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In Alzheimer’s disease (AD), vascular pathology may interact with neurodegeneration
and thus aggravate cognitive decline. As the relationship between these two processes
is poorly understood, research has been increasingly focused on understanding the
link between cerebrovascular alterations and AD. This has at last been spurred by the
engineering of transgenic animals, which display pathological features of AD and develop
cerebral amyloid angiopathy to various degrees. Transgenic models are versatile for
investigating the role of amyloid deposition and vascular dysfunction, and for evaluating
novel therapeutic concepts. In addition, research has benefited from the development
of novel imaging techniques, which are capable of characterizing vascular pathology
in vivo. They provide vascular structural read-outs and have the ability to assess the
functional consequences of vascular dysfunction as well as to visualize and monitor
the molecular processes underlying these pathological alterations. This article focusses
on recent in vivo small animal imaging studies addressing vascular aspects related to
AD. With the technical advances of imaging modalities such as magnetic resonance,
nuclear and microscopic imaging, molecular, functional and structural information related
to vascular pathology can now be visualized in vivo in small rodents. Imaging vascular and
parenchymal amyloid-β (Aβ) deposition as well as Aβ transport pathways have been shown
to be useful to characterize their dynamics and to elucidate their role in the development
of cerebral amyloid angiopathy and AD. Structural and functional imaging read-outs
have been employed to describe the deleterious affects of Aβ on vessel morphology,
hemodynamics and vascular integrity. More recent imaging studies have also addressed
how inflammatory processes partake in the pathogenesis of the disease. Moreover,
imaging can be pivotal in the search for novel therapies targeting the vasculature.
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INTRODUCTION TO CEREBROVASCULAR PATHOLOGY IN
ALZHEIMER’S DISEASE
Alzheimer’s disease (AD) is the most common form of demen-
tia in elderly individuals. The disease has been classically viewed
as the accumulation of amyloid-β (Aβ), generated by proteolytic
cleavage of the amyloid precursor protein (APP), in the brain
parenchyma (Aβ plaques), leading to Aβ-related neuropathol-
ogy and loss of cognitive function (Hardy and Selkoe, 2002).
Increasing evidence has implicated cerebrovascular dysfunction
in the etiology of the disease (for reviews see Thal et al., 2008a,b;
Bell and Zlokovic, 2009; Weller et al., 2009; Biffi and Greenberg,
2011). Epidemiological studies indicate a strong overlap between
AD pathology and cardiovascular disease, suggesting that they
might share common mechanisms and risk factors. Among all
cerebrovascular comorbidities in AD, cerebral amyloid angiopa-
thy (CAA) is the most common pathological finding, present
in up to 90% of AD patients (Vinters, 1987; Jellinger, 2002).

CAA results from the failure to eliminate Aβ from the cere-
bral vasculature (Weller et al., 2009). Both AD and CAA can
lead to pronounced cerebrovascular dysfunction, characterized
by impaired neurovascular and metabolic regulation of cere-
bral blood flow (CBF) and aberrations in vascular morphology
and density. In addition, changes in the proteolytic microenvi-
ronment and inflammation lead to impairment of blood-brain
barrier (BBB) integrity and the occurrence of cerebral microb-
leeds (CMBs) and intracerebral hemorrhages (Snowdon, 2003;
Cordonnier and van der Flier, 2011). It has been suggested that
the vascular pathology may mutually interact with neurodegen-
eration in AD, and thus aggravate cognitive decline, though the
relationship between these two processes is poorly understood.
Hence, recent research has been increasingly focused on under-
standing the link between cerebrovascular alterations and AD.
This has on one hand been spurred by the engineering of trans-
genic animals, which display pathological features of AD and
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develop CAA to various degrees. These models have been proven
versatile for elucidating the role of amyloid deposition, vascu-
lar dysfunction and for evaluating novel therapeutic concepts.
On the other hand, research has benefited from the development
of novel imaging techniques, which are capable of characteriz-
ing vascular pathology in vivo. They provide vascular structural
read-outs and have the ability to assess the functional con-
sequences of vascular dysfunction as well as to visualize and
monitor the molecular processes underlying these pathological
alterations.

This article focusses on recent in vivo small animal imaging
studies addressing vascular aspects related to AD. We first intro-
duce transgenic mouse models of AD displaying CAA and their
main characteristics, followed by a summary of the current imag-
ing techniques and discuss their advantages and limitations. The
potential of imaging vascular pathology will be illustrated by
discussing applications on the visualization of vascular amyloid
deposition and amyloid clearance pathways, the assessment of
the cerebrovascular architecture to elucidate the dynamics and
mechanism of CAA and to understand how amyloid deposi-
tion induces vascular remodeling. The use of functional imaging
read-outs to monitor the deleterious consequences of amyloid
deposition, namely chronic hypoperfusion and reduced hemody-
namic response are presented. The role of neurovascular inflam-
mation, loss of BBB as well as CMBs in advanced stages of the
disease are then addressed. The fact that CAA may be halted
or even reversed is evaluated by a glance on therapeutic studies
involving the animal models. Finally, we evaluated how biologi-
cal lessons learned from these models may be translated into the
clinic.

TRANSGENIC MODELS OF ALZHEIMER’S DISEASE
DISPLAYING CEREBRAL AMYLOID ANGIOPATHY
To date, several mouse and rat lines have been genetically engi-
neered to serve as preclinical models for AD. Most of these
models have been generated by transgenic overexpression of the
gene encoding for the human APP, which leads to progressive
accumulation of Aβ and amyloidosis in the brain. Some of these
strains develop CAA to various degrees, which allow studying the
effect of Aβ accumulation on vascular function. Further strains
have been established addressing the other pathological hallmark
of AD, neurofibrillary tangles, by expressing different forms of tau
(Gotz et al., 1995; Duff et al., 2000; Allen et al., 2002; SantaCruz
et al., 2005). Furthermore, mouse models with multiple muta-
tions have also been engineered, e.g., APP/PS1 and 3xTg-AD, to
study either the enhancement of amyloid pathology by presenilin
mutations or the interaction between amyloid and tau (Blanchard
et al., 2003; Oddo et al., 2003a,b). However, most studies uti-
lize strains with a single mutation, which have the advantage
of assessing one pathological process at a time without being
confounded by the complex pathophysiology of sporadic AD.
Transgenic mouse models are very valuable for drug discovery as
the pathology usually develops within months (as compared to
years or decades in AD patients) and disease pathological stages
are well characterized.

Mice overexpressing APP have been utilized as valid mod-
els for CAA (summarized in Table 1). These transgenic models

use various promoters to drive transgene expression in differ-
ent genetic backgrounds. Interestingly, it has been shown that
neuronal Aβ is the driver for CAA (Calhoun et al., 1999) and
an impaired Aβ clearance seems to enhance CAA (Herzig et al.,
2004). Early onset CAA is observed in models with multiple
autosomal dominant mutations like Thy1-APP751, Tg-SwDI,
TgCRND8, whereas late-onset CAA (>9 months of age) is usu-
ally detected in mice with expression of mutated APP restricted
to one familiar mutation as in Tg2576, PDAPP, APPDutch,
APP/London, APP23, or TgAPPArc animals. CAA is observed
earlier in mice that additionally carry a presenilin mutation like
APPswe/PS1dE9 or Thy1-APP751SLxHMG-PS1M146L.

Experimental evidence suggests that total levels of Aβ as
well as the ratio of the Aβ40 and Aβ42 peptides (Aβ40/Aβ42),
generated by proteolytic cleavage of β- and γ-secretase, are fac-
tors determining both onset and the severity of CAA (Herzig
et al., 2004, 2007; for reviews see Herzig et al., 2006; Kumar-
Singh, 2009). APPDutch animals displaying a very high ratio of
Aβ40/Aβ42 develop severe CAA (Herzig et al., 2004), indicating
that the majority of Aβ deposited in vascular deposits is Aβ40.
Furthermore, APP23xAPPDutch double transgenic animals with
an overall increase of Aβ load and a high ratio Aβ40/Aβ42 show
enhanced CAA compared to APP23 single transgenic mice. In
contrast, APPDutchxPS45 with a lower Aβ40/Aβ42 ratio develop
more pronounced parenchymal than vascular deposits (Herzig
et al., 2004). Also, autosomal dominant mutations with reduced
Aβ40/Aβ42 ratio such as the Indiana mutation in PDAPP and
APP/London mice display less pronounced CAA. These obser-
vations are in line with findings in hereditary cerebral hemor-
rhage patients with amyloidosis of the Dutch type. Individuals
with this rare autosomal dominant disorder, caused by an APP
693 mutation that leads to recurrent hemorrhagic strokes and
dementia, have decreased Aβ42 levels in the brain (Bornebroek
et al., 2003). However, contrasting data have been reported
for the BRI-Aβ42 animals, where overexpression solely of Aβ42

led to CAA, while overexpression of Aβ40 did not (McGowan
et al., 2005). Other reports suggested that Aβ40 can inhibit
fibril formation and even inhibit amyloid deposition (Jarrett
et al., 1993; Kim et al., 2007). Taken together, most studies
indicate that Aβ42 might be essential for the initial amyloid
deposition in vessels and that an increase of overall total Aβ

as well as of the Aβ40/Aβ42 ratio favors subsequent vascular Aβ

load.
In this review, we focus on effects of Aβ on the cerebral

vasculature and the consequences thereof. Since the transgenic
AD models exhibit quite different levels of CAA vs. neuritic Aβ

deposits, they enable studying the effect of these processes on AD
pathology.

IMAGING MODALITIES FOR THE CHARACTERIZATION OF
CEREBRAL VASCULATURE
Multimodal imaging offers an impressive number of approaches
for characterizing cerebral vasculature from the cellular to the
whole organ scale (Table 2). The dimensions of cerebral vessels
span a range of 2–3 orders of magnitude with large arteries and
veins of dimensions of approximately 1 mm to capillaries with
typical diameters of 5–10 μm. Correspondingly, the phenotypic

Frontiers in Aging Neuroscience www.frontiersin.org March 2014 | Volume 6 | Article 32 | 2

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Klohs et al. Cerebrovascular imaging in AD models

Table 1 | Summary of transgenic models used in AD research and their relation to CAA development.

Line Construct Familial Onset of CAA CAA Neuronal Cognitive References

(Alternative Promoter APP AD amyloid onset severity loss defects

designation) mutation plaques

APP TRANSGENIC MOUSE MODELS

Tg2576
(APPsw)

hAPP695
K670N/M671L
HamPrP

Swe 7–10 mo 9–12 mo ++ No Yes Hsiao et al., 1996; Fryer
et al., 2003; Domnitz
et al., 2005; Kumar-Singh
et al., 2005; Perez-Cruz
et al., 2011

Thy1-APP751
(TASD-41, mThy1-
hAβPP751)

hAPP751
K670M/N671L/V717I
mThy1

Swe
Lon

3–4 mo 5–7 mo + No Yes Rockenstein et al., 2001;
Havas et al., 2011

ArcAbeta
(ArcAβ)

hAPP695 K670N/M671L/E693G
MoPrP

Swe
Arc

5–7 mo 9–15 mo + + + No Yes Knobloch et al., 2007;
Klohs et al., 2012

Tg-SwDI
(APPSwDI)

hAPP770
K670N/M671L/E693Q/D694N
mThy1

Swe
Dut
Iow

3 mo 6 mo + + + No Yes Davis et al., 2004; Miao
et al., 2005; Xu et al.,
2007

TgCRND8 hAPP695 KM670/671NL/V717F
HamPrP

Swe
Ind

3 mo 6–7 mo ++ No Yes Chishti et al., 2001;
Domnitz et al., 2005;
Lovasic et al., 2005

PDAPP hAPP full-length
V717F
PDGFb

Ind 6–9 mo 10–12 mo + n.a. Yes Games et al., 1995;
Dodart et al., 1999; Chen
et al., 2000; Fryer et al.,
2003; Nilsson et al.,
2004; Domnitz et al.,
2005; Hartman et al.,
2005; Daumas et al.,
2008; Schroeter et al.,
2008

APPDutch hAPP
E693Q
mThy1

Dut – 22–25 mo ++ No n.a. Herzig et al., 2004, 2007

APP/London
(APP/Lo,
APP(V717I),
APP-Ld, APP/Ld,
APP/V717I,
APP[V717I])

hAPP695
V717I
mThy1

Lon 10–11 mo 12–15 mo ++ No Yes Moechars et al., 1999;
Dewachter et al., 2000;
van Dorpe et al., 2000;
Tanghe et al., 2010;
Perez-Cruz et al., 2011

BRI-Aβ42 BRI-Ab42 fusion
MoPrP

3 mo 12 mo ++ n.a. n.a. McGowan et al., 2005

APPArcSwe
(tg-APP(ArcSwe),
TgArcSwe)

hAPP
KM670/671NL/E693G
mThy1

Swe
Arc

5–6 mo 9 mo + n.a. n.a. Lord et al., 2006

J20 hAPP hAPP
K670N/M671L/V717F
PDGFb

Swe
Ind

5–7 mo <11 mo + Yes Yes Mucke et al., 2000;
Spilman et al., 2010;
Thanopoulou et al., 2010;
Wright et al., 2013

(Continued)
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Table 1 | Continued

Line Construct Familial Onset of CAA CAA Neuronal Cognitive References

(Alternative Promoter APP AD amyloid onset severity loss defects

designation) mutation plaques

APP23 hAPP751
K670N/M671L
mThy1

Swe 6 mo 12 mo ++ Yes Yes Sturchler-Pierrat et al.,
1997; Calhoun et al.,
1998, 1999; Winkler
et al., 2001

TGAPParc hAPP695
E693G
mThy1

Arc 9 mo <18 mo + n.a. Yes Rönnbäck et al., 2011,
2012

APP23
X
APPDutch

hAPP751
K670N/M671L
X
E693Q
mThy1

Swe
Dut

n.a. n.a. + + + n.a. n.a. Herzig et al., 2009

E22�Aβ hAPP695
K670N/M671L/E693�

MoPrP

Swe
Osaka

– <24 mo ++ n.a. Yes Kulic et al., 2012

tTA/APP
(APP/TTA)

m/hAPP695
K570M/N571L/V617F
tet

Swe
Ind

6 mo n.a. n.a. n.a. Yes Jankowsky et al., 2005;
Melnikova et al., 2013

APPxPS TRANSGENIC MOUSE MODELS

APPswe/PS1dE9
(APP/PS1)

m/hAPP695 K595N/M596L
X
hPS1
dE9
MoPrP
coinjection

Swe 6–7 mo 6 mo ++ n.a. Yes Jankowsky et al., 2001;
Savonenko et al., 2005;
Garcia-Alloza et al., 2006;
O’Leary and Brown,
2009; Stover and Brown,
2012

Tg2576
X
PS1 M146L
(APP/PS1,
TgPSAPP, PSAPP)

hAPP695
K670M/N671L
X
PS1
M146L
HamPrP

Swe 3–6 mo 10 mo ++ Yes Yes Holcomb et al., 1998;
Sadowski et al., 2004;
Kumar-Singh et al., 2005;
Wang et al., 2012a

Thy1-APP751SL
X
HMG-PS1M146L
(APPSweLon/
PS1M146L,
APP/PS1)

hAPP751
K670M/N671L/V717I
mThy1
X
PS1
M146L
HMG

Swe
Lon

3–5 mo 3–5 mo ++ Yes n.a. Blanchard et al., 2003;
Schmitz et al., 2004; El
Tayara et al., 2010

APPDutch
X
PS45

hAPP
E693Q
X
PS1
G384A
mThy1

Swe
Dut

3 mo n.a. + n.a. n.a. Herzig et al., 2004

APP23
X
PS45

hAPP751
K670N/M671L
X
PS1
G384A
mThy1

Swe 2–3 mo n.a. + n.a. Yes Busche et al., 2008,
2012; Beckmann et al.,
2011

(Continued)
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Table 1 | Continued

Line Construct Familial Onset of CAA CAA Neuronal Cognitive References

(Alternative Promoter APP AD amyloid onset severity loss defects

designation) mutation plaques

PS2APP
(PS2N141IXAPPSwe)

hAPP751
K670N/M671L
mThy1
X
PS2
N141I
MoPrP

Swe 5 mo 12 mo + n.a. Yes Richards et al., 2003;
Woolley and Ballard,
2005; Weidensteiner
et al., 2009

APPPS1
(APPPS1-21)

hAPP751
K670N/M671L/V717I
mThy1
X
PS1
L166P
knock-in

Swe 2–4 mo 8 mo + Yes Yes Radde et al., 2006; Rupp
et al., 2011; Montagne
et al., 2012; Vom Berg
et al., 2012

APPxPS1-Ki
(APPSLPS1KI)

hAPP751
K670N/N671L
mThy1
PS1
M233T/L235P
mThy1
coinjection

Swe
Lon

2–3 mo n.a. n.a. Yes Yes Casas et al., 2004; Faure
et al., 2011

5XFAD hAPP695
K670N/M671L/I716V/V717I
mThy1
PS1
M146L/L28V
mThy1
coinjection

Swe
Lon
Flo

2–3 mo n.a. n.a. Yes Yes Oakley et al., 2006;
Kimura and Ohno, 2009;
Jawhara et al., 2012

APPxPSXTAU TRANSGENIC MOUSE MODELS

3xTg-AD
(3xTg)

hAPP695
K670M,N671L + htau (P301L)
mThy1
coinjection
PS1 (M146V)
knock-in

Swe 12–15 mo
(heterozy-
gous)
6 mo
(homozy-
gous)

n.a. n.a. Yes. Yes Oddo et al., 2003a,b;
Billings et al., 2005;
Bittner et al., 2010

APP DOUBLE TRANSGENIC RAT MODELS

TgF344-AD hAPP695
K595N/M596L +
hPS1(dE9)
MoPrP
coinjection

Swe 6 mo 6–12 mo ++ Yes Yes Cohen et al., 2013

Mutations: Arctic (Arc), Dutch (Dut), Florida (Flo), Indiana (Ind), London (Lon), Swedish (Swe). Classification of CAA severity: + mild, ++ significant, +++ pronounced.

Abbreviations: n.a., not analysed/not available; mo, months; X: cross breeding.

characterization of cerebral vasculature under normal and patho-
logical conditions requires information at multiple length and
time scales addressing various aspects of vascular anatomy and
function/physiology (Figure 1).

Light-based microscopy methods such as two-photon
microscopy or optical coherence tomography provide exquisite
information at submicrometer resolution though they are limited
to superficial structures due to light scattering by turbid tissue.

The cortex is ideally suited for in vivo microscopy of adult mice.
Technically, it involves the preparation of an optical window in
anesthetized animals, comprising either a thinned skull region
or a sealed craniotomy. For short- and long-term imaging
experiments the thinned skull preparation is the preferred
method because it is the least invasive to parenchymal tissue
(Helm et al., 2009). Recording duration ranges from minutes
to months depending on the biological process investigated.
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Table 2 | In vivo imaging techniques applied to AD models.

Method Volume coverage Aspect of CAA Imaging strategy/tool

and resolution addressed

M
ec

ha
ni

st
ic

Two-photon
microscopy

3D
Superficial (depth ≤500 μm)
Resolution <1 μm

Vascular morphology/remodeling Intravascular fluorescent dye

Amyloid deposition Amyloid specific dye

BBB leakage Intravascular fluorescent dye

Cell migration (inflammatory cells) Fluorescently labeled cells (dye or genetic
encoding)

Molecular targets Target-specific molecular probes

Tr
an

sl
at

io
na

l

Magnetic
resonance
imaging
(MRI)

3D
Whole brain or selected VOI
Resolution ≥50 μm

Vascular morphology/remodeling MR Angiography (MRA) without (time-of-flight,
TOF) or with use of contrast agents (Vessel
size index, VSI)

Flow disturbances Quantitative TOF MRA or velocity encoded
phase mapping

Tissue perfusion Dynamic susceptibility contrast (DSC) MRI or
arterial spin labeling (ASL)

BBB integrity Dynamic contrast-enhanced (DCE) MRI

Vascular reactivity Stimulus induced change in cerebral blood
volume (CBV)

Microhemorrhages Susceptibility weighted MRI (SWI) or
quantitative susceptibility mapping (QSM)

Cell migration (inflammatory cells) Magnetically labeled cells

Positron
emission
tomography
(PET)

3D
Whole brain
Resolution ≥1 mm

Tissue perfusion
Molecular targets

15H2O PET
Target-specific radiotracer

Some applications, for instance high-resolution two-photon
imaging of extensive cortical areas or micrometerscale structures
deep inside the cortex (∼250 μm), require the use of an open
skull window providing direct access to the brain parenchyma
(Holtmaat et al., 2009). To target deeper brain structures like the
hippocampus, removal of parts of the cortex have been proven
to be feasible (Busche et al., 2012). It should be kept in mind
that skull removal may lead to mechanical injuries to the cortical
surface or immediate disturbances in local blood perfusion, BBB
permeability, and brain homeostasis, while removal of whole
brain structures might even lead to damage of brain structures.

Modalities such as computed tomography (CT), magnetic res-
onance imaging (MRI), positron emission tomography (PET),
single-photon emission computed tomography (SPECT) and
near-infrared fluorescence (NIRF) imaging allow for non-invasive
three-dimensional (3D) coverage of large volumes at the expense
of spatial resolution. Imaging solutions based on these tech-
nologies are potentially translatable. Due to its versatility, MRI
has been extensively used for characterizing cerebral vasculature:
gross vascular architecture, tissue perfusion, integrity of the BBB,
occurrence of hemorrhages and immune cell infiltration, all have
been studied both in patients and animal models of the disease.
These structural and functional read-outs can be complemented
by molecular information derived from the use of target specific
probes (Klohs and Rudin, 2011).

A brief summary of imaging activities and techniques related
to murine AD models is provided in Table 3. A glance at Tables 2,
3 reveals that both macroscopic techniques, like MRI and PET,
as well as in vivo microscopy are at the center of attention. The
method of choice depends on the required resolution of the
method, and thus on the specific research questions addressed.

VISUALIZING VASCULAR vs. PARENCHYMAL AMYLOID
DEPOSITIONS
The amyloid hypothesis proposes that AD is caused by an
imbalance between Aβ production and clearance which leads to
parenchymal and vascular Aβ deposits (Hardy and Selkoe, 2002).
Visualizing Aβ deposition in general is desirable to characterize
the dynamics of this process and for testing of Aβ-directed ther-
apeutics. To investigate the role of CAA in AD requires discrimi-
nating vascular from parenchymal Aβ deposits. Differentiation of
the two compartments would enable monitoring the effects of Aβ

removal strategies, which have been shown in some instances to
increase CAA (Wilcock et al., 2004a, 2011). To date, assessment
of Aβ load and CAA requires time-consuming postmortem neu-
ropathological analysis. Imaging approaches enabling to assess
Aβ deposition at the microscopic and macroscopic scale in situ
are therefore welcome. The sub-micrometer spatial resolution of
in vivo microscopic techniques allows differentiating CAA from
neuritic amyloid deposits in a straightforward manner based
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FIGURE 1 | Phenotypic characterization of cerebrovascular structures

at various length scales. Time-of-flight magnetic resonance
angiography can depict large vessels (≥100 μm), contrast-enhanced

magnetic resonance angiography can depict medium sized vessels
(≥50 μm) and two-photon microscopy can visualize microvessels
(≥0.25 μm).

on their spatial distribution within tissue. In contrast, monitor-
ing vascular amyloid deposition using non-invasive macroscopic
imaging with voxel dimensions of ≥50 μm is hampered by the
fact that spatial resolution does not allow discriminating between
the parenchymal and vascular compartments. Instead plaque
subtype specific labeling is required, which remains a major chal-
lenge, given the chemical and structural similarity of the amyloid
deposits. As addressed next, in vivo microscopy has evolved as
an indispensable tool for studying the dynamics of CAA under
experimental conditions and also for the development of amy-
loid subtype specific probes, which can then be appropriately
labeled for macroscopic imaging investigations with e.g., optical
techniques or PET.

The dynamics of CAA has been studied in real time in Tg2576
mice using multiphoton microscopy through cranial windows
(Robbins et al., 2006). Affected vessels were labeled by methoxy-
X04. Earliest appearance of CAA was observed as multifocal
deposits of band-like Aβ in leptomeningeal arteries at approxi-
mately 9 months of age. Serial imaging sessions enabled mon-
itoring growth of these deposits as well as appearance of new
bands. The CAA progression in Tg2576 mice was found to be lin-
ear in the range of 9–16 months of age (Robbins et al., 2006). In
contrast, APPswe/PS1dE9 mice showed CAA deposition in lep-
tomeningeal arteries by 6 months of age (Garcia-Alloza et al.,
2006). However, compared to Tg2576 animals, CAA progressed at
a lower rate in these mice, which may be accounted for an increase
of the Aβ42/Aβ40 ratio in APPswe/PS1dE9 mice.

Amyloid specific dyes such as Thioflavin, Congo red or
curcumin have been used for the histopathological assessment of

cerebral amyloidosis and CAA. Chemical modifications of these
dyes have led to the development of specific imaging probes
which can be employed to detect amyloid deposition in vivo.
Alternative approaches explore the use of antibodies or antibody
fragments for targeting vascular Aβ deposition. For this purpose,
Aβ targeted compounds can be labeled with radionuclides such
as 11C and 18F, fluorescent dyes or paramagnetic nanoparticles.
However, the delivery of intravenously injected compounds can
be affected by the status of the BBB as an impairment of the BBB
function may lead to unspecific leakage of the probe. Moreover,
species specific differences in the affinity sites of Aβ exist (Klunk
et al., 2005), which in some cases does not allow for simple
translation of approaches targeting Aβ across different species.

EstablishedPETtracers suchas the[11C]-Pittsburghcompound
B or [18F]-florbetapir enable cerebral Aβ detection (Johnson et al.,
2007; Wong et al., 2010), but do not allow the differentiation of neu-
ritic plaques from CAA. Thus, a new series of [18F]-styrylpyridine
derivatives has been developed which showed labeling of vascular
Aβ in in vitro autoradiography of brain sections of patients with
CAA or AD (Zha et al., 2011). Fluorescent dyes with specificity
for vascular Aβ have also been synthesized. For example, Han
et al. (2011) found that the phenoxazine derivative resorufin
binds preferentially to vascular amyloid deposits as compared to
neuritic plaques in aged Tg2576 transgenic mice, in contrast to
methoxy-X04 which binds to both (Figure 2). Along the same
lines, McLean et al. (2013) developed a method to translate a
panel of anti-Aβ antibodies, which show excellent histological
properties, into live animal imaging contrast agents. The antibod-
ies M116 and M64 targeting neuritic plaques and M31 binding to
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Table 3 | In vivo imaging activities and techniques related to AD models.

Line Imaging activities and techniques References

Tg2576
(APPsw)

High-resolution T2*-weighted magnetic resonance microscopy Luo et al., 2010

Metabolism and function (FDG-PET and CBV fMRI) Luo et al., 2012

Microhemorrhages (antibody-coated iron oxide nanoparticles, MRI) Poduslo et al., 2011

Vascular structure (MRA) Kara et al., 2012

ROS and MMP activity, CAA (multiphoton microscopy) Garcia-Alloza et al., 2009; Gregory
et al., 2012

Resorufin analogs for CAA detection (PET) Han et al., 2011

Macromolecular changes (magnetization transfer contrast MRI) Perez-Torres et al., 2014

Changes in water diffusion (diffusion tensor imaging, DTI) Sun et al., 2005

Development of Aβ plaques (MRI) Braakman et al., 2006

Axonal transport rates (manganese-enhanced MRI, MEMRI) Smith et al., 2007; Wang et al.,
2012c

Plaque formation, astrocytic Ca2+ signaling (long-term two-photon in vivo
imaging)

Takano et al., 2007; Burgold et al.,
2011

Plaque detection ([11C]-PIB PET) Snellman et al., 2013

CAA formation (multiphoton microscopy) Robbins et al., 2006

Vasomotor dysfunction (Laser-Doppler flowmetry) Park et al., 2013

Axonal transport, blood flow (manganese-enhanced MRI, rCBF) Massaad et al., 2010

ArcAbeta Microhemorrhages (quantitative susceptibility mapping QSM, CE-MRA) Klohs et al., 2011, 2012

Function (CBV-MRI) BBB Klohs et al., 2013 Princz-Kranz et al., 2010

Tg-SwDI
(APPSwDI)

Astrocytic Ca2+ signaling (two-photon in vivo imaging) Takano et al., 2007

Vasomotor dysfunction (Laser-Doppler flowmetry) Park et al., 2013

TgCRND8 Astrocyte detection (bioluminescence) Watts et al., 2011

Amyloid imaging (6E10-PEG, PET) McLean et al., 2013

Microvascular structure (in vivo two-photon laser scanning microscopy) Dorr et al., 2012

PDAPP White matter injury (DTI) Song et al., 2004

Brain volumetric changes (MRI volumetry) Redwine et al., 2003

Hippocampal volume (MRI volumetry) Weiss et al., 2002

Blood volume (CBV fMRI) Wu et al., 2004

Inflammation (multiphoton microscopy) Koenigsknecht-Talboo et al., 2008

APP/London
(APP(V717I))

Hypointense brain inclusions (MRI) Vanhoutte et al., 2005

J20 hAPP perfusion (ASL) Hébert et al., 2013

APP23 Vascular changes (MRA, fMRI) Mueggler et al., 2002, 2003;
Beckmann et al., 2003, 2011;
Krucker et al., 2004; Thal et al.,
2009

Plaque and glia detection (PET, bioluminescence, fluorescence molecular
tomography–computerized tomography, NIRF imaging)

Okamura et al., 2004;
Hintersteiner et al., 2005; Higuchi,
2009; Hyde et al., 2009; Watts
et al., 2011; Snellman et al., 2013

Vascular changes (vascular corrosion casting and scanning electron
microscopy)

Meyer et al., 2008

Neuroinflammation, glia detection (PET) Maeda et al., 2007, 2011

(Continued)
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Table 3 | Continued

Line Imaging activities and techniques References

APPswe/PS1dE9
(APP/PS1)

Blood volume, parenchymal and vascular deposits (MRI, rCBV, CBF) Hooijmans et al., 2007a,b

ROS and MMP activity and plaque detection (multiphoton microscopy) Garcia-Alloza et al., 2009;
Nabuurs et al., 2012

Plaque detection ([11C]-C-PIB, PET) Snellman et al., 2013

Neurovascular coupling (optical-resolution photoacoustic microscopy) Hu et al., 2009

Microglia imaging (PET) Venneti et al., 2009

Tg2576
X
PS1 M146L

Deformation-based morphometry (3D MRI) and metabolite concentration
(1H MR spectroscopy)

Oberg et al., 2008

(APP/PS1, TgPSAPP, PSAPP) Morphological changes (deformation-based morphometry) Lau et al., 2008

Thy1-APP751SL
X
HMG-PS1M146L
(APPSweLon/PS1M146L,

MR relaxation times and vascular changes (MRA) El Tayara Nel et al., 2007; El
Tayara et al., 2010

APP/PS1) Metabolism and function (FDG-PET) Poisnel et al., 2012

APP23
X
PS45

In vivo Ca2+ imaging (two-photon microscopy) Busche et al., 2008, 2012;
Grienberger et al., 2012

3xTg-AD
(3xTg)

White matter pathology (anatomical MRI and DTI)
Dendritic spine loss (in vivo two-photon and confocal imaging)
Inflammation (two-photon microscopy)

Bittner et al., 2010; Fuhrmann
et al., 2010; Kastyak-Ibrahim et al.,
2013

TgF344-AD Amyloid load (microPET) Cohen et al., 2013

5XFAD Florbetapir, PIB, and FDG PET
Relaxation time changes (MRI)

Rojas et al., 2013; Spencer et al.,
2013

PS2APP Vascular changes (ASL, VSI) Weidensteiner et al., 2009

tTA/APP Brain volumetry (3D MRI) Badea et al., 2012

APPPS1
(APPPS1-21)

Plaque imaging (multiphoton in vivo imaging) Hefendehl et al., 2011

Targeting vascular cell adhesion molecule-1 expression (MRI) Montagne et al., 2012

APPxPS1-Ki
(APPSLPS1KI)

Perfusion (ASL) Faure et al., 2011

vascular Aβ were labeled with 64Cu and injected into TgCRND8
mice. M31 and M116 were found to be significantly retained in the
brains of transgenic mice after intravenous injection, while M64
was not (Figure 3). Immunohistological examination confirmed
the specificity of the antibodies for either vascular or parenchy-
mal Aβ deposits. Similarly, Nabuurs et al. (2012) investigated the
properties of two heavy chain antibody fragments, ni3A and pa2H
(Harmsen and De Haard, 2007; Rutgers et al., 2009), which in
APP/PS1 mice showed affinity for neuritic plaques and CAA, in
contrast to observations in human tissue, where ni3A was found
to specifically target vascular Aβ. An antibody-based approach
for MRI detection was developed by Poduslo et al. (2011). The
monoclonal antibody, IgG4.1, was labeled with monocrystalline
iron oxide nanoparticles. These conjugated nanoparticles bound
to vascular amyloid deposits in arterioles of Tg2576 mice after

infusion into the external carotid artery. The selectivity of the
nanoparticle approach was fostered by the fact that the nanopar-
ticles cannot cross the BBB and thus remained in the vascular
compartment.

In summary, several studies have successfully demonstrated
that CAA can be visualized in transgenic mice in vivo using differ-
ent targeting strategies. While microscopic techniques are invasive
and therefore confined to yield mechanistic information in ani-
mals, they constitute an important complement to macroscopic
imaging approaches like PET and MRI which can also be used
in humans. These imaging assays could be used in the future
to address how vasculopathy is temporally linked to vascular Aβ

deposition, but also how risk factors of AD, for example hyper-
tension, affects this process. Moreover, the tools might be useful
to evaluate Aβ removal strategies.
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FIGURE 2 | In vivo live imaging of CAA amyloid deposits through

cranial window. Closed cranial windows were prepared on the right
parietal bone of 16-month-old Tg2576 mice and the congophilic amyloid
binding dye, methoxy-X04 (X04), was administered (6 mg/kg i.p.). On the
next day, 2 μM resorufin (dissolved in artificial CSF) was superfused over
the brain through a closed cranial window for 5 min. After washing with
artificial CSF for 10 min, live fluorescent images of resorufin (red) and X04
(blue) were taken. (A) Intense fluorescent labeling detected within the
walls of the leptomeningeal arteries (arrowheads) but not in neuritic
plaques after topical application of resorufin. (B) In contrast, topical
application of methoxy-X04 labeled Aβ aggregates in both cerebral arteries
(arrowheads) and parenchymal neuritic plaques (arrows). (C) Resorufin- and
X04-images merged. (D) Magnified detail of (C). Scale bars: 100 μm.
Reproduced with permission from Han et al. (2011), © 2011 Han et al.

IMAGING CEREBRAL AMYLOID CLEARANCE
It has been implicated that Aβ accumulation in the brain is not
only the result of faulty Aβ production but also of an impaired
Aβ clearance (Bell and Zlokovic, 2009). Mechanisms of cerebral
Aβ clearing include degradation by proteases, interstitial fluid
drainage, and transport of Aβ across the BBB (Weller, 1998;
Deane et al., 2004, 2008). As discussed in the present section,
imaging approaches have revealed aberrant vascular clearance
mechanisms in transgenic models of AD.

Arbel-Ornath et al. (2013) have used multi-photon
microscopy to visualize interstitial fluid drainage along perivas-
cular spaces in APPswe/PS1dE9 in real time. The kinetics of
dye clearance was studied after parenchymal dye injections in
transgenic mice and wildtype controls 2.5–3 and 6–8 months of
age. A significant impairment of the interstitial fluid drainage
was observed in the old transgenic mice compared to young
transgenic mice and age-matched wildtype mice.

Moreover, it has been shown that Aβ is a substrate for efflux
transporters, enabling to traffick Aβ across the BBB (Kuhnke
et al., 2007). Imaging strategies have been developed to visualize
efflux transporter function by quantifying the uptake of sub-
strates of these transporters. For example, (R)-[11C]-verapamil
has been developed as a PET tracer to study P-glycoprotein
function (van Assema et al., 2012). Higher (R)-[11C]-verapamil
binding potential values were observed in AD patients compared
to healthy controls, indicative of a decreased P-glycoprotein
function.

In a different approach the role of the drug efflux transporter
ABCG2 was studied in a transgenic mouse model. ABCG2 is a
72 kDa transmembrane protein that forms functional homod-
imers and operates as BBB drug efflux transporter (Doyle and
Ross, 2003). It has been shown that this transporter is significantly
upregulated in AD/CAA brains at both the mRNA and protein
levels (Zhang et al., 2003). It has been shown that ABCG2 is also
increased in Tg-SwDI and 3XTg-AD mouse models (Xiong et al.,
2009). The role of ABCG2 in Aβ transport at the BBB was inves-
tigated by Xiong et al. (2009) in Abcg2-null and wildtype mice
after intravenous injection of Cy5.5-labeled Aβ1–40 or scrambled
Aβ1–40. NIRF imaging of live animals showed that Abcg2-null
mice accumulated significantly more Aβ in their brains than wild-
type mice (Figure 4), a finding that was confirmed by immuno-
histochemistry. These results suggest that ABCG2 may act as a
gatekeeper at the BBB to prevent blood Aβ from entering into the
brain.

Taken together, these imaging studies provide a mechanistic
link between cerebrovascular disease and AD where an impaired
Aβ clearance promotes further amyloid deposition. If a defective
clearance might constitute an initiating event for Aβ deposition
needs to be investigated, but should be considered a new target
for therapy in AD and CAA.

DETECTION OF CHRONIC CEREBRAL HYPOPERFUSION
This section is devoted to studies comprising the use of micro-
scopic or macroscopic imaging techniques to assess alterations in
hemodynamic function due to deposition of Aβ in and around
vessels as well as to changes in vasoactive mediators. For exam-
ple, Dorr et al. (2012) observed a prolonged transit time of a
fluorescent dye bolus in TgCRND8 mice compared to wildtype
littermates using two-photon microscopy. Assessment of hemo-
dynamic parameters covering the whole brain can be made with
MRI. For dynamic susceptibility contrast MRI (DSC-MRI), T2-
or T∗

2-weighted images are acquired serially. Regional changes in
MRI signal intensity are measured as the contrast agent traverses
the cerebral vasculature during its first-pass following intravenous
bolus injection (Villringer et al., 1998). This information is then
converted into contrast-time curves. The intravascular indicator
dilution theory has been used to derive the hemodynamic param-
eters mean transient time, cerebral blood volume (CBV) and
flow (CBF). Determination of absolute hemodynamic parameters
requires calibration of the perfusion maps by the arterial input
function (Rausch et al., 2000). Moreover, the theory assumes that
the contrast agent remains intravascular during its passage. This
is often not the case under pathological conditions where the BBB
function may be compromised, thus leading to leakage of the
injected tracer. Modeling of the leakage contribution to the image
signal intensity changes has been used to obtain information on
the vascular transfer constant, i.e., BBB permeability (Johnson
et al., 2004). Instead of introducing an exogenous label, moving
blood can also be labeled magnetically. These MRI methods are
based on arterial water as a freely diffusible tracer (Williams et al.,
1992). For arterial spin labeling (ASL) a non-equilibrium state
(typically spin inversion) is generated to tag inflowing spins at a
level proximal to the imaging slab. Images are recorded following
a transit delay to allow these tagged spins to enter the imaging
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FIGURE 3 | Targeting specific of Aβ with PET compatible radiolabelled

antibodies in the brains of living mice. (A) Antibodies offer an
opportunity to image specific types of Aβ pathology because of their
excellent specificity. In the TgCRND8 mouse model of AD, two
antibodies, M64 and M116, that target parenchyma aggregated Aβ

plaques and one antibody, M31, that targets vascular Aβ were tested. All
three antibodies were administered i.v. after labeling with both
poly(ethylene glycol) (PEG) to enhance circulation and 64Cu to allow PET

detection. (B) Quantitation of PET images (% of injected dose per gram
tissue) in the brain 5 min, 2 h, and 4 h after i.v. of the probes: M116
showed progressive accumulation of M116 in the TgCRND8 brain vs. a
lower, constant amount in the wild-type brain; M64 showed no difference
in accumulation between TgCRND8 and wild-type mice at any time point;
M31 showed greater accumulation in TgCRND8 mice than wild-type, but
at a constant amount. Modified with permission from McLean et al.
(2013), © 2013 American Chemical Society.

plane and exchange with tissue. Control images are required to
compensate for direct saturation effects (Williams et al., 1992).
Quantitative CBF values can be obtained from ASL images.

Cerebral hypoperfusion has been observed in AD patients
using MRI (Johnson et al., 2005; Chen et al., 2011a), and has been
suggested to be an early biomarker for the disease (Alsop et al.,
2010; Chao et al., 2010). However, the mechanism underlying the
perfusion deficits are poorly understood (Chen et al., 2011a). A
decreased metabolic demand (Chen et al., 2011b) and decreased
microvascular density (Buee et al., 1994) have been suggested as
plausible causes, however, studies linking directly perfusion with
pathological and molecular postmortem read-outs have not been
attempted in humans and might be difficult to achieve. Studies
assessing impairment of hemodynamic function in mice over-
expressing APP can be pivotal in this regard, as a correlation of
imaging studies with postmortem analysis of brain tissue can be
conveniently performed. In several studies ASL was applied to
APP mouse strains which have only sporadic CAA. A significant
reduction in CBF has been observed in the occipital cortex of
10- to 17-month-old PS2APP (Weidensteiner et al., 2009), in

6-month-old APPxPS1-Ki (Faure et al., 2011), in 12-month old
APP/PS1 (Poisnel et al., 2012), in 3-, 12- and 18-month-old J20
hAPP (Hébert et al., 2013) (Figure 5), and in 12- to 16-month-old
Tg2576 mice (Massaad et al., 2010) compared to the respective
age-matched controls. Perfusion was normal in subcortical (tha-
lamic) areas in the transgenic mice (Faure et al., 2011; Poisnel
et al., 2012). Reduced CBV levels at rest were also observed in
the cerebral cortex, hippocampus, and thalamus of PDAPP mice
compared to wildtype controls, while values were similar in other
brain regions (Wu et al., 2004). In contrast, Hooijmans et al.
(2007a) reported that CBF was not significantly reduced in 18-
month-old APP/PS1 mice when performing bolus tracking of
D2O using deuterium MRS.

The question which needs to be addressed is why these mice
show reduced cerebral perfusion. A histopathological study has
shown a decreased capillary density around senile Aβ plaques
(Koutnetsova et al., 2006) which might explain the perfusion
deficit, but areas of decreased perfusion did not correlate with
plaque load (Weidensteiner et al., 2009). Another possibility is
that reduced CBF may be due to lower cerebral metabolic demand
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FIGURE 4 | Absence of Abcg2 allows more Aβ peptides to be

transported into the brain. (A) Two pairs of Abcg2 knockout mice were
injected i.v. Cy5.5-free dye or Cy5.5-labeled Aβ1−40 peptides in equal
fluorescence intensity. Animals were scanned alive using a NIRF imager at
15 min and 2 h. (B) NIRF scans of ex vivo brains collected at the end of
the experiment. Signal intensity was significantly higher in the brains of

Abcg knockout mice injected with Cy5.5-labeled Aβ peptides compared
with Cy5.5 free dye (t-test, p < 0.001). This demonstrates that Cy5.5 was
brought into the brain as a form of Cy5.5-labeled Aβ1−40 peptide,
indicating that Abcg2 is required at the BBB to prevent the entry into the
brain of circulating Aβ peptides. Modified with permission from Xiong et al.
(2009), © 2009 Society for Neuroscience.

of the brain tissue in APP mice. However, a study compar-
ing cerebral glucose metabolism as assessed with [18F]-fluoro-
2-deoxy-D-glucose PET and ASL-derived perfusion showed no
correlation between the two read-outs (Poisnel et al., 2012).
Cerebral glucose uptake decreased in the hippocampus, cor-
tex and striatum of 3-month-old APP/PS1 mice, but increased
in these brain regions in 12-month-old mice at an age when
CBF is compromised, thus suggesting alternative mechanisms.
Several studies using transgenic APP mice demonstrated alter-
ations in vasoactive signaling (Niwa et al., 2001) and in the
renin-angiotensin system (Takeda et al., 2009), as well as the gen-
eration of reactive oxygen species (Iadecola et al., 1999; Tong
et al., 2005) in the brains of APP mice, all of which can directly
affect vascular tone. Impairment of vascular function is observed
in APP overexpressing mice prior the onset of plaque depo-
sition and appears to be mediated by soluble Aβ (Han et al.,
2008; Park et al., 2013). Indeed hypoperfusion was observed in
mouse strains at this young age (Faure et al., 2011; Hébert et al.,
2013).

Vascular deposition of Aβ is not a prerequisite for vascular dys-
function in AD, but CAA aggravates the functional deficit (Park
et al., 2013). Aβ can exert direct vascular effects by attenuating
the endothelium-dependent vasodilation (Paris et al., 2000, 2003;

Luo et al., 2008), triggering the production of reactive oxygen
species (Tong et al., 2005; Park et al., 2008; Massaad et al., 2010)
and inducing remodeling of the vessel wall (Merlini et al., 2011).
In addition, vascular accumulation of Aβ has been associated with
the deposition of fibrin, which can lead to vessel stenosis and
occlusion (Paul et al., 2007; Cortes-Canteli et al., 2010; Klohs
et al., 2012). Cerebral hypoperfusion accelerates CAA (Okamoto
et al., 2012), induces oxidative stress and alterations of the renin-
angiotensin system (Washida et al., 2010), and may thus initiate
a vicious cycle. Moreover, it has been shown that transgenic
mice overexpressing APP have an impaired cerebral autoregula-
tion (Niwa et al., 2002). The disability of the cerebral vascula-
ture in the presence of Aβ to respond to changes in perfusion
pressure constitutes another mechanism of vascular pathology
in AD.

Hypoperfusion seems to be a critical process in the
pathogenesis of AD and further investigation into its mechanism
is warranted for developing therapeutic interventions that can
abrogate the functional deficits. MRI has been demonstrated to
be a robust technique to assess perfusion in large areas of the
human and small animal brain, with or without administration
of contrast agent. To obtain information at a higher spatial reso-
lution, laser Doppler flowmetry or two-photon microscopy may
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FIGURE 5 | Hypoperfusion in 3-month-old J20 hAPP mice modeling

AD. Superior (A) and lateral (B) views of the cortical surface atlas with 14
regions-of-interest labels derived from high resolution 3D MRI data sets.
(C) ASL perfusion MRI measurements from representative
regions-of-interest in young transgenic and age-matched wild-type mice.
Note that the whole cortex and most regions demonstrated significantly
lower perfusion (∗p < 0.05) in J20 hAPP compared with wild-type animals.
Modified with permission from Hébert et al. (2013), © 2013 Elsevier Inc.

be applied. But for this, cranial windows are necessary, and the
information is obviously limited to upper cortical regions.

ALTERATION OF STIMULUS EVOKED RESPONSE IN
FUNCTIONAL IMAGING—CHANGED NEUROVASCULAR
COUPLING OR IMPAIRED NEURONAL FUNCTION?
Functional imaging read-outs may constitute early sensitive
markers of underlying pathology, since alterations in neuronal
function and vascular reactivity are expected to precede any gross
changes in anatomy as detected with structural imaging tech-
niques. One caveat for functional imaging studies are that they
are routinely performed in anesthetized animals. As the anesthetic
may affect neuronal activation and/or neurovascular coupling
and thus have an effect on hemodynamic read-outs (Masamoto
and Kanno, 2012), the protocol needs to be carefully controlled.
It is discussed next how imaging based on CBF and CBV read-
outs are suitable to conduct functional imaging studies in order

to investigate changes in these parameters in response to neuronal
activation in transgenic animals modeling AD.

Two-photon imaging has been shown to be a unique approach
to studying vascular dysfunction in mouse models of AD, by eval-
uating neurovascular function e.g., through analyses of functional
hyperemia evoked by sensory stimulation. Using this technique,
Takano et al. (2007) demonstrated in vivo that reactive changes
of astrocytes and abnormalities of the microcirculation occur in
early stages of the disease preceding amyloid deposition and neu-
ronal loss. In contrast to the low Ca2+ signaling activity in non-
stimulated control animals, astrocytes in 2–4-month-old Tg2576
mice exhibited a higher frequency of spontaneous Ca2+ oscilla-
tions. Animals with abnormal astrocytic activity also displayed
instability of the vascular tone with oscillatory cycles of relax-
ation/constriction of small arteries. Aβ administration increased
the frequency of spontaneous astrocytic Ca2+ increases. Because
astrocytes control local microcirculation and contribute to func-
tional hyperemia (Anderson and Nedergaard, 2003; Takano et al.,
2006), abnormal astrocytic activity may contribute to vascular
instability in AD and thereby to compromised neuronal function.

Dorr et al. (2012) observed a prolongation of bolus transit
times of a fluorescent dye in TgCRND8 mice during hypercap-
nia using two-photon microscopy. While in wildtype mice, due to
CO2-induced vessel dilatation, the hypercapnic challenge led to
a reduction of transit time as compared to animals breathing air,
the opposite effect has been observed in transgenic animals. Also
in the transgenic group there was an increase in transit time with
age, i.e., with more severe Aβ pathology. It was concluded that
this paradoxical response to hypercapnia resulted from compro-
mised CO2-induced dilatation of the feeding arteries/arterioles
in the presence of preserved venous dilatation and reflected a
profoundly impaired vascular function in TgCRND8 mice.

Functional MRI (fMRI) comprises a number of techniques to
non-invasively study brain function in humans and animals. In
addition to CBV and CBF read-outs, a blood oxygenation level
dependent (BOLD) contrast can be used for fMRI (Ogawa et al.,
1992). fMRI can be performed at rest (Jonckers et al., 2011) or
with different types of physiological stimuli like sensory, ther-
mal, or electrical stimulation (Mueggler et al., 2003; Bosshard
et al., 2010). Moreover, pharmacological fMRI can measure the
hemodynamic responses induced by central nervous system active
drugs or vasoactive compounds and can thus be used as surrogate
reflecting the effects of these drugs on neural transmission and/or
vessel function.

APP23 mice of various ages have been analyzed using fMRI
(Mueggler et al., 2002, 2003). CBV changes were detected
in 6-, 13–15- and 25-month-old mutant mice in response
to pharmacological stimulation using the GABAA receptor
antagonist, bicuculline, physiological stimulation by inducing
hypercapnia using the carbonic anhydrase inhibitor, acetazo-
lamide, and peripheral sensory activation using electrical stimula-
tion of the hind paws. In 13–15- and 25-month-old APP23 mice,
all three stimulation paradigms evoked CBV responses that were
significantly smaller when compared to age-matched, control lit-
termates (Mueggler et al., 2002, 2003). In young animals of 6
months of age, there was no difference between the transgenic
and wildtype group. Princz-Kranz et al. (2010) demonstrated a
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diminuished CBV response upon stimulation with acetazolamide
in the cortex of 16- and 23-month-old arcAβ mice compared
to age-matched wildtype littermates, while there was no differ-
ence between 3-month-old ArcAβ mice and controls (Figure 6).
Both the rate of vascular adaptation (vascular reactivity) and the
extent of the dilatation (as a measure for the reserve capacity)
were found to be impaired in aged ArcAβ mice.

A challenge in fMRI is the interpretation in animal models
of AD. Under physiological conditions neurovascular coupling
is rather tight (Logothetis et al., 2001; Schulz et al., 2012), but
under pathological conditions a reduced fMRI response may
indicate either a decrease in neuronal activity, an impaired neu-
rovascular coupling or both. Sanganahalli et al. (2013) have
shown in a non-transgenic rat model without CAA that the
cortical BOLD response and neuronal activity upon sensory stim-
ulation are reduced in rats with inducible amyloid pathology
while the neurovascular coupling remains unaffected. But neu-
rovascular coupling may be impacted in the presence of CAA
as Aβ exerts direct vascular effects. Luo et al. (2008) intra-
venously injected Aβ1–40 in anesthetized C57BL/6 mice.Injection
of the peptide led to a significant reduction in CBV in a dose-
dependent and region-specific manner while the injection of
phosphate buffered solution or of the reversed peptide, Aβ40–1,
did not induce any significant change in vascular response. This
vasconstrictive effect might also explain the impaired vascular
reactivity in mice with CAA upon acetazolamide and hyper-
capnia challenge (Mueggler et al., 2003; Princz-Kranz et al.,
2010; Dorr et al., 2012). Given the attractiveness of perform-
ing fMRI also in AD patients, further studies are warranted to
examine how changes in neurovascular mediators impact fMRI
read-outs.

VISUALIZING AMYLOID-INDUCED VASCULAR REMODELING
Changes in hemodynamics of the vasculature will inevitably lead
to vascular remodeling. In patients, Aβ deposits are seen in lep-
tomeningeal and cortical arteries, and less frequently in veins and
capillaries (Buee et al., 1994; Thal et al., 2008a,b). Transgenic mice
show a larger heterogeneity of phenotypes with capillaries and
large arteries affected by Aβ deposition. Imaging approaches tar-
geting the vasculature at a phenotypic level are attractive tools to
study remodeling of the vascular architecture as a consequence of
CAA. The use of MRI to detect vascular remodeling in transgenic
models is discussed in this section.

Magnetic resonance angiography (MRA) comprises a number
of MRI techniques capable of visualizing the vascular architecture
non-invasively. The method has limited spatial resolution, but
is translational and routinely used in the clinics. Time-of-flight
MRA (TOF-MRA) generates contrast between signals arising
from stationary tissue and flowing blood. Maximum intensity
projection or volume-rendered visualization delivers 3D repre-
sentations of the cerebral vasculature in humans (Talagala et al.,
1995) and rodents (Beckmann et al., 1999; Reese et al., 1999;
Beckmann, 2000). However, the technique is inherently depen-
dent on the orientation of the blood vessels with respect to the
imaging plane and the actual flow velocity of the blood (Lin
et al., 1997; Reese et al., 1999). While TOF-MRA can depict major
brain arteries, parts of the vasculature such as small intracortical

arteries, which branch off the larger cerebral vessels, and veins
displaying slower blood flow velocities than arteries, are difficult
to be visualized. The quality of TOF-MR angiograms is gov-
erned by the vascular anatomy and the blood flow characteristics.
Signal voids in TOF-MRA may indicate absence of flow, low flow
velocity, or turbulent flow. Microturbulences for instance trans-
late into MRA signal voids due to the loss of signal coherence
despite the fact that the vessel is still fully perfused (Krucker
et al., 2004). Nevertheless, the degree of vasculopathy may be
graded based on number and extent of signal voids detected on
the angiograms in a semiquantitative manner (El Tayara et al.,
2010; Kara et al., 2012). In contrast-enhanced MRA (CE-MRA) a
paramagnetic contrast agent is intravenously administered, which
causes a signal loss due to increased signal dephasing (El Tayara
et al., 2010; Klohs et al., 2012). The CE-MRA data image can
be used like in TOF-MRA data to visualize the 3D vessel archi-
tecture. However, in CE-MRA flow and motion artifacts are
smaller compared to TOF-MRA (Mellin et al., 1994; Lin et al.,
1997).

TOF-MRA has been applied to probe vascular remodeling in
APP23 mice in vivo (Beckmann et al., 2003). Flow voids were
detected at the internal carotid artery of 11-month-old APP23
mice. At the age of 20 months, additional flow disturbances
were observed in the circle of Willis. Vascular corrosion casts
(Krucker et al., 2004; Meyer et al., 2008) obtained from the same
mice revealed that vessel elimination, deformation, or both had
taken place at the sites where flow voids were detected by TOF-
MRA. The detailed 3D architecture of the vasculature visible in
the casts assisted the identification of smaller vessels most likely
formed as substitution or anastomosis within the Circle of Willis.
Thal et al. (2009) observed blood flow disturbances in TOF-MR
angiograms in 25- to 26-month-old APP23 mice which corre-
sponded to CAA-related capillary occlusion in the branches of the
thalamoperforating arteries as seen with histology. El Tayara et al.
(2010) evaluated vascular alterations in APP/PS1 and in PS1 mice.
The double transgenic model is relatively aggressive as extracellu-
lar amyloid deposition starts at the age of 2.5 months (Blanchard
et al., 2003). However, unlike plaque deposition, severity of cere-
brovascular alterations is stabilized in older animals. Alterations
of the middle cerebral artery were detected in old APP/PS1 mice
by evaluating the severity of signal voids and the reduction of
patent length of the vessel using TOF-MRA and CE-MRA. MRA
obtained at very high magnetic fields (17.6 T) improved the
capability to visualize smaller vessels (Kara et al., 2012). Visual
and quantitative analysis of angiograms revealed severe blood
flow defects in large and medium sized arteries in Tg2576 mice
(Figure 7). In particular blood flow defects were observed in the
middle cerebral and in the anterior communicating artery in
Tg2576 mice. Histological data show that Aβ deposits in the vessel
wall may be responsible for impaired CBF.

The use of cryogenic radiofrequency probes improves the
quality of mouse brain angiograms at lower magnetic fields
(Baltes et al., 2009). Klohs et al. (2012) employed this tech-
nology to quantitatively assess age-dependent changes of the
cortical vasculature in the ArcAβ model of cerebral amyloidosis.
To estimate the density of the cortical microvasculature in vivo,
CE-MRA was used, based on the acquisition of data before and
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FIGURE 6 | Vascular response to acetazolamide decreased as a

function of age in the arcAβ mouse model of cerebral

amyloidosis, exemplified in color-coded MRI-derived CBV maps.

Images for a representative age-matched wild-type control
littermate and an arcAβ mouse of each age group. Histological
sections stained for Aβ amyloid deposition as well as anatomical
MR reference images are displayed in the two top rows.
Histology reveals Aβ deposition in 16- and 23-month-old but not
3-month-old arcAβ mice, while none of the wild-type animals
displayed any amyloid pathology. The color-coded CBV maps

superimposed on the anatomical scans represent baseline �CBV%
values, early changes in �CBV% and maximum �CBV% values
(�CBV%, max). The early �CBV% response in arcAβ mice
decreased significantly as a function of age as compared to
age-matched wild-type mice. Similarly �CBV%, max significantly
decreased in arcAβ mice as a function of age. In 3-month-old
animals no difference between wild-type and arcAβ mice has
been found in either parameter. The scale bar represents 2 mm.
Reproduced with permission from Princz-Kranz et al. (2010), ©
2010 Elsevier Inc.

after administration of superparamagnetic iron oxide (SPIO)
nanoparticles allowing the visualization of intracortical microves-
sels with high-resolution. A significant reduction in the number
of functional vessels (radii of 20–80 μm) has been observed in
24-month-old ArcAβ mice compared with age-matched wild-
type mice, whereas there was no difference between transgenic
and wildtype mice at 4 months of age. Immunohistochemistry
demonstrated strong fibrinogen and Aβ deposition in small- and
medium-sized vessels, but not in large cerebral arteries, of 24-
month-old ArcAβ mice. The reduced density of transcortical
functional vessels may thus be attributed to vascular occlusion
caused by deposition of Aβ and fibrin, which translated into
impaired perfusion. Fibrin deposition has been observed pre-
viously in TgCRND8 mice (Paul et al., 2007; Cortes-Canteli

et al., 2010) and since fibrin-binding probes are currently under
development (Starmans et al., 2013) it may become possible to
visualize cerebral fibrin deposition in these transgenic models
in vivo in the near future.

The microvasculature which includes capillaries cannot be
visualized directly with current MRA techniques. For this pur-
pose, methods have been developed based on measuring the
changes in the relaxation rates R∗

2 and R2 after administration of a
paramagnetic contrast agent with long blood half-life. Relaxation
has been exploited in vessel size imaging, where maps can pro-
vide insight into the composition of vessel sizes in the brain
in vivo (Tropres et al., 2001). A method closely related is to
measure the relaxation rate shift index Q (Jensen and Chandra,
2000), where the index is sensitive to the density but not the
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FIGURE 7 | MR angiography of transgenic mice modeling AD. (A,B)

MR angiograms of 18-month-old Tg2576 mice collected at 17.6 T showing
various levels of severities of morphological changes appointed in 3D
maximum intensity projection. The number indicates the appointed score
to the level of severity of alterations. For example: 1, a flow disturbance
(as seen in anterior communicating artery in image A); 2, a small signal
void (as observed at the origin of anterior communicating artery in image
B); 3, more than two small voids in same artery (as observed on the
middle cerebral artery (MCA) on both sides in image B); 4, an extended

void (as observed in the external carotid artery on both sides in image
A); 5, a combination of an extended void and several small signal voids
(as observed in the external carotid artery on both sides in image B); 6,
the signal is no longer visible (as shown at the pterygo portion of the
pterygopalatine artery in image A,B). The enlarge view of alterations is
shown in (C). (D) MCA alteration mean score in control and Tg2576
mice with age. Values are mean ± SE (error bars); one-tail student t-test;
∗P < 0.05; n = 4. Reproduced with permission from Kara et al. (2012), ©
2011 Elsevier Inc.

size of microvessels. Weidensteiner et al. (2009) determined ves-
sel size and density in different brain regions in PS2APP mice
but observed no significant differences to wildtype littermates.
However, in this strain CAA is sparse and affects only large
arteries.

MRI has rendered itself the most versatile methodology to
visualize vascular networks of large regions or even of the whole
brain while retaining a sufficient high resolution to assess smaller
vessels and to provide an estimation of microvascular density.
Despite the fact that in transgenic mouse models it has been
shown that CAA affects the cerebral vasculature at different hier-
archical levels, what causes such structural alterations in cerebral
vessels is not yet known. Chronic changes in levels of vasoac-
tive mediators like soluble Aβ, vascular endothelial growth factor,
transforming growth factor-1, and altered signaling or density
of vascular receptors might be implicated and future imaging
studies might address this by visualizing vascular remodeling in
models where these medidators are modified. Moreover, imag-
ing studies might be useful to elucidate the role of risk factors
of AD like diabetes and hypertension on the vasculature of the
AD brain. Indeed, hypertension, atherosclerosis, diabetes, dys-
lipidemia and adiposity may impact on vascular structure and
function to promote neurodegenerative processes and instigate
AD (see Kalaria et al., 2012 for a recent review). The presence of
vascular pathology involving arterial stiffness, arteriolosclerosis,
endothelial degeneration and BBB dysfunction leads to chronic
cerebral hypoperfusion, which in turn induces several features
of AD pathology including selective brain atrophy, white mat-
ter changes and accumulation of abnormal proteins such Aβ. To
our knowledge, no imaging studies addressing specific questions
related to atherosclerosis in AD mouse models have been reported
so far. Nevertheless, it is worth stressing the fact that very impor-
tant developments have been achieved in molecular imaging of
atherosclerosis (the interested reader is referred to reviews by

Lobatto et al., 2011; Owen et al., 2011). Linking plaque anatomy
and function to inflammation may help considerably to eluci-
date the mechanisms and complications related to atherosclerosis
in AD.

TARGETING NEUROVASCULAR INFLAMMATION
A hallmark of AD is neuroinflammation which has been impli-
cated to drive and even trigger neurodegeneration (Krstic and
Knuesel, 2013). Inflammation involves also the cerebral vascula-
ture, though the role of inflammation in the vasculopathy is not
well understood. Macrophages and microglia surround amyloid
affected vessels (Maat-Schieman et al., 1997; Vinters et al., 1998)
and circulating macrophages have been shown to migrate from
the lumen into the vessel wall (Vinters et al., 1998). Intercellular
adhesion molecule-1 is upregulated at the endothelium in the
AD brain (Frohman et al., 1991). Moreover, the inflammatory
response of the vasculature is increased in the presence of Aβ

(Vromman et al., 2013). A few imaging studies suggesting that
inflammation might have deleterious consequences on vascular
function are discussed next.

Different strategies to image vascular inflammation have been
pursued comprising the labeling of inflammatory cells, the use
of fluorogenic substrates for enzymes and fluorescent or PET
probes targeted against inflammatory receptors (Wunder and
Klohs, 2008; Wunder et al., 2009; Aalto et al., 2011; Li et al.,
2013). Garcia-Alloza et al. (2009) have observed a strong associa-
tion between CAA, matrix metalloproteinases and oxidative stress
in leptomeningeal vessels of APPswe/PS1dE9 and Tg2576 with
multiphoton microscopy and fluorogenic probes. The matrix
metalloproteinases activity was found to be associated with
matrix degradation and loss of vascular integrity.

In a different approach, mice of different transgenic lines have
been examined with MRI following the intravenous adminis-
tration of SPIO nanoparticles (Beckmann et al., 2011), which
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were hypothesized to having been taken up by circulating mono-
cytes through absorptive endocytosis (Weissleder et al., 1990;
Beckmann et al., 2009). Foci of signal attenuation were detected
in cortical and thalamic brain regions of aged APP23 mice
(Figure 8). Histology confirmed the presence of iron-containing
macrophages in the vicinity of CAA-affected blood vessels, sug-
gesting that the foci of signal attenuation detected in vivo might
be associated with CAA in the transgenic model. A fraction of
the sites additionally showed thickened vessel walls and vasculi-
tis. Consistent with the visualization of CAA-associated lesions,
MRI detected a much smaller number of attenuated signal sites
in APP23xPS45, APP24, and APP51 mice, which develop sig-
nificantly less CAA and microvascular pathology than APP23.
These results are consistent with monocytes and microglia being
involved in amyloid deposition in the wall of capillaries and in
perivascular plaques (Wegiel et al., 2004). Montagne et al. (2012)
have used an antibody targeting the vascular adhesion molecule-1
(VCAM-1) coupled to microparticles of iron oxide (MPIO). After
injection of the probe MRI showed a significantly higher number
of signal voids in the brains of 20-month-old APP/PS1 com-
pared to age-matched wildtype controls. Immunohistochemistry
revealed that VCAM-1 was overexpressed in APP/PS1 mice in all
the brain regions studied (cortex, hippocampus and cerebellum).
Despite APP/PS1 mice develop only minimal amyloid angiopathy
(Radde et al., 2006) a significant cerebrovascular inflammation
was detected in the cerebellum of these animals, which was
associated with intravascular Aβ deposition (Montagne et al.,
2012). Interestingly, the expression of VCAM-1 was significantly
higher in the cerebellum compared to the cortex in transgenic
mice. Accordingly, signal voids induced by MPIOs-αVCAM-1 and
detected by MRI were significantly increased in APP/PS1 mice in
all structures compared to age-matched wildtype mice.

Microglial-vascular interactions may play a critical role in
the amplification and perpetuation of inflammatory reactivity in
AD brain. Indeed, post-mortem examination of medial tempo-
ral cortical tissue from humans revealed that microgliosis was
progressively increased from non-demented controls to mild AD
to severe AD with the latter demonstrating areas of clustered
microglia (Jantaratnotai et al., 2010). Microglial clusters in severe
AD brain were in close proximity with extravascular laminin
and also plasma protein, fibrinogen, implicating vascular pertur-
bation as a component of inflammatory reactivity. Microscopy
studies of microglial function in murine AD models may help to
better understand microglial-vascular interactions.

So far high resolution in vivo studies of microglial func-
tion were conducted in mice with genetically labeled microglia.
However, because of the low expression levels of green fluores-
cent protein, some mouse lines are less suitable for studying the
role of microglia under pathological conditions. The availabil-
ity of a non-genetically encoded, easy to use marker, enabling
high quality staining of microglia in any mouse strain at any
experimental age would obviously be very attractive. Schwendele
et al. (2012) utilized tomato lectin from Lycopersicon esculentum
(Acarin et al., 1994; Boucsein et al., 2000) for high resolution
in vivo imaging of microglia. A brief pressure injection of tomato
lectin conjugated with a fluorescent dye (DyLight® 594) into the
mouse cortex resulted in robust staining of microglial cells and

blood vessels. The latter were easily distinguished from microglia
based on their morphological appearance. The reliability of the in
vivo staining protocol was tested in different mouse lines.

Since vascular inflammation has been implicated to partake
in the deleterious consequences of CAA like degeneration of
vascular smooth muscle cells and hemorrhage (Maat-Schieman
et al., 1997), but still very little is known between the interac-
tion of inflammation and vascular pathology. Further studies are
warranted to investigate when and how inflammation is involved.

DETECTION OF BLOOD-BRAIN BARRIER INTEGRITY LOSS
AND OF CEREBRAL MICROBLEEDS
Severe CAA is characterized by the degeneration of the vessel wall,
leading to a double-barreled appearance of the vessels with an
intact adventitia, a thickened basement membrane that contains
Aβ-deposits, and a widely degenerated smooth muscle cell layer
(Thal et al., 2008a). Areas of fibrinoid necrosis can be frequently
observed in these vessels. Degeneration of vascular smooth mus-
cle cells lead to a loss of BBB function and eventually to vessel
rupture with the occurrence of CMBs and hemorrhage. In this
section, we address the detection of BBB leakage and of CMBs
using MRI.

Imaging of the BBB with MRI has been widely applied to
pathologies such as brain tumors and metastases, stroke and head
trauma (Giesel et al., 2010). In dynamic contrast-enhanced MRI
(DCE-MRI), a series of images is acquired during intravenous
bolus injection of Gd-based contrast agents. Kinetic modeling
of the contrast agent can provide information on vascular leak-
age (Tofts and Kernode, 1991). The method has for example
been used to predict the occurrence of hemorrhage after ischemic
stroke (Kassner et al., 2005). Klohs et al. (2013) have performed
a longitudinal MRI study where DCE-MRI was applied in ArcAβ

and wildtype mice. While vascular leakage of the contrast agent
was significantly associated with age, there was no effect of geno-
type. This finding was surprising as compromised BBB function
has been described for the ArcAβ strain (Merlini et al., 2011).
When aged ArcAβ mice were injected intravenously with Trypan
blue, leakage of the dye was observed around Aβ-affected vessels.
Moreover, aged ArcAβ mice showed CMBs indicative of severe
vascular pathology (Klohs et al., 2011, 2013).

The observation made in the transgenic animals is in line with
studies in AD and MCI patients, where no differences in contrast
agent kinetics have been detected with respect to healthy controls
(Caserta et al., 1998; Starr et al., 2009). The discrepancy of the
DCE-MRI findings might be explained by the fact that BBB dys-
function in AD is subtle and diffuse when compared to diseases
such as brain tumors, multiple sclerosis and stroke, for which
the impairment is relatively large and focal (Giesel et al., 2010).
Hence, DCE-MRI may not be sensitive enough for detecting BBB
impairment in mouse models of AD in vivo.

CMBs and hemorrhages can be detected with CT and MRI
techniques with the latter being more often used for diagnosis
(Sperling et al., 2011). T∗

2-weighted gradient-echo MRI proto-
cols, which are sensitive to paramagnetic iron compounds such
as hemosiderin found in blood degradation products, reveal
CMBs in patients as focal hypointensities typically occurring
as round or ovoid areas (Pettersen et al., 2008; Ayaz et al.,
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FIGURE 8 | MRI detection of CAA-related microvascular alterations

utilizing superparamagnetic iron oxide (SPIO) particles. Histological
examination of cerebral cortex sites with foci of attenuated MRI
signal (α, β, γ). At 24 h following SPIO administration, a male
28-month-old APP23 mouse was analyzed in vivo by MRI and
processed for histology immediately thereafter. Perls/Prussian blue
staining showed iron-loaded macrophages in CAA-laden vessels
(Congo red positive) at both sites (α and β). While the vessel walls

were thickened at both α and β locations, only site β showed in
addition vasculitis characterized by lymphocyte infiltration (Hematoxylin
eosin). At site γ, isolated iron-loaded macrophages were present
close to amyloid vessels. 1, Iron in isolated macrophages; 2, iron in
macrophages at the vessel wall; 3, amyloid deposit in vessel wall;
4, vasculitis; P, amyloid plaque. Scale bars, 50 μm. Congo red-stained
sections were observed under bright field or polarized light.
Reproduced from Beckmann et al. (2011), © 2011 the authors.

2010; Sperling et al., 2011). The occurrence of CMBs has also
been reported for transgenic APP mice with CAA. For example,
Beckmann et al. (2011) described the presence of foci of low
signal intensity in cortical and thalamic brain regions of aged

APP23 mice. Klohs et al. (2011) demonstrated in ArcAβ mice
that quantitative susceptibility mapping provides increased detec-
tion sensitivity of CMBs and improved contrast when com-
pared with conventional T∗

2-weighted gradient-echo magnitude
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FIGURE 9 | Detection of CMBs using quantitative susceptibility

mapping MRI. (A) Horizontal quantitative susceptibility maps of an
18-month-old wild type animal and of an age-matched transgenic arcAβ

mouse. (B) Quantitative susceptibility maps with corresponding tissue
section after Prussian blue/eosin staining and anti-Aβ

immunohistochemistry. Focal areas of high susceptibility in the cortex of
18-month old arcAβ mice correspond to areas of focal iron accumulation,
indicating the occurrence of cerebral microbleeds in this mouse strain.
Modified from Klohs et al. (2011), © 2011 ISCBFM.

imaging (Figure 9). Quantitative susceptibility maps were gen-
erated from phase data acquired with a high-resolution T∗

2-
weighted gradient-echo sequence depicting both the localization
and spatial extent of CMBs with high accuracy.

Taken together, assessment of BBB with current DCE-MRI
methods does not seem to be sensitive enough to detect vascu-
lar leakage. Advances in imaging technology enable the improved

diagnostic detection of CMBs in patients and animal models. The
assessment of CMB load can be used in studies to estimate the
severity of CAA and to monitor the effect of therapy.

ASSESSING THE EFFECTS OF THERAPIES TARGETING
VASCULAR PATHOLOGY IN AD
Clinical therapeutic trials in AD patients performed so far were
disappointing. Based on activities in animal models suggesting
that prevention or early intervention may be a viable strategy for
AD treatment, there is a trend toward treating patients at very
early stages of disease or even preventatively (Bateman et al., 2012;
Fleisher et al., 2012). Obviously, biomarker development, includ-
ing imaging, is an essential part of this endeavor, in order to select
the right patients to be treated early (Reiman et al., 2012). In this
section, we briefly discuss a few therapy-intervention studies in
animals addressing vascular pathology related to AD.

Therapeutic strategies have targeted APP processing, as well
as the trafficking of soluble Aβ and strategies to remove aggre-
gated Aβ. Gregory et al. (2012) analyzed in Tg2576 mice Aβ

deposition in vessels and clearance from vascular walls and their
relationship to the concentration of Aβ in the brain. Levels of
Aβ in the brain were modulated either by peripheral clearance
through administration of gelsolin which binds with high affin-
ity to plasma Aβ (Matsuoka et al., 2003), or by directly inhibiting
its formation via administration of LY-411575, a small-molecule
γ-secretase inhibitor. Both gelsolin and LY-411575 reduced the
rate of CAA progression in Tg2576 mice in the absence of an
immune response. The progression of CAA was also halted when
gelsolin was combined with LY-411575. These data suggest that
CAA progression can be prevented with non-immune therapy
approaches that may reduce the availability of soluble Aβ. Yet
there was no evidence for substantial clearance of Aβ already
deposited at vessels.

Yang et al. (2011) assessed the therapeutic potential of block-
ing apolipoprotein E (ApoE)/Aβ interactions, by administering
an Aβ fragment (Aβ12–28P) to young TgSwDI mice (from 3 to 9
months of age). Increased cognitive function, decreased cortical,
hippocampal and thalamic fibrillar vascular amyloid burden, and
decreased extent of cerebral hemorrhages was found in treated
compared with untreated TgSwDI mice. While this therapeutic
strategy holds promise in young mice, it would be of interest to
verify whether it would be effective in older animals.

Two studies demonstrated the stereoisomer of inositol, scyllo-
inositol, to have potential therapeutic properties to treat CAA.
When given orally to TgCRND8 mice, scyllo-inositol inhibited
Aβ aggregation into high-molecular-weight oligomers in the
brain and ameliorated several AD-like phenotypes in these mice,
including impaired cognition, altered synaptic physiology, and
cerebral Aβ pathology (McLaurin et al., 2006). These therapeutic
effects, which occurred regardless of whether the compound was
given before or well after the onset of the AD-like phenotypes,
support the idea that the accumulation of Aβ oligomers plays a
central role in the disease pathogenesis. Multiphoton laser scan-
ning microscopy examinations of TgCRND8 mice in vivo revealed
that structural changes of cortical arterioles (increase in tortu-
osity and decrease in caliber) with amyloid-β peptide accumu-
lation were accompanied by progressive functional compromise,
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reflected in higher dispersion of microvascular network transit
times, elongation of the transit times, and impaired microvascu-
lar reactivity to hypercapnia in the transgenic mice (Dorr et al.,
2012). However, administration of scyllo-inositol rescued both
structural and functional impairment of the cortical microvas-
culature (Figure 10). Overall, these results suggest microvascu-
lar impairment to be directly correlated with Aβ accumulation,
highlighting the importance of targeting CAA clearance for effec-
tive diagnosis, monitoring of disease progression and treatment
of AD.

Epidemiological studies have provided evidence that statins,
cholesterol-lowering drugs broadly used in the treatment of car-
diovascular diseases, have therapeutic potential in AD (Jick et al.,
2000; Wolozin et al., 2000) and to a slower cognitive decline
in mild-to-moderate AD patients (Sparks et al., 2006). Studies
in animals have revealed that the effects of statin treatment are
not due to their vascular and anti-inflammatory effects rather
than their cholesterol-lowering effect. Tong et al. (2012) reported
that a 3–6 months treatment with simvastatin completely rescued
cerebrovascular reactivity, basal endothelial nitric oxide synthesis,
and activity-induced neurometabolic and neurovascular coupling
in adult (6 months) and aged (12 months) J20 hAPP trans-
genic mice. Remarkably, simvastatin fully restored short- and
long-term memory in adult mice, but not in aged AD mice.
These beneficial effects occurred without any decreasing effect
of simvastatin on brain Aβ levels or plaque load. However, in
AD mice with recovered memory, protein levels of the learning-
and memory-related immediate early genes c-Fos and Egr-1 were
normalized or upregulated in hippocampal CA1 neurons, indica-
tive of restored neuronal function. Simvastatin also restored the
CBF response in the somatosenory cortex to whisker simulation
in 6- and 12-month-old J20 hAPP mice, and restored whisker-
stimulated cerebral glucose uptake in the somatosensory cortex
of 12-month-old APP mice as assessed by FDG-PET. These find-
ings disclose new sites of action for statins against Aβ-induced
neuronal and cerebrovascular deficits that could be predictive of
therapeutic benefit in AD patients. They further indicate that sim-
vastatin and, possibly, other brain penetrant statins bear high
therapeutic promise in early AD and in patients with vascular
diseases who are at risk of developing AD.

Treatment with angiotensin receptor blockers has been asso-
ciated to reduce AD-related pathology (Hajjar et al., 2012) or
with a lower risk and slower disease progression compared to
other antihypertensive agents (Li et al., 2010). These data indi-
cate that angiotensin receptor blockers not only decrease blood
pressure but also decrease vascular inflammation may effec-
tively reduce the risk of developing AD (Hajjar et al., 2012).
Wang et al. (2007) screened 55 clinically prescribed antihyper-
tensive medications for AD-modifying activity using primary
cortico-hippocampal neuron cultures generated from Tg2576
mice. Despite 7 antihypertensive agents reduced Aβ accumula-
tion, only valsartan was capable of attenuating oligomerization
of Aβ peptides into high-molecular-weight oligomeric peptides,
known to be involved in cognitive deterioration. Preventive
treatment of Tg2576 mice with valsartan significantly reduced
AD-type neuropathology and the content of soluble extracel-
lular oligomeric Aβ peptides in the brain. Most importantly,

valsartan administration also attenuated the development of Aβ-
mediated cognitive deterioration. These preclinical studies sug-
gest that certain antihypertensive drugs may have AD-modifying
activity and may protect against progressive Aβ-related mem-
ory deficits in subjects with AD or in those at high risk of
developing AD.

Aβ removing therapies are currently tested in clinical tri-
als and have also been studied in transgenic animals, yielding
conflicting results. Using multiphoton microscopy, Prada et al.
(2007) showed that anti-Aβ passive immunotherapy can remove
cerebral Aβ in Tg2576 mice, depending on the duration of treat-
ment. Clearance of CAA and neuritic deposits was detected
within 1 week after a single administration of 10D5, an anti-
body against the N-terminal of Aβ, directly to the brain, but
the effect on CAA was only transient. Moreover, the progres-
sion rate of CAA became greater in the antibody treated group,
suggesting that vascular Aβ deposition may accelerate after short-
lived clearance. Chronic administration of the antibody over 2
weeks led to a more robust clearance of CAA. Other studies
have shown that Aβ immunotherapy may also at least transiently
worsen CAA, with increased incidence of cerebral microhemor-
rhages in aged transgenic mice (Bard et al., 2000; Pfeifer et al.,
2002; Wilcock et al., 2006; Schroeter et al., 2008; Thakker et al.,
2009). This is in line with a study where SPIO-enhanced MRI
revealed a higher number of sites with signal attenuation in
APP23 mice following a chronic treatment with the Aβ anti-
body β1 (Beckmann et al., 2011). Histological analyses demon-
strated an increased number of CAA vessels and of iron loaded
macrophages in the vicinity of CAA vessels, for mice receiving
the β1 antibody. In addition, a study using T∗

2-weighted MRI
for the detection of CMBs in Tg2576 mice treated with either
a non-selective antibody (6G1) targeting soluble and insoluble
Aβ or a more selective antibody (8F5) targeting primarily soluble
Aβ (Luo et al., 2010). Both antibodies increased CMB incidence
in aged APP transgenic mice compared with baseline or vehicle
treatment.

It has been hypothesized that the antibodies exert their
beneficial as well as their deleterious effects via an antibody
Fc domain-mediated microglial activation and Aβ phagocyto-
sis (Bard et al., 2000; Wilcock et al., 2004b). Koenigsknecht-
Talboo et al. (2008) demonstrated that the effects of antibodies
that recognize aggregated Aβ are rapid and involve microglia.
The anti-Aβ antibody, m3D6, that binds to aggregated Aβ

(Cirrito et al., 2003), was administered to PDAPP mice, an AD
mouse model that was bred to contain fluorescent microglia.
Three days after systemic administration of m3D6, there was
a marked increase in both the number of microglial cells and
processes per cell visualized in vivo by multiphoton microscopy
(Figure 11). These changes required the Fc domain of m3D6
and were not observed with mHJ5.1, an antibody specific to
soluble Aβ.

Taken together, these studies demonstrate the potential of ani-
mal studies in therapy studies. Imaging studies are expected to
play a pivotal role in this regard; their application ranging from
safety testing of putative drugs e.g., detection of microbleeds,
to elucidating mechanism of action, to monitoring of treatment
efficacy.
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FIGURE 10 | Segmentation of cortical penetrating vessels overlaid on

maximum intensity projections of cortical microvasculature obtained

from in vivo two-photon fluorescence microscopy images of the cortical

microcirculation of 6.5–12-month-old mice: parallel to cortical surface

(top row) and perpendicular to cortical surface (bottom row). Penetrating

vessels for each individual mouse are highlighted. Average tortuosity of
penetrating vessels for each sample subject (mean ± standard error):
wild-type mice 1.03 ± 0.003, transgenic TgCRND8 mice 1.10 ± 0.006,
scyllo-inositol-treated TgCRND8 mice 1.03 ± 0.005. Reproduced with
permission from Dorr et al. (2012), © 2012 the authors.

FIGURE 11 | Rapid microglial response around amyloid pathology after

systemic anti-Aβ antibody administration in PDAPP mice. Peripheral
m3D6 administration results in marked morphological changes in microglia.
Three-dimensional reconstructed z-series stack two-photon microscopy
images taken of 22-month-old PDAPP±;CX3CR1/green fluorescent protein±

mice injected with 500 μg of m3D6 (A–C), an anti-Aβ antibody, or not injected
(D–F). Green fluorescent protein-labeled microglia are green. Fibrillar amyloid
was labeled with methoxy-XO4 (blue). Scale bar, 20 μm. Reproduced with
permission from Koenigsknecht-Talboo et al. (2008), © 2008 Society for
Neuroscience.

TRANSLATING IMAGING FINDINGS FROM ANIMAL MODELS
OF AD
Translational research from animal models to clinical studies
and from human studies back to animal models is relevant
for the development and validation of imaging biomarkers of
AD. In particular, MRI as well as PET assays are well suited
for translational applications. While many imaging findings
presented here, for example chronic cerebral hypoperfusion or

the occurrence of CMBs, have been observed both in transgenic
mice overexpressing APP and in AD patients, some studies have
reported a lack of concordance between imaging findings in mice
and men. For example, the uptake of an amyloid PET tracer
reflected the amount of Aβ in AD patients but not in transgenic
mice due to species-specific differences in the affinity sites of
Aβ between mice and humans (Klunk et al., 2005). In another
example, Luo et al. (2012) observed a glucose hypermetabolism
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in the brain of 7-month-old Tg2576 mice, despite the fact that
hemodynamic read-outs were not different to wildtype mice. This
is in contrast to AD patients, where glucose hypometabolism
and hypoperfusion were concomitantly observed (Nagata et al.,
2000). The increase in glucose metabolism in Tg2576 has been
attributed to a neuronal compensatory mechanism due to the
APP overexpression and might thus constitute an artifact of the
model.

In general, there are limitations in employing models for
developing biomarkers of AD. Transgenic strains overexpress-
ing APP have been widely used because they reproduce essential
histopathological features and molecular mechanisms of AD. But
these models might resemble more the familial forms of AD
(<1% of AD cases) or Down syndrome rather than the spo-
radic, late-onset form of AD. Some double and triple transgenic
lines have been generated to overlay amyloid with tau and prese-
nilin pathology (Blanchard et al., 2003; Oddo et al., 2003a,b). But
even these strains do not recapitulate the complex pathophysiol-
ogy of sporadic AD, which affects most AD patients. Moreover,
while it is advantageous from an experimental perspective that
the disease pathology in animals develops quickly, it could be
an important feature of human AD that converging mechanisms
which contribute to the impairment of brain function occur over
a very long span and might be modulated by life-style choices and
comorbidies.

Additional challenges occur when developing new therapies.
Main potential reasons for the lack of concordance between pre-
clinical models and human clinical trials could be wrong targets,
incomplete models, lack of individual variability in the animal
models, patients enrolled too late and comorbidities. As patients
participating in clinical trials are heterogenous whereas most
models utilize in-bred mouse strains, evaluating novel treatments
in multiple lines may help to address this point. Also, the lack of
substantial cell loss in the majority of rodent models may indicate
that they better represent some aspects of the prodromal phase of
the disease.

Emerging studies foster the relationship between vascular dis-
ease and tauopathy in AD. Recently, several post mortem studies
on the brains of AD patients provided evidence that cardio-
vascular pathology like atherosclerosis is highly correlated with
neuritic plaques, tau neurofibrillary tangles, and CAA (Roher
et al., 2003; Beach et al., 2007; Yarchoan et al., 2012). However,
imaging approaches addressing vascular aspects have not been
applied to transgenic tau models so far. Similarly to the use of
probes for targeting amyloid, such studies may profit from the
recent development of PET tracer to image tau (Okamura et al.,
2012; Maruyama et al., 2013).

Finally, animal models displaying chronic hypoperfusion
(Shibata et al., 2004) or multiple microinfarcts (Wang et al.,
2012b) and spontaneous hypertensive rats (Calcinaghi et al.,
2013) are being used to investigate the role of vascular risk factors
and pathological mechanisms in the etiology of dementia.

CONCLUSION
The potential of imaging techniques to study cerebrovascular
pathology in animal models of AD has just been started to be fully
exploited. The presented examples using genetically engineered

mice demonstrate the extreme versatility of the application of
imaging tools, which can provide information on gross vascular
morphologyandprobehemodynamicfunctiondowntoaddressthe
basicmechanismsunderlyingCAAandneurovasculardysfunction.
While the microscopic techniques are inherently invasive and thus
nottranslatabletoADpatients,thenon-invasivetechniqueslikePET
and MRI can be translated and might thus provide biomarkers
of the disease. Imaging of animal models is ideally suited for
developing such diagnostic assays. But challenges remain in the
selection of a suitable animal model to address a specific research
question related to the vascular aspects of AD.
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