE ANALYTICAL CHALLENGES TO
METALLOPROTEOMICS?

The central issue that hampers the characterization of metal-
loproteins is difficulty in preserving their native state during
analysis. Traditional proteomic approaches are generally incom-
patible for studying metal-protein interactions, as they tend to
require denaturing conditions and enzymatic digestion, lead-
ing to disruption of the comparatively weak ionic interactions
governing most metalloprotein bonds. A targeted metallopro-
teomics approach that acknowledges the importance of retaining
native conditions is the answer to these issues, as it will pro-
vide the capability to determine the roles that metals play in
the functional properties of proteins in biological systems, whilst
ensuring that the detailed structural analysis of proteins is still
obtainable.

The central tenet to characterizing metalloproteins is that
in order to correctly identify a species the metal must still be
bound to the protein. Once metalloproteins are no longer in their
native state, misincorporation of metals or complete loss of metal
becomes a significant problem. To accurately quantify metallopro-
teins it is vital that their native state is kept intact and is not altered
by denaturing conditions. The use of strong acids/bases, concen-
trated inorganic salt, organic solvents and heat all contribute to
the loss of native folded states. Thus, chromatographic separation
for metalloproteomics should endeavor to use buffers that are of
physiological pH, as this will help to prevent alterations to the
secondary and tertiary structures that lead to the loss of metal
binding. A metalloproteomics workflow must ensure that each
possible source of experimental error is mitigated to a point where
its influence is negligible.

Experimental error may be encountered even prior to anal-
ysis at the point of sampling. Metalloprotein integrity may be
disrupted by reagents and buffers used in collection or sample
preparation, and even storage conditions (Manley etal., 2009)
such as repeated freeze-thaw cycles, that have an uncharacterized
effect on metal-protein interactions. The post-mortem stabil-
ity of SOD shows that the time in which it takes to freeze the
sample post-collection does not have any significant effect on
the concentration of the protein (Brooksbank and Balazs, 1984).
However, the post-mortem stability of other metalloproteins is
an area for further investigation. Error during this initial step
of the experimentation causing loss of bound metals will impact
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FIGURE 1 | Estimated size of the metalloproteome. Following the example
of P furiosus, as many as 6,600 human proteins are estimated to have metal
association. Our limited knowledge of metalloproteins, combined with

analytical limitations, will greatly impact on our ability to correctly predict the
metal association, and therefore function, as a large number of these proteins
are identified.

all of the conclusions that are drawn from the experiment. Even
relatively inert chemicals, such as acetate buffers used in native
size-exclusion chromatography (SEC), may impart unwanted
effects on metal binding through the presence of a relatively
strong complexing anion (Inagaki etal., 2000; Wang etal., 2007;
Fl Balkhi et al., 2010).

Characterizing an unknown metalloprotein within an envi-
ronment that is rich in proteins is exceptionally challenging.
Metalloproteomic techniques have been used to characterize
known metalloproteins, such as metallothionein isoforms (Chas-
saigne and Lobinski, 1998). Targeted proteomic approaches where
the specific nature of the protein in question is already known
does not present as many difficulties as a de novo approach, since
these proteins can be targeted for isolation. There are multiple
ways protein can be targeted and measured using a combination
of chromatography techniques (del Castillo Busto et al., 2005) cou-
pled to inductively coupled plasma-mass spectrometry (ICP-MS)
and more recently with mass spectrometry. For example, mass
spectrometry including top-down techniques have been used to
characterize both apo- and metallated-metallothionein in both
rabbit and dolphin liver as well as horse kidney (Chassaigne and
Lobinski, 1998; Chassaigne and Lobinski, 1998; Ryvolova etal.,
2011; Pedrero etal.,, 2012). These studies highlight the kind of
detailed information that can be obtained by using a combination
of mass spectrometry and chromatography to study a particular
protein.

HOW DO WE OVERCOME THESE ANALYTICAL LIMITATIONS?
The limitations to current metalloproteomics outlined above are
not insurmountable; rather they simply require some lateral

thinking regarding how we integrate modern analytical tech-
nology into systems biology. A variety of individual techniques
can be combined for metalloproteomic experimental procedures,
and these can generally be easily integrated into traditional pro-
teomic workflows (Figure 2; Lancaster etal., 2011). By not
reinventing the wheel, integration of atomic mass spectrome-
try (specifically ICP-MS) will allow for metal quantification and
direct correlation between the presence of metal species and
the function of associated proteins (Lelie etal., 2011; Alvarez
etal, 2012). This comprehensive approach will greatly supple-
ment the solely sequence information normally obtained through
mass spectrometry independent of any other complementary
technique.

Protein peaks identified from chromatographic separation can
be correlated to the metal concentration peaks identified by on-
line ICP-MS detection, allowing for the likely position of the
metalloprotein to be determined, providing not only selectivity
but also sensitivity (Gercken and Barnes, 1991; del Castillo Busto
etal., 2005; Lopez-Avila etal., 2006; Manley etal., 2009). 2D sep-
aration offers a powerful tool for resolving complex mixtures of
metalloproteins, and the multi-elemental capacity of ICP-MS pro-
duces a hyperspectral snapshot of metal—protein interactions in a
single sample. Like traditional proteomics, this approach will use
the vast arsenal of protein databases available to determine which
of the proteins identified is most likely to exhibit metal—protein
interaction. The 20,0004 proteins predicted in human samples
will produce complex fractions highlighting the large dynamic
range needed and requirement for fractionation.

Although there are inherent difficulties in investigating pro-
teins in their native state, advances in mass spectrometry and
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FIGURE 2 | Proposed workflow for integrated metalloproteomics.
Hyphenating native separation techniques to ICP-MS is the key to unlocking
the secrets of metals and protein function. Rather than relying solely on bulk
measures, directly associating metals with specific proteins provides new
insight into how metals carry out biochemical processes in the cell. At the
current state of our knowledge about the level of metalloproteins in biology
the coupling of size exclusion to ICP-MS have the promise of being
quantitative thus allowing the comparison of different samples and detail
about the global or metalloprotein specific changes that occur. Despite SEC
being a low resolution technique it can allow researchers to make educated
guesses about the ID of proteins of interests based on their MW. Continued
evolution of hyphenated LC-ICP-MS will only increase the arsenal of tools at
our disposal to discover, identify, and characterize metalloproteins. The

workflow developed in our laboratory adapts existing isotope labeling
technigues used for proteomics [such as SILAC (stable isotope labeling by
amino acids in cell culture) and SISCAPA (stable isotope standards and
capture by anti-peptide antibodies)] to include the addition of isotopically
enriched metal salts, providing new opportunities to probe the direct
relationship metal cofactors have with protein function and allowing
simultaneous analysis of both metals and proteins in individual experimental
groups. Highly sensitive, isotope-specific ICP-MS detection is used to align
metal distribution with quantitative proteomics, directly associating the
presence of a protein species with a specific, metal-mediated function. This
approach is extremely cost-effective, and can be seamlessly integrated into
existing workflows with minimal disruption to the standard laboratory
process.

analytical techniques are now making it possible to carry out
investigations on intact proteins. Groundbreaking work from Joe
Beckman’s laboratory has shown that using Fourier transform-
ion cyclotron resonance MS it is possible to directly quantify
and determine the metal status of a single protein from a spe-
cific cell type directly from tissue (Rhoads etal., 2011, 2013). This
demonstrates that quantitative determination of both the amount

of protein and the metal status can be achieved from biologi-
cal tissue. Providing a new level of detail for a disease where
it is clear that the metal status of a protein is key in the dis-
ease process (such as amyotrophic lateral sclerosis; Estévez etal.,
1999), this technology is invaluable. The advent of top-down pro-
teomics will be an increasingly valuable tool for metalloproteins
identification.
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HOW DOES METALLOPROTEOMICS RELATE TO
NEURODEGENERATION?

The brain is the most complex organ in the human body. Some
of the proteins in the brain, just like the proteins in other tissues,
require metal cofactors for function. Variations of the amount of
metal that is present, or defects in the way a protein associates with
a metal ion may cause disease states, particularly with regard to
neurodegeneration.

The level at which metals are present within the brain is gen-
erally higher then the levels of the same metals in the rest of the
body, and concentrations of metals in the brain is highly com-
partmentalized (Harrison etal., 1968; Hare etal., 2012b; Roberts
etal,, 2012). When metal homeostasis in these regions is altered,
brain pathologies and increased oxidative stress is observed. As we
age metals accumulate in the brain (Zecca etal., 2004) and this
along with any other alterations in metal homeostasis can lead
to neuronal damage, death, oxidative stress and may even cause
misfolding and aggregation of proteins. However, it is impor-
tant to point out that the accumulation of metals in tissues is
not necessarily labile metals, but also metalloproteins. For exam-
ple, it is estimated that there is less than one free Cu ion per cell
(Rae etal., 1999). Thus an observed accumulation in bulk levels of
Cu will have concomitant accumulation of Cu-metalloproteins.
This shift in thinking about the general accumulation of metals
to the change in functional metalloproteins is the basis of met-
alloproteomics. Bulk analysis only indicates a global change and
still poses the question: do all metalloproteins change or are there
specific targets? Our investigations suggest the latter.

In order to fully understand the roles that these metallopro-
teins play in age-related diseases it is first important to understand
the role they play in the aging brain. Studies of trace elements
and aging have shown consistent changes in trace elements such
as a decrease in Rb and K and increase in metals Fe, Cu, and
Co (Ehmann etal., 1984; Takahashi etal., 2001). The identi-
fication and characterization of metalloproteins is essential to
understanding their functions and elucidating the specific disease
pathways they are involved in, as well as assisting with the diag-
nosis of specific conditions (Gercken and Barnes, 1991; Muiiz
etal., 2001; Lopez-Avila et al., 2006; El Balkhi etal., 2010). Char-
acterized metalloproteins such as hemoglobin, transferrin, SOD,
and ceruloplasmin are used in clinical laboratories as markers for
specific disease states (Swart, 2013), such as anemia, inflamma-
tion (Ahluwalia, 1998), Down’s syndrome (Brooksbank and Balazs,
1984), and Wilson’s disease (Mak et al., 2008), respectively.

Metals have long been thought to play a role in pathophysiol-
ogy of Alzheimer’s disease (AD) and Parkinson’s disease (PD).
In AD, the concentration of three of the most abundant bio-
chemically functional metals (Cu, Zn, and Fe) are altered in
respect to their locations (i.e., metal redistribution in response
to plaque formation). These metals are also thought to play a
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