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By 2050 it is estimated that the number of worldwide Alzheimer’s disease (AD) patients
will quadruple from the current number of 36 million people. To date, no single test, prior
to postmortem examination, can confirm that a person suffers from AD.Therefore, there is
a strong need for accurate and sensitive tools for the early diagnoses of AD. The complex
etiology and multiple pathogenesis of AD call for a system-level understanding of the cur-
rently available biomarkers and the study of new biomarkers via network-based modeling
of heterogeneous data types. In this review, we summarize recent research on the study of
AD as a connectivity syndrome. We argue that a network-based approach in biomarker dis-
covery will provide key insights to fully understand the network degeneration hypothesis
(disease starts in specific network areas and progressively spreads to connected areas of
the initial loci-networks) with a potential impact for early diagnosis and disease-modifying
treatments. We introduce a new framework for the quantitative study of biomarkers that
can help shorten the transition between academic research and clinical diagnosis in AD.
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INTRODUCTION
A biomarker is a parameter that can be used as an indicator of
normal biological processes, pathogenic processes, or pharmaco-
logical responses to therapeutic drugs (Biomarkers Definitions
Working Group, 2001). In Alzheimer’s disease (AD), potential
biomarker information comes from multiple sources, including
clinical tests for memory impairment, bodily fluid or tissues,
neuroimaging, and smell tests among others. AD biomarkers
are typically assumed to belong to the following two categories:
biofluid analytes, e.g., cerebrospinal fluid (CSF), peripheral blood
samples such as urine and imaging measures, e.g., magnetic reso-
nance imaging (MRI), magnetic resonance spectroscopy (MRS),
or positron emission tomography (PET) (Henriksen et al., 2014).
At present there are five well-established AD biomarkers: two are
CSF analytes that measure abnormal protein aggregates – low
level of CSF amyloid-beta and elevated level of both total and
phosphorylated CSF tau protein; and three imaging biomark-
ers – the Pittsburgh compound-B PIB PET tracer for amyloid-beta
deposition, for which MRI scans may detect atrophied sensible
brain areas; and Fludeoxyglucose FDG PET to quantify abnormal
neuronal glucose consumption (Jack, 2012).

The diagnostic criteria for AD has not been modified since its
original formulation in 1984 until it was recently updated in 2010
(Dubois et al., 2010). In the original criteria, AD was strictly diag-
nosed on a clinical basis (McKhann et al., 1984). Other sources
of information such as imaging lacked a positive diagnostic role.
New diagnostic criteria reckons AD as a complex disorder char-
acterized by a gradual and progressive pathogenesis, with three
phases – preclinical or asymptomatic, prodromal or mild cognitive
impairment (MCI),and overt dementia (Dubois et al., 2007; Albert

et al., 2011; Sperling, 2011). Despite technological and conceptual
advances in AD, we are still lacking preventive therapies to delay
the onset of AD as well as disease-modifying treatments. Despite
the strong need for early diagnose of AD, and the fact that bio-
markers have proved useful in correlating with the different stages
in which the disease unfolds, CSF and imaging biomarkers still play
a surprisingly minor role in clinical diagnosis. They are, however,
increasingly prominent in clinical trials and academic research.

There is a growing consensus between clinical researchers that
the application of biomarkers should follow a multi-modal and
integrative approach. Truly predictive models of disease progres-
sion need to take into account the combined effects of biomarkers
interactions at the individual subject level. Unfortunately however,
few studies have specifically addressed the issue of the integration
of different biomarkers for efficient and quantitative diagnostics.
Furthermore, it has been particularly difficult to link findings on
molecular biomarkers to early stages of the neurodegenerative
disease, and no real groundbreaking discovery in imaging-based
biomarkers has been produced. Thus, there is a lack of novel
therapeutic approaches that efficiently target the underlying mech-
anisms and disease progression of AD (Corbett and Ballard, 2012).
There is clear evidence that AD and other neurodegenerative dis-
orders evolve at the systems level (Eidelberg and Martin, 2013) and
that biomarkers – molecular, imaging, or CSF – need to be con-
sidered with a holistic point of view. Functional imaging may help
us understand disease-related changes in interconnected brain
areas. In this regard, functional imaging techniques unburdened
of subject compliance such as RS-functional magnetic resonance
imaging (fMRI) and TMS/EEG, are being extensively used for
biomarkers discovery in neurodegenerative disorders.
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In this review, we provide a brief panoramic view on recent
research on the discovery of AD biomarkers, putting special
emphasis on neuroimaging biomarkers derived from functional
connectivity data in resting state, that is, the subject is not perform-
ing an explicit task. Network-based biomarkers are introduced,
and we provide a new framework for the quantitative study of
biomarkers that can help shorten the transition between academic
research and clinical diagnosis in AD.

AD BIOMARKERS
Clinical tests for AD diagnosis involve subjective reasoning by
experienced practitioners. Episodic memory impairment has lit-
tle or no relevance in early diagnosis, but it still remains the
core diagnostic criterion. Current diagnostic criteria (DSM-IV
and NINCDS-ADRDA) have high sensitivity but low specificity
(Knopman et al., 2001). The delay from symptoms to diagnosis is
20 months on average in the EU, and 36 months in the UK (Mat-
tila et al., 2012). Furthermore, molecular pathomechanisms of AD
become active for several years before symptoms such as cognitive
impairment manifests itself.

Blood samples are a non-invasive and cost-effective technique
for the identification of plasma biomarkers that has proven use-
ful in distinguishing individuals with AD from cognitively healthy
control subjects (Doecke et al., 2012). Plasma biomarkers can be
used to extract metabolomics (Trushina et al., 2013) and pro-
teomics biomarker signatures in AD (Hye et al., 2006). Contrary
to diagnostic tools like CSF and PET, plasma amyloid-beta mea-
surements are neither invasive nor expensive. Plasma Aβ40 and
Aβ42 can be measured in peripheral blood, but they cannot be
used in AD identification. Vanderstichele et al. (2000) found no
differences in Aβ42 levels between controls and patients with AD.
Further work is required before plasma amyloid-beta measure-
ments are unanimously regarded as clinically useful (Mayeux and
Schupf, 2011; Toledo et al., 2013).

Using Smell tests to detect hyposmia is another example of
inexpensive biomarker in AD (Kjelvik et al., 2007). However, the
reduced capability to detect odors shown in AD may be more an
effect of the cognitive decline characteristic of the disease than a
symptom with predictive value (Serby et al., 1991).

Neuroimaging biomarkers in AD measure brain signals at both
mesoscopic (MRI) and macroscopic scales (fMRI, MRS, and PET).
Morphometric analysis with MRI data (e.g., atrophy in medial
temporal lobes, specifically in the hippocampus and entorhinal
cortex) is a well-known marker of disease progression in AD. Hip-
pocampus atrophy correlates with neuronal loss and therefore
MRI biomarkers could be used in proof-of-the-concept stud-
ies to distinguish between disease-modifying and symptomatic
treatment effects (Saumier et al., 2009; Hampel et al., 2011).
PET neuroimaging allows us to collect molecular information.
PET image analysis can provide evidence of the accumulation of
amyloid-beta plaques that is independent from structural brain
changes. It also provides evidence of a reduction of glucose metab-
olism in the parietal and temporal lobe regions that are involved
in memory and executive function (Habeck et al., 2012). Both
structural MRI and FDG-PET imaging reflect the effects of the
disease progress in symptomatic stages, however it is the diagnosis
in AD’s asymptomatic stages that remains to be solved. Molecular

pathomechanisms, such as the accumulation of amyloid plaque,
become active several years before cognitive deficit manifest. Fur-
thermore, amyloid-beta is not specific to AD, but may also be
found in normal aging.

RESTING-STATE fMRI
Functional magnetic resonance imaging allows us to assess func-
tional connectivity mapping at high temporal resolution by means
of correlations in the blood-oxygen-level-dependent (BOLD) sig-
nal in spatially distant brain regions. Since the seminal work of
Biswal (Biswal et al., 1995), task-free or resting-state fMRI (R-
fMRI) has been successfully incorporated into the functional MRI
imaging repertoire, and represents a comprehensive alternative
to the task-based approach. R-fMRI experiments are consider-
ably less demanding for the subject, which makes this technique
especially attractive to brain dementia researchers, as it is rela-
tively free of subject compliance and training demands. R-fMRI
measures the spontaneous or intrinsic brain activity in terms of
low-frequency (<0.1 Hz) BOLD fluctuations. Fluctuations in the
BOLD signal measured in humans in resting state represent the
neuronal activity baseline and shape spatially consistent patterns
(Fransson, 2005; Raichle and Gusnard, 2005). The systematic study
of those patterns using correlation analysis techniques has iden-
tified a number of resting-state networks, which are functionally
relevant networks found in subjects in the absence of either goal
directed-task or external stimuli. Despite the variability in the
data acquisition protocols, statistical data analysis, and groups of
subjects employed, resting-state networks have been consistently
reported in multiple studies. There are at least eight commonly
identified resting-state networks: the primary sensorimotor net-
work, the primary visual and extra-striate visual network, bilateral
temporal/insular, and anterior cingulate cortex regions, left and
right lateralized networks consisting of superior parietal and supe-
rior frontal regions, and the default-mode network (DMN) (Van
den Heuvel and Hulshoff Pol, 2010).

The DMN is a specific anatomically defined brain system that
is preferentially active when individuals are focused on introspec-
tive activities such as autobiographical memory retrieval, rather
than on the external environment (Buckner et al., 2008). A num-
ber of studies indicate that the default network is also relevant
for understanding mental disorders including depression (Sheline
et al., 2009), autism (Washington et al., 2013), and AD. Studies
show a decrease in DMN functional connectivity in normal aging,
MCI and AD (Hafkemeijer et al., 2012). Functional connectivity
of the DMN may prove to be a sensitive and specific biomarker for
mild AD (Greicius et al., 2004; Balthazar et al., 2014).

The visual identification of the overall connectivity patters in
R-fMRI has been assessed using either model-based or model-free
approaches. In the former, statistical parametric maps of brain
activation are built upon voxel-wise analysis location (Wang et al.,
2009; Faria et al., 2012). This approach has been successful in the
identification of motor networks, but it shows important limita-
tions when the seed voxel cannot be easily identified, for example
in brain areas with unclear boundaries such as cognitive networks
involved in language or memory. Independent component analysis
(ICA) (Comon, 1994; Stone, 2002), on the other hand, is a model-
free approach that allows separating resting fluctuations from
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other signal variations, resulting in a collection of spatial maps,
one for each independent component, that represent functionally
relevant networks in the brain. While ICA has an advantage over
model-free methods that it is unbiased, that is, it does not need
to posit a specific temporal model of correlation between regions
of interest (ROI), the functional relevance of the different compo-
nents is still computed relative to their resemblance to a number of
networks based on criteria that are not easily formalized (Friston,
1998). More recently researchers using graph-theory based meth-
ods have been able to not only visualize brain networks, but also
to quantify their topological properties as well (He et al., 2009;
Wang et al., 2010). Graph-theory provides a formal and rigorous
framework to quantitatively analyze the connectivity pattern, at
either a local or global level, underlying cognitive networks. How
these network properties are modified during normal develop-
ment, aging, or pathological conditions is addressed in the next
section.

R-fMRI AND AD
Altered resting-state functional connectivity patterns have been
shown in an impressive range of pathologies and conditions – AD,
schizophrenia, multiple sclerosis, Parkinson’s disease, depression,
autism, and attention deficit/hyperactivity disorder – see (Lee
et al., 2013) for a review on clinical applications. In the context of
AD, both amyloid-beta and tau pathologies affect DMN integrity
before the clinical onset of the disease (Li et al., 2013; Wang
et al., 2013). DMN regions such as the precuneus and the poste-
rior cingulate are selectively vulnerable to amyloid-beta deposition
(Sperling et al., 2010). AD weakens structural and functional con-
nectivity between the cingulate cortex and other regions within the
DMN, which is consistent with the reduction in metabolic activity
and atrophy observed with FDP-PET and volumetric MRI, respec-
tively within the DMN (Zhu et al., 2013). Patients with severe AD
show decreased connectivity between distant brain regions (Liu
et al., 2013). Interest in understanding the pathomechanisms of
tau-mediated neurodegeneration has been fostered by the failure
of amyloid-beta therapies to prevent neurodegeneration by Aβ

removal. Tau abnormalities have been found to be more closely
related to cognitive dysfunction than Aβ (Yoshiyama et al., 2012).
Tau deposition is initially located in the medio-temporal lobe to
spread later to lateral temporal and frontal parietal areas. This
orderly progression found in hypophosphorylated tau maps the
regional specificity in the deployment of symptoms in AD, i.e.,
episodic memory loss in the MTL is followed by semantic mem-
ory loss in lateral temporal cortex to aphasic symptoms in parietal
cortex (Pievani et al., 2011).

Functional imaging has been successfully used in population
selection in cross-sectional studies to classify between normally
aging, MCI, and AD subjects (Rombouts et al., 2005; Damoi-
seaux, 2012). R-fMRI can be also used to track AD progression
in longitudinal studies. For example, in Damoiseaux et al. (2012)
it is shown that functional connectivity in default-mode subnet-
works decreases in AD patients compared to healthy controls.
Resting-state functional connectivity can help detect early mani-
festations of genetic effects related to AD. For instance, in (Sheline
et al., 2010) cognitive normal individuals were categorized into
PIB− (no evidence of brain amyloid) and PIB+ (PET evidence

of amyloid deposition) and compared with AD patients using
resting-state functional connectivity. The study showed that the
PIB+ and AD groups share similar modifications in both func-
tional and effective connectivity. Thus, R-fMRI can be used to
detect early manifestations of genetic effect, e.g., amyloid deposi-
tion in APOE4 carriers, and therefore holds great potential in early
diagnosis and disease-modifying strategies. It goes without saying
that like any technique, R-fMRI has advantages and disadvantages.
fMRI measures the BOLD signal, which is an indirect measure of
neural activity and it is susceptible to several imaging artifacts and
has, in general, worse temporal resolution than EEG and MEG, and
spatial resolution that is not as good as more invasive procedures
such as single-unit electrodes. The analysis and interpretation of
R-fMRI data is particularly challenging, and further work is still
required to address complex issues like network identification,
effective connectivity between brain networks, detecting AD risk
groups, etc. For a review on the progress and pending problems of
statistical approaches to analyzing R-fMRI, see Cole et al. (2010).

NETWORK-BASED BIOMARKERS
Contrary to other conditions such as brain injury whose onset
can be tracked both in location and time, late sporadic AD – the
most common form of dementia and two orders of magnitude
more frequent than inherited AD (Bateman et al., 2012) – has a
gradual onset that lacks a specific location or temporal window.
Experimental studies based on neuropathology, neuroimaging,
and transgenic animal models suggest that neurodegeneration
relates to neural network dysfunction. Disease-vulnerable intrin-
sic functional networks are not diffuse or random (Sanz-Arigita
et al., 2010), however, researchers are still uncertain about the spe-
cific way in which neurodegeneration spreads beyond the sites of
initial impairment. The network degeneration hypothesis (See-
ley et al., 2009) – disease starts in small network assemblies, to
progressively spread to connected areas of the initial locus – sup-
ports the view that neurodegenerative disorders can be study as
connectivity disorders. In this light, AD can be understood as a
disconnection syndrome in which the structural and functional
connectivity of large-scale networks is progressively modified by
molecular pathomechanisms that are not fully understood.

A diagnostic biomarker, in order to be considered as such,
should reflect a core pathogenic process. The established bio-
markers in AD hold this promise as they measure, for example,
amyloid-beta and tau deposition levels, which are responsible
for the formation of senile plaques and neurofibrillary tangles.
However, it is far from clear whether amyloid and tau deposi-
tion are etiologically linked to memory deficits or they rather
reflect secondary effects of a different pathogenic mechanism
(Eidelberg and Martin, 2013). AD is a complex and multifactorial
condition and so “secondary processes” such as oxidative stress,
immune responses, or inflammation and how they interact with
core pathogenic mechanisms need to be properly understood.

The discovery of AD biomarkers must go beyond detecting
abnormal protein deposition levels and be able to monitor both
disease progression and treatment effects in a coherent and inte-
grative way. To that end, a network-based approach for biomarker
discovery is required. Erler and Linding (2010) argue that bio-
markers should be deployed as network models themselves. The
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rationale behind this idea is that biomarker discovery needs to
take into account the network state and the biological context in
which the network evolves, rather than focus on individual nodes
or events, e.g., phosphorylation. A network-based approach for
biomarker discovery is also being fostered in complex diseases
such as cancer and diabetes (Ahn et al., 2006).

The multifactorial pathogenesis of complex diseases such as AD
is at odds with the current implementation of biomarkers which
are single-dimensional. Thus, we propose to redefine biomarker as
a network model that can be used as an indicator of normal (including
adaptive) biological processes, pathogenic processes, or pharmacologi-
cal responses to therapeutic drugs. Under this definition, biomarkers
are multidimensional, as they are embedded into a network model
in which network parameters, that represent normal or patholog-
ical processes but also adaptive responses, can be characterized.
This new definition of biomarker allows us to quantify adap-
tive processes triggered by early pathogenic events, fostering an
integrative and multidimensional approach of use in AD early
diagnose. For example, it is unclear if, as the disease progresses,
functional connectivity in large neural systems is attenuated, e.g.,
in the DMN (Wu et al., 2011; Liu et al., 2013; Zhu et al., 2013) or on
the contrary,AD may induce an increase in functional connectivity
that compensates for the disease related atrophy of affected regions
(Sanz-Arigita et al., 2010). An increase in focal frontal connectivity
and heightened hippocampal activation during early stages of AD
has been reported in Dickerson et al. (2004). Functional disruption
has been observed in the prodromal stage or even earlier and there-
fore a characterization of this imaging phenotype has potential
impact in early prevention and disease-modifying therapies. The
relationship between brain development, aging and disease and
brain connectivity is not univocal, but instead involves a number of
complex mechanisms that alter the network topology in multiple
ways. The mechanisms that mediate in the increase in functional
connectivity observed in prodromal AD are in dispute. There are
several potential explanations for this phenomenon. For example,
the increase in connectivity in the early phases of AD could reflect
compensatory effects to neutralize the disruption in functional
integrity, or represent some form of glutamate receptor-mediated
excitotoxicity (Wu et al., 1995). An interesting hypothesis bor-
rowed from economic theory is that early network alterations can
be interpreted as a discount factor that anticipates the expectation
of pending functional network integrity deterioration.

Combining existing biomarkers poses important challenges not
only in terms of intelligibility due to the heterogeneous and com-
plex nature of biomarker data, but also in terms of cost of data
extraction, e.g., expensive SPECT or MRI can not be used in sub-
jects with metal implants, and genetic mutations account for only
a small percentage of AD cases (Bertram and Tanzi, 2004). Truly
predictive models of disease progression need to take into account
the combined effects of biomarkers interactions at the individ-
ual subject level. Few studies however, have specifically addressed
the issue of the integration of different biomarkers (Gomar et al.,
2011). The long sought goal of early diagnosis of AD necessarily
passes by the integration of existing biomarkers and the discov-
ery of new ones. Network-based biomarkers provide a unifying
approach for AD biomarker discovery and testing. Graph-based
network analysis allows to quantitatively characterize the global

organization of the brain and to integrate heterogeneous data in a
“neutral” and general mathematical body.

A NETWORK-BASED APPROACH IN AD BIOMARKERS
Biomarkers can be compounds obtained from bodily fluids or
tissues, or technically derived correlates of pathophysiological
events. While three of the five most important AD biomarkers
are imaging-based, functional neuroimaging is absent in current
diagnostic criteria.

Markers of alterations in resting-state functional connectiv-
ity networks can discriminate between AD patients and healthy
elderly people with a satisfactory level of sensitivity and specificity.
Functional connectivity analysis of the DMN has great potential
as network biomarker able to objectively quantify asymptomatic
and prodromal stages of the disease and as secondary endpoint in
multicenter clinical trials in AD (Chhatwal et al., 2013). The study
of AD biomarkers with R-fMRI imaging, however, has focused on
detecting alterations in specific networks such as the DMN and
finding abnormal levels of protein deposition, metabolic disrup-
tion, and atrophy within the DMN. A system-level understanding
of the dependencies that exist among the different biomarkers
has not been achieved. The advent of “Big Data” science makes it
possible to share large amount of data with unprecedented pro-
cessing capability. The Alzheimer’s disease neuroimaging initiative
(ADNI) makes access to clinical imaging and biomarker data freely
available to researchers worldwide. The whole genome sequences
of the 800 individuals enrolled in the ADNI will be soon available
through the Global Alzheimer’s Association Interactive Network
(GAAIN).

The much-needed insight into the pathomechanisms that
mediate in AD will benefit from the construction of probabilistic
networks from large databases of AD biomarkers that systemat-
ically capture the probabilistic dependencies among biomarkers.
Once the network or networks are built, a supervised classification
algorithm can be used to classify new subjects within different
classes, for example healthy and AD. Thus, in a training set of
patients diagnosed as healthy or AD, we first build the generative
graphs – M H and MAD – containing biomarker dependencies of
healthy and AD subjects, respectively, to later perform a classifi-
cation inference, that is, estimate the likelihood that M H or MAD

has generated new data, i.e., a new subject to be diagnosed.
Let us see this with an example. Figure 1 shows a classification

procedure for AD using a biomarker network-based approach. BM
is a list of AD biomarkers considered in this example, BM= (w,
o, τ, aβ, hc, fc, tac). For convenience, we assume that BM takes
discrete values, that is, BMi= 1 when biomarker i reaches the
threshold of positivity. Thus, w (Word recognition) and o (Orien-
tation) are neuropsychological markers included in the ADAS-Cog
(Alzheimer Disease Assessment Scale-Cognitive) (Rosen et al.,
1984), τ and Aβ are CSF biomarkers that indicate whether the pro-
tein deposition is relevant, hc (hippocampus) is equal to 1 when
a significant reduction of the hippocampus volume is found, fc
(functional connectivity) indicates whether regions in, for exam-
ple, the DMN such as the precuneus or the posterior cingulate
cortex, has functional connectivity alterations reported in the lit-
erature or any other pattern that we want to be tested against other
biomarkers. The tactile biomarker (tac) is an inexpensive marker
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FIGURE 1 | Seven biomarkers of interest are listed in BM. For
convenience, we assume that BM is a binary vector, that is, BM(i )=0,1. For
example, if the measurement of the biomarker Word recognition reaches the
positive threshold BM(1)=1, if not, BM(1)=0. The table in the top of the
figure shows the training set S consisting of n samples or subjects with their
biomarkers BM, and diagnosed as AD or healthy. The data in the table can be
summarized via the construction of generative networks, one for each

diagnostic category, in our example H and AD. There is a number of possible
network structures that can characterize the training set, so the generative
networks MH and MAD are the result of model selection. The diagnosis of new
patients can be thus be addressed via the computation of the probability that
the new data, BMs is generated by the biomarker network that captures the
dependencies among biomarkers in healthy subjects or by the biomarker
network of healthy subjects.

of cognitive and motor decline of interest in AD found in our lab-
oratory (Yang et al., 2010). This list of biomarkers can be extended
with others, e.g., smell, epigenetic, blood, genetic, etc., with the
caveat that a large number of parameters need even larger data
sets in order to avoid having an overwhelming choice of networks
that are potentially good at explaining the data.

The training data set S is ideally composed of a large number
of diagnosed subjects with the BM vector of biomarker informa-
tion for each one. Thus, the training set is given by S= [(BM1,

y)(BM2, y),. . .(BMn, y)], where BMi is the vector containing the
biomarkers measured in patient i, and y represents the diag-
nostic class in which a subject can be classified, e.g., Healthy or
AD. Now, we want to build a probabilistic network that captures
dependencies among the biomarkers for each diagnostic class. For
example, if the training data set contains biomarker information
of n subjects diagnosed as healthy or AD [y = (yH, yAD)], two
generative biomarker networks – M H and MAD – need to be built.
This approach is entirely different to conventional AD biomarker
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Table 1 | Differences between the standard and the network-based AD biomarker approaches.

AD biomarker AD network-based biomarker (NBB)

Dimensionality 1-Dimensional, unsuited for multi-modal integration of

heterogeneous data

N-Dissmensional, integrate multi-modal biomarkers in a common

framework

Statistical

classification

Classifier based on group differences between HC, MCI, AD Supervised classifier for the assessment of risk disease in

relation to large population data. Allows group risk classification

based on individual-based risk measure built upon network

biomarker parameters

Temporal scale Temporal window of biomarker efficiency is not considered Well suited for longitudinal studies by implementing

computational models of network disruption effects in temporal

windows, e.g., short/long term

Spatial scale Study of selective vulnerability in region specific neuron classes,

i.e., neuronopathy or network component specific, e.g., the

precuneus in the DMN

Unbiased, NBB address large-scale distributed networks. Long

rage disease spread shaped by network connectivity profiles,

i.e., network-opathy (Comon, 1994)

Early diagnosis Diagnosis of patients with overt dementia Characterization of asymptomatic and prodromal stages. NBB

can be used as surrogate end points and provide in vivo

intermediate phenotypes of pathology

Preventive

therapy

Inefficient for disease-modifying or preventive therapies, e.g.,

reduction of Aβ production has shown limited therapeutic impact

Potential for early diagnosis and disease-modifying therapies by

detecting alterations in functional connectivity

Feature

extraction

Absence of standardized quantitative metric for AD imaging

biomarkers

Automated extraction of network parameters borrowing tools

and methods from network theory

studies, summarized above, that treat biomarkers as quantities
that reflect relevant biological processes whose correlations with
other biomarkers need to be investigated through heuristics meth-
ods (Table 1). An interesting improvement in the quantification
and integration of AD biomarkers aiming to improve the effi-
ciency and of AD diagnosis can be found in Mattila et al. (2011). A
supervised classifier is implemented via a disease state index (DSI)
that compares the biomarker measurements of new patients with
previously diagnosed patients’ biomarkers. Thus, the DSI is an
aggregate measure of a number of biomarkers that allows us to
classify based on biomarker data.

Our network-based approach in AD biomarkers differs from
these approaches in that biomarkers are here characterized as
structured objects, i.e., networks, in which the dependencies
among the network components, i.e., individual biomarkers, need
to be quantified via experimentation or computational simula-
tion of the network dynamics. For a training set of diagnosed
biomarker data, the computation of the generative biomarker
network for each diagnostic class, e.g., M H, MAD is a network
structure discovery problem. The idea is to provide a structural
model, i.e., a network of the training data set, i.e., biomarker data.
For example, for a training data set of patients diagnosed into
the categories healthy and AD, two networks – MH, MAD – are
built. The nodes represent the random variables of the training set
(biomarkers) and the edges represent the stochastic dependency
between these variables. Dependency structures can be analyzed
using Bayesian network models (Buntine, 1996). In the context
of AD biomarkers, the network represents the dependency struc-
ture of the underlying distribution of any two biomarkers. For
example, in Figure 1, the generative network M H, which con-
tains a structural representation of the biomarkers dependencies
in the subjects diagnosed as healthy, shows no dependency among

biomarkers and only one biomarker, amyloid-beta deposition,
reaches the threshold of positivity. In the MAD network, the gen-
erative matrix of patients diagnosed as AD, we find stochastic
dependency between all pairs of biomarkers except in fMRI and
tactile.

The identification of the generative models M H and MAD from
data is the result of statistical learning followed by model selec-
tion. It ought to be noted that when the amount of data – the
number of diagnosed individuals – is small compared to the size
of the model – the number of biomarkers – there are likely many
candidate models that explain the data, and therefore the gen-
erative model provided by model selection may not be a good
approximation of the underlying process. On the other hand,
model selection is more likely to provide a good approximation
when a large amount of data is available in models with a rel-
atively small number of parameters. The number of candidate
networks is super exponential of the number of model parame-
ters, therefore small size models relative to the large data sample
are preferable. For a discussion of the p, n (p=model size, n= data
size) problem in statistics, see Gomez-Ramirez and Sanz (2013).
The diagnosis of a new subject can be computed via the maxi-
mum probability of the biomarker configuration BMs conditional
to the generative models, M H and MAD, maxG= (M H, MAD)
P(BMs|G).

The utility of this approach will ultimately rely on its power to
generate decision support systems to assist the physician in early
diagnosis and symptomatic treatment. This work describes the
blueprint for the construction of uncomplicated and cost-effective
tools for the identification of disease’s signatures, based on a new
understanding of biomarkers as multidimensional objects, i.e.,
networks. Thus, biomarkers can be seen here as the heterogeneous
building blocks in network-based models.
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Conceptually, the work flow for the implementation of decision
models based on the theoretical framework described here can be
divided into three phases: (1) data extraction for biomarker selec-
tion, (2) network-based model building, and (3) model valida-
tion using classification algorithms. The first phase is intrinsically
hypothesis driven. Quantities susceptible to work as biomarkers
are selected experimentally or via public repositories such as the
ADNI initiative. In the second phase, the interdependencies among
biomarkers are studied quantitatively. The idea is to understand
how the different biomarkers act together within a network model
that can be further characterized in terms of network parameters
such as clustering or modularity. As a result, generative models of
diagnostic categories, e.g., M H and MAD are built. In the last step,
new subjects can be diagnosed via the maximum probability of the
biomarker configuration for a new subject s (BMs) conditional to
the generative models, maxG= (M H, MAD) P(BMs|G). Thus, in
essence, this approach can be seen as a supervised classifier that
allows us to assess the clinical value of the network models built
upon heterogeneous and structured biomarker data. It ought to
be remarked that the Bayes’ theorem allows us to calculate the pos-
terior probability P(G|BMs) or the updating of probabilities from
an experiment that results in the biomarker values BMs. Gener-
ally speaking, by increasing the sample size it is possible to reduce
the importance of the prior distribution, P(G), which is partic-
ularly difficult to specify, and represents the uncertainty about
the network structure before the data are examined (Migon and
Gamerman, 1999).

CONCLUSION
The network-based biomarker approach described here is in com-
pliance with the new emerging paradigm of network medicine
(Barabási et al., 2011). In this respect, network medicine, in order
to be successful, must offer healthcare professionals not only a
conceptual framework, but also comprehensive methodologies
and a practical toolkit able to address the challenges and limi-
tations in AD biomarkers research in new ways. New classification
methods, such as support vector machine (SVM), have proven
to be effective for the identification of MCIs from normal aging
using resting-state functional connectivity data (Wee et al., 2012).
Bayesian network analysis of effective connectivity show differ-
ences in the DMN between AD and healthy controls and could be
used in the future as a biomarker (Wu et al., 2011).

The development of efficient tools for use in clinical diagnosis
and monitoring of disease progress require the improved use of
already known biomarkers and new methods of biomarkers dis-
covery. There is a strong need for objective- and quantitative-based
biomarkers of use in asymptomatic and prodromal stages of AD.
The systemic understanding of the interactions between biomark-
ers can be seen as statistical learning followed by a model selection
problem. The inclusion of functional imaging biomarkers in the
clinical diagnoses of AD necessarily passes over the standardization
of imaging protocols and quantitative metrics. In this respect, the
network-based biomarkers approach presented here goes beyond
the current emphasis on the study of the relationship between
specific networks (e.g., DMN) and molecular biomarkers (e.g.,
amyloid-beta) to learn dependencies between biomarkers from
heterogeneous data implemented as a graph, where the nodes

are biomarkers and the edges represent the stochastic dependency
among the biomarkers.

There are, however, challenges that are not addressed here. For
example, the review has focused on the integration of predeter-
mined biomarkers, but biomarker selection is a standing prob-
lem in AD research. Non-linear relationships between biomarker
measurements and disease severity, and handling sparse obser-
vations constrain biomarker prediction. Alterations in functional
connectivity may play a key role in detecting signatures in pre-
symptomatic and prodromal stages. However, functional imaging
related biomarkers have so far focused on alterations in intrinsic
connectivity networks and the co-occurrence of protein deposi-
tion within those networks. Quantified and standardized metrics
for AD neuroimaging biomarkers and a system-level understand-
ing of the dependencies among the existing biomarkers are still
missing. The network-based approach introduced here aims to
bridge this gap by providing a statistical framework able to learn
structural representations of biomarkers interactions from bio-
marker data of previously diagnosed patients. To fully capitalize
on the large amount of data that big data science projects are
bringing to AD research, a new mathematical framework for find-
ing effective combinations of multi-modal biomarkers is sorely
required. Biomarkers deployed as network models rather than as
quantities will foster our understanding of disease, paving the way
for a predictive, preventive, and personalized medicine.
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