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One of the central research questions on the etiology of Alzheimer’s disease (AD) is the
elucidation of the molecular signatures triggered by the amyloid cascade of pathological
events. Next-generation sequencing allows the identification of genes involved in disease
processes in an unbiased manner. We have combined this technique with the analysis of
two AD mouse models: (1) The 5XFAD model develops early plaque formation, intraneu-
ronal Aβ aggregation, neuron loss, and behavioral deficits. (2)TheTg4–42 model expresses
N-truncated Aβ4–42 and develops neuron loss and behavioral deficits albeit without plaque
formation. Our results show that learning and memory deficits in the Morris water maze
and fear conditioning tasks in Tg4–42 mice at 12 months of age are similar to the deficits
in 5XFAD animals. This suggested that comparative gene expression analysis between
the models would allow the dissection of plaque-related and -unrelated disease relevant
factors. Using deep sequencing differentially expressed genes (DEGs) were identified
and subsequently verified by quantitative PCR. Nineteen DEGs were identified in pre-
symptomatic young 5XFAD mice, and none in youngTg4–42 mice. In the aged cohort, 131
DEGs were found in 5XFAD and 56 DEGs inTg4–42 mice. Many of the DEGs specific to the
5XFAD model belong to neuroinflammatory processes typically associated with plaques.
Interestingly, 36 DEGs were identified in both mouse models indicating common disease
pathways associated with behavioral deficits and neuron loss.

Keywords: fear conditioning, spatial reference memory, transcriptome, 5xFAD, Tg4–42, N-truncated abeta, Morris
water maze, deep sequencing

INTRODUCTION
Alzheimer disease (AD) is the most common form of demen-
tia in the aging population accounting for 60–80% of the cases.
The disease is a progressive neurodegenerative disorder charac-
terized by the presence of extracellular amyloid plaques com-
posed of amyloid-β (Aβ) surrounded by dystrophic neurites and
neurofibrillary tangles (NFT) (Alzheimer’s Association, 2012).
Further pathological hallmarks of the disease include inflam-
matory processes, synaptic and neuronal loss, cerebral atrophy,
and cerebral amyloid angiopathy (CAA) (Wirths and Bayer,
2012). The complex progression of neurodegeneration in AD
patients results in memory impairment and decline in other
cognitive abilities often combined with non-cognitive symptoms
like mood- and personality changes (Alzheimer’s Association,
2012).

The discovery that certain early-onset familial forms of AD may
be caused by an enhanced level of Aβ peptides led to the hypothe-
sis that amyloidogenic Aβ is closely involved in the AD pathogenic
process (Selkoe, 1998). The “amyloid hypothesis” that was pro-
posed more than two decades ago claims that extracellular Aβ is
the major elicitor of the disease (Hardy and Allsop, 1991). How-
ever, while the insoluble fibrillar aggregates of amyloid-β are the
main neuropathological hallmark of AD, the plaque load corre-
lates poorly with brain dysfunction and cognitive impairment in
AD patients (Price and Morris, 1999; Lesné et al., 2013) or in AD
transgenic mouse models (Moechars et al., 1999; Schmitz et al.,
2004). In contrast, recent studies indicate that soluble Aβ levels,
including soluble oligomers, correlate much better with key fea-
tures of AD (McLean et al., 1999; Näslund et al., 2000; Selkoe,
2011).
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There is increasing evidence that AD is primarily initiated by
soluble oligomeric species derived from full-length Aβ1–42 (Haass
and Selkoe, 2007; Haupt et al., 2012). In addition to soluble
oligomers, β-sheet containing amyloid fibrils are also highly toxic
forms of Aβ (Klein, 2002). Numerous variants of Aβ1–42 oligomers
including dimers, trimers, and tetramers have been introduced
and are currently discussed as major factors in AD (Roychaudhuri
et al., 2009; Benilova et al., 2012). The“modified amyloid hypothe-
sis”now suggests that intraneuronal Aβ accumulation precedes the
formation of extracellular plaques and other pathological events
in the brains of AD patients (Wirths et al., 2004).

Next to the numerous variants of Aβ1–42 oligomers there is
substantial evidence that N-terminal truncated peptides play a
key role in AD (Jawhar et al., 2011). Besides Aβ peptides starting
with an aspartate at position 1, a variety of different N-truncated
Aβ peptides have been identified in AD brains. Ragged Aβ pep-
tides, including a major species beginning with phenylalanine at
position 4 of Aβ (Aβ4–42), have been reported as early as 1985 by
Masters et al. (1985).

Only a subgroup of patient families displays the early-onset
familial form of AD that is caused by rare single mutations in
either the amyloid-protein-precursor (APP) or the presenilin-1
(PSEN-1) and presenilin 2 (PSEN-2) genes. The vast majority of
AD patients displays no known mutations and suffers from the
sporadic late-onset form of AD (Blennow et al., 2006). To date,
the apolipoprotein E (ApoE) ε4 allele is the only known genetic
risk factor for sporadic AD (Blennow et al., 2006; Selwood et al.,
2009). A variety of additional genetic loci have been proposed to
be involved with late-onset AD (Bertram and Tanzi, 2001).

Technical approaches using transcriptome microarray analy-
ses were performed over the last years to identify genes that
are differentially expressed and therefore may be involved in the
pathophysiology of AD (George et al., 2010).

The recent developments in next-generation sequencing (deep
sequencing) offer a more comprehensive and most of all unbi-
ased approach for transcriptome analysis. Multiple studies already
indicate that next-generation sequencing is more useful and
particularly suitable to investigate the pathogenesis of complex
neurodegenerative diseases like AD (Twine et al., 2011). For exam-
ple, Sultan et al. (2008) claimed that deep sequencing of non-
ribosomal RNA (RNA-Seq) could detect up to 25% more genes
compared to microarrays analyses.

In the present study, we performed a comparative gene expres-
sion analysis of brain tissue of two different mouse models for
AD using next-generation sequencing. We compared the well-
established, plaque-developing 5XFAD mouse model (Oakley
et al., 2006) with the Tg4–42 mouse model that solely expresses
Aβ4–42 without extracellular plaque deposition (Bouter et al.,
2013). The aim of this study was to elucidate the similarities and
distinctions in expression profiles of these two mouse models that
display similar memory deficits.

MATERIALS AND METHODS
TRANSGENIC MICE
In this study, we used the transgenic mouse lines Tg4–42 and
5XFAD. The generation of Tg4–42 has been recently described by
our lab (Bouter et al., 2013). Tg4–42 mice express human Aβ4–42

fused to the murine TRH signal peptide under the control of the
neuronal Thy-1 promoter.

5XFAD mice over-express the 695 amino acids isoform of the
human amyloid precursor protein (APP695) carrying the Swedish,
London, and Florida mutations under the control of the murine
Thy-1 promoter. In addition, human presenilin-1 (PSEN-1) car-
rying the M146L/L286V mutations is expressed also under the
control of the murine Thy-1 promoter (Oakley et al., 2006).
5XFAD mice used in the current study were backcrossed for more
than eight generations to C57Bl/6J wildtype mice (Jackson Lab-
oratories, Bar Harbor, ME, USA) to obtain an incipient congenic
line on a C57Bl/6J genetic background (Jawhar et al., 2010). Young
(3–6 months) and aged (12 months) Tg4–42, 5XFAD mice, and
wildtype (WT, C57BL/6J) controls were tested. In the current
study, only female mice were used. Wildtype littermate control
mice served as age-matched control animals. All animals were han-
dled according to the German guidelines for animal care. All efforts
were made to minimize suffering and the number of animals used
for this study.

SPATIAL REFERENCE MEMORY BY MORRIS WATER MAZE
Spatial reference memory in Tg4–42 and 5XFAD mice was eval-
uated using the Morris water maze (Morris, 1984) as described
previously (Bouter et al., 2013). In brief, mice learn to use spa-
tial cues to locate a hidden platform in a circular pool filled with
opaque water. The pool was divided into four virtual quadrants
that were defined based on their spatial relationship to the plat-
form: left, right, opposite, and target quadrant, which contains the
goal platform. ANY-Maze video tracking software (Stoelting Co.,
Wood Dale, IL, USA) was used to record escape latency, swimming
speed, and quadrant preference.

Young and aged Tg4–42, 5XFAD mice, and wildtype (WT,
C57BL/6J) controls were tested (n= 8–11 mice per group).

The experiment began with 3 days of cued training during
which the platform was marked with a triangular flag. Both the
location of the platform and the position where mice were intro-
duced into the pool changed between trials. Each mouse received
four training trials per day with an average inter-trial interval of
15 min.

Twenty-four hours after the last day of cued training, mice
performed 5 days of acquisition training. For this part of testing,
the flag was removed from the platform. In addition to the distal
cues existing in the room, proximal visual cues were attached to
the outside of the pool. The platform location remained station-
ary for each mouse throughout training. Trials were conducted as
during the cued training phase.

Twenty-four hours after the last acquisition trial, a probe test
was performed to assess spatial reference memory. The platform
was removed from the pool, and mice were introduced into the
water from a novel entry point. Mice were then allowed to swim
freely for 1 min while their swimming path was recorded. After the
probe trial, the mice were sacrificed.

CONTEXTUAL AND TONE FEAR CONDITIONING
Twelve-month-old Tg4–42, 5XFAD, and WT mice were subjected
to contextual fear conditioning (CFC) and tone fear condition-
ing (TFC) (n= 11–13). A 3-day delay fear conditioning protocol
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was used to assess conditional learning and memory. According to
this protocol, the conditioned stimulus (CS) is presented and over-
lapped by the presentation of the unconditioned stimulus (US)
(Ohno, 2009).

The experiments were performed using a standard condition-
ing chamber (17 cm× 17 cm× 26 cm) with a stainless steel grid
floor connected to a shock generator (Ugo Basile Sound and
Shocker Generator, Comerio, Italy). The walls were covered with
black and white checkered paper (CS). The chamber was housed in
a soundproof isolation cubicle. A digital camera and an additional
light source were attached to the ceiling of the cubicle. ANY-Maze
video tracking software (Stoelting Co., Wood Dale, IL, USA) was
used to record freezing behavior of animals.

On day one, mice were placed in the conditioning chamber and
allowed to explore the box for 150 s. After the habituation period,
a tone (2000 Hz, 80 dB; CS) was presented for 30 s that simultane-
ously ended with a 2 s foot-shock (0.7 mA, US). Mice were allowed
to recover after the foot-shock for an additional 30 s before being
returned to their home cage. Baseline freezing was recorded before
the presentation of the tone.

Twenty-four hours after the training mice were placed back in
the familiar fear conditioning chamber, but in the absence of tones
and foot-shocks. Freezing behavior was measured for 210 s to test
contextual memory retrieval.

For the tone fear retrieval trial on day 3, mice were placed for
3 min in an altered conditioning chamber with white walls, a cov-
ered floor, and an acetic acid scent. After 150 s baseline recording,
a tone similar to the one used during the fear conditioning trial
was presented for 30 s. The freezing behavior before and during
the CS tone was measured. Mice were sacrificed after the tone trial.

STATISTICAL ANALYSIS OF BEHAVIOR EXPERIMENTS
Differences between groups were tested with unpaired t -test,
one-way analysis of variance (ANOVA) followed by Bonferroni
multiple comparisons or repeated measures ANOVA followed by
Bonferroni multiple comparisons as indicated. All data are given
as means± standard error of the mean (SEM). Significance levels
are given as follows: ***p < 0.001; **p < 0.01; *p < 0.05. All statis-
tics were calculated using STATISTICA version 10.0 for Windows
(StatSoft, Tulsa, OK, USA) and GraphPad Prism version 5.04 for
Windows (GraphPad Software, San Diego, CA, USA).

TISSUE HARVESTING
Mice were sacrificed via CO2 anesthetization followed by cervical
dislocation. Brain hemispheres were carefully dissected (olfactory
bulbs and cerebellum was removed), frozen on dry-ice and stored
at−80°C for subsequent use.

RNA EXPRESSION PROFILING
Expression profiling for young and aged Tg4–42, 5XFAD, and WT
mice was performed by next-generation sequencing on a SOLiD
5500xl Genetic Analyzer (Life Technologies, Carlsbad, CA, USA).
RNA was extracted from mouse brain hemispheres as follows.
The tissue was homogenized using a Polytron (VWR) device and
then treated with TRIzol (Life Technologies, Carlsbad, CA, USA).
Next, 5 µg of each total RNA sample were spiked with ERCC
spike-in control mixes (Life Technologies, Carlsbad, CA, USA)

before removal of the rRNA by use of a RiboZero Kit (Epicentre,
Madison,WI,USA). The RNA was prepared for sequencing follow-
ing the protocol provided by the manufacturer of the sequencer.
In brief, the rRNA depleted RNA was fragmented by chemical
hydrolysis, phosphorylated, and purified. Adaptors were ligated to
the RNA fragments, which subsequently were reverse transcribed
into cDNA. The cDNA was purified and size-selected using two
rounds of Agencourt AMPure XP bead purification (Beckman
Coulters Genomics, Danvers, MA, USA) and released from the
beads. The sample was amplified by 12 PCR cycles in the presence
of primers that contained unique sequences (barcoding). The size
distribution and concentration of the fragments were determined
with an Agilent 2100 Bioanalyzer and the corresponding chemicals
(Agilent Technologies, Santa Clara, CA, USA).

The cDNA fragments were pooled in equimolar amounts and
diluted to 76 pg/µL corresponding to a concentration of 500 pM.
Fifty microliters of this dilution was mixed with a freshly prepared
oil emulsion, P1 and P2 reagents, and P1 beads in a SOLiD EZ
Bead Emulsifier prepared according to the E80 scale protocol (Life
Technologies, Carlsbad, CA, USA). The emulsion PCR was carried
out in a SOLiD EZ Bead Amplifier (Life Technologies, Carlsbad,
CA, USA) using the E80 setting. To enrich for the beads that car-
ried amplified template DNA, the beads were purified on a SOLiD
EZ Bead Enricher using the recommended chemicals and soft-
ware (Life Technologies, Carlsbad, CA, USA). The purified beads
were loaded onto a SOLiD 6-lane Flowchip and incubated upside
down for 1 h at 37°C. The Flowchip was positioned in the 5500xl
SOLiD System and the DNA was sequenced using the settings and
recommended chemicals for sequencing 75 nucleotides in the for-
ward direction and 35 nucleotides in the reverse direction (Life
Technologies, Carlsbad, CA, USA).

Sequence reads were mapped to the mouse genome reference
sequence mm101 using the workflow “whole.transcriptome.pe”
LifeScope-v2.5.1-r0 (Life Technologies, Carlsbad, CA, USA). Reads
mapping to RefSeq coding exons (accessed 2012-06-27)2 and
matching the coding strand were considered as coding RNAs. All
other mapping reads were considered non-coding.

DIFFERENTIAL EXPRESSION ANALYSIS
RNA-Seq read data were normalized within and between lanes
for GC-content using EDASeq’s full-quantile normalization (Risso
et al., 2011). The differential expression analysis was done with
DESeq (Anders and Huber, 2010). All samples were treated as
replicates of a single condition for the estimation of the dispersion.
Only the fitted dispersion values were used in the following analy-
ses. The significance of differential expression was determined by
the Benjamini–Hochberg corrected p-values of the negative bino-
mial test between two conditions. The threshold for significance
was set to p= 0.05. The following conditions were compared:
young WT vs. young Tg4–42, young WT vs. young 5XFAD, aged
WT vs. aged Tg4–42, and aged WT vs. aged 5XFAD. Genes with
more than 200 reads were successfully verified by real-time quan-
titative PCR (qRT-PCR) and are listed in the results part. Genes
with an expression level lower than 200 reads are not shown.

1 http://hgdownload.cse.ucsc.edu/goldenPath/mm10/
2 http://hgdownload.cse.ucsc.edu/goldenPath/mm10/database/refGene.txt.gz
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REAL-TIME QUANTITATIVE PCR CONFIRMATION
RNA was isolated from female young and aged 5XFAD mice, aged
Tg4–42, and aged-matched WT mice (n= 5 each) as described
previously (Hillmann et al., 2012). Briefly, frozen right brain hemi-
spheres were homogenized with 10 strokes of a R50D homogenizer
(CAT) set at 800 rpm in 1.5 mL ice-cold Trifast® (Peqlab, Erlan-
gen, Germany). Three hundred microliters chloroform (Merck)
was added to each sample. After 10 min incubation, the samples
were centrifuged at 12000× g for 15 min at 4°C to separate the
RNA. The upper RNA-containing aqueous phase was transferred
into a new tube, vigorously mixed with 500 µL Isopropanol, and
incubated for 20 min on ice. After centrifugation at 12000× g for
10 min at 4°C, the supernatant was discarded. RNA pellets were
washed twice with 500 µL 75% Ethanol. After the pellet was air-
dried, the RNA was dissolve in 30 µL of RNAse free water. RNA
was stored at −80°C until further use. RNA purity and yields
were determined by a Biophotometer (Eppendorf, Hamburg,
Germany).

Total RNA (1 µg) was subjected to reverse transcription to
synthesize cDNA using the First-Strand cDNA Synthesis Kit (Fer-
mentas, St. Leon-Rot, Germany) according to the manufacturer’s
instructions. Prior to reverse transcription, RNA was subjected to
digestion by DNase using a DNase Digestion Kit (Fermentas, St.
Leon-Rot, Germany). Generated cDNA was diluted 1:10 in ddH2O
and used as the sample template for qRT-PCR. The obtained cDNA
was stored at−20°C until use.

Quantitative PCR was used to validate the results obtained
from the deep sequencing analysis. Several genes were selected
for both transgenic mouse lines and time points. Primers
were purchased from Eurofins (Ebersberg, Germany) as intron-
spanning validated primer pairs. The diluted first-strand cDNA
was used for qRT-PCR using the SYBR green based DyNAmo
Flash SYBR Green qPCR Kit (Thermo Fischer Scientific,
Waltham, MA, USA) containing ROX as an internal refer-
ence dye. Samples were normalized to the housekeeping gene
β-Actin.

Analysis of brain transgene expression in 5XFAD, Tg4–42, and
WT animals was performed in the MX3000P Real-Time Cycler
(Stratagene, Santa Clara, CA, USA) and data collected using the
MxPro Mx3000P software (Stratagene, Santa Clara, CA, USA). Sta-
tistical analysis of quantitative RT-PCR measurements was done
using the Relative Expression Software Tool V1.9.6 (REST, Qiagen,
Hilden, Germany) (Pfaffl et al., 2002). The expression ratio results
of the studied transcripts were tested for significance by Pair Wise
Fixed Reallocation Randomization Test. ***p < 0.001; **p < 0.01;
*p < 0.05.

ANNOTATION ANALYSIS
In order to gain insight in the biological function and to
understand the biological significance of differentially expressed
genes (DEGs), the functional annotation of DEGs was obtained
using Source3, GeneCards4, Wiki-Pi5, and Mouse Genome
Informatics6.

3 http://puma.princeton.edu/cgi-bin/source/sourceResult
4 http://www.genecards.org
5 http://severus.dbmi.pitt.edu/wiki-pi/index.php
6 http://www.informatics.jax.org/

RESULTS
Tg4–42 AND 5XFAD MICE DISPLAY SPATIAL MEMORY DEFICITS
Spatial reference memory was assessed in Tg4–42, 5XFAD, and
WT mice using the Morris water maze. First, mice performed cued
training with a marked platform to familiarize with the pool and
to rule out effects from possible motor or sensory deficits. WT,
Tg4–42, and 5XFAD mice showed progressively decreased escape
latencies at all ages tested and no differences in swimming speed
(data not shown). The cued training revealed that all mice had an
intact vision and appropriate motor abilities to swim.

Twenty-four hours after the cued training, mice were subjected
to acquisition training in order to test their learning abilities
to find the location of a submerged platform using distal and
proximal cues.

We found a significant main effect of genotype for escape laten-
cies (Repeated measures ANOVA, F = 3.4097; p= 0.04). Young
Tg4–42, 5XFAD, and WT mice showed a significant decrease in the
escape latencies to reach the hidden platform (Figure 1A, Repeated
measures ANOVA, escape latency: p= 0.000011). Moreover, aged
WT animals showed a significant decrease in the escape latencies
while the escape latencies for aged Tg4–42 and 5XFAD did not
improve over the 5 days of training (Figure 1B, Repeated measures
ANOVA, escape latency: p= 0.001).

In contrast, the swimming speed across the 5 days of acquisition
training showed no significant difference irrespective of genotype
and age (Figures 1A,B, Repeated measures ANOVA, p= 0.0566).

Young Tg4–42 and 5XFAD animals performed superior to
older animals while this difference was not due to differences
in swimming velocity due to age-related motor deficits. These
results suggest that spatial learning is impaired in aged Tg4–42
and 5XFAD mice.

Twenty-four hours after the last acquisition trial, a probe trial
was given to assess spatial reference memory. Young Tg4–42,
5XFAD, and WT mice displayed a significant preference for the
target quadrant, as indicated by the percentage time spent in
different quadrants of the pool (Figure 2A, One-way ANOVA,
WT: p < 0.0001, df= 3; p < 0.001 target vs. all other quadrants;
5XFAD: p < 0.0001, df= 3; p < 0.001 target vs. left and opposite
quadrant, p < 0.01 target vs. right quadrant; Tg4–42: p < 0.0001,
df= 3; p < 0.001 target vs. opposite quadrant, p < 0.01 target vs.
right quadrant).

No quadrant preference was found for aged Tg4–42 and 5XFAD
mice, while WT mice still demonstrated significant preference
for the target quadrant at that time point (Figure 2B, One-way
ANOVA,WT: p < 0.0001,df= 3; p < 0.001 target vs. left and oppo-
site quadrant, p < 0.01 target vs. right quadrant). Swimming speed
between the groups did not differ during the probe trial. The
absence of a preference for the target quadrant as compared to
the remaining quadrants during the probe trial demonstrates that
aged Tg4–42 and 5XFAD mice display a robust deficit in spatial
reference memory.

In summary, the results of the acquisition phase and the
probe trial suggest that aged Tg4–42 and 5XFAD mice display
an impaired spatial and spatial reference memory.

Tg4–42 AND 5XFAD MICE EXHIBIT DECREASED CONTEXTUAL LEARNING
During the initial training sessions involving tone-foot-shock
pairing (CS/US), 12-month-old Tg4–42, 5XFAD, and WT mice
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FIGURE 1 | Spatial learning deficits in agedTg4–42 and 5XFAD shown in
the acquisition training of the Morris water maze. Female (A) young and
(B) aged Tg4–42 mice, 5XFAD mice, and WT littermate controls were tested
(n=8–11). Animals tested underwent acquisition training to learn to use distal
and proximal cues to navigate a direct path to a hidden platform. Escape
latencies of young mice (A) decreased progressively over 5 days of training

regardless of the genotype. Furthermore, aged WT mice (B) showed a
progressive improvement in the escape latency over time. The escape
latencies for aged Tg4–42 and 5XFAD did not improve over the 5 days of
training. Swimming speed was not affected in all mice tested. Escape latency
and swimming speed: repeated measures ANOVA followed by Bonferroni
multiple comparisons. m age in months.

exhibited comparable degrees of freezing (Figure 3). When mice
were tested for context fear conditioning 24 h after the train-
ing trial, Tg4–42 and 5XFAD mice demonstrated no significantly
increased freezing behavior in response to the conditioning cham-
ber (Figure 3). In contrast, WT mice displayed significantly
increased freezing (One-way ANOVA, p < 0.001) as a response
to the context.

Tg4–42 and 5XFAD mice jumped and vocalized in response to
the electric foot-shock to a similar degree as WT mice, suggesting
normal pain perception in these mutant mice. However, transgenic
mice were not able to attribute the pain of the foot-shock during
the training trial to the context. Therefore, Tg4–42 and 5XFAD
show impaired contextual learning.

5XFAD MICE SHOW IMPAIRED TONE LEARNING
Twenty-four hours after the context testing (48 h after training),
the same mice were tested for conditioned fear of a tone. Therefore,
mice were reintroduced to the altered fear conditioning chamber.
When the tone was presented without the foot-shock, both Tg4–42
and WT mice exhibited similar freezing responses (Figure 4). In
both mouse lines, freezing increased significantly compared to the
pre-tone period (One-way ANOVA, WT, and Tg4–42: p < 0.001).
However, 5XFAD mice demonstrated substantially less freezing
behavior in response to the tone. 5XFAD mice did not asso-
ciate the tone with the previously received foot-shock as freezing

was not significantly different between the training and the tone
trial.

These results indicate that Tg4–42 mice exhibit a selective
impairment of contextual fear learning (see previous sections),
while their tone learning ability remains intact. 5XFAD mice on
the other hand demonstrate both impaired contextual and tone
fear learning.

DEEP SEQUENCING OF MOUSE BRAINS
In total, deep sequencing identified 15,711,910 and 16,143,760
sequence reads for young and old wildtype mice, respectively.
For young wildtype mice, 6,230,197 reads (39.65%) and for old
wildtype mice, 5,512,056 reads (34.14%) were mapped to exons.
In young 5XFAD mice, the read mapping revealed 8,570,239
(60.28%) of 14,216,258 reads in exonic regions. Out of 18,288,161
reads, 9,163,060 (50.10%) hit exons in old 5XFAD mice. The brain
exome of young Tg4–42 mice was covered by 6,342,018 (47.28%)
out of 13,414,301 reads. For old Tg4–42 mice, 12,488,206 reads
were detected in total, of which 4,976,552 (39.85%) could be
mapped to exons. The numbers of exonic reads are summarized
in Table 1.

DEEP SEQUENCING IDENTIFIED OVER-EXPRESSED TRANSGENES
5XFAD mice over-express human amyloid precursor protein
(APP695) carrying the Swedish, London, and Florida mutations as
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Bouter et al. Deep sequencing: 5XFAD versus Tg4–42

FIGURE 2 | Spatial reference memory deficits in agedTg4–42 and 5XFAD
mice shown in the probe trial of the Morris water maze. Female young
and aged Tg4–42 mice, 5XFAD mice, and WT littermate controls were tested
(n= 8–11). The probe trial was given at the end of learning phase (acquisition
training) to assess spatial reference memory. Quadrant preference and
swimming speed for the first 30 s of the probe trial were analyzed. (A) Young
Tg4–42, 5XFAD, and WT mice showed no impairment in spatial reference
memory. All groups spent a significant greater percentage of time in the
target quadrant (WT: p < 0.001 T vs. all other quadrants; 5XFAD: p < 0.001 T

vs. L and O, p < 0.01 T vs. R; Tg4–42: p < 0.001 T vs. O, p < 0.01 T vs. R and
L). The swimming speed did not differ between the groups. (B) Probe trial
revealed a significant reduced learning behavior for aged Tg4–42 and 5XFAD
mice as they showed no preference for the target quadrant. WT mice have no
learning deficits at this age (WT: p < 0.001 T vs. L and O, p < 0.01 T vs. R).
Swimming speed did not differ between the groups. T, target quadrant; L, left
quadrant; R, right quadrant; O, opposite quadrant. Quadrant preference and
swimming speed; One-way analysis of variance (ANOVA) followed by
Bonferroni multiple comparisons. ***p < 0.001; **p < 0.01.

well as human presenilin-1 (PSEN-1) carrying the M146L/L286V
mutations. Both peptides are expressed under the control of
the neuronal Thy-1 promoter (Oakley et al., 2006). As expected,
sequence reads pertaining to PSEN-1, APP, and a Thy-1 promoter
sequence (Moechars et al., 1996) were over-represented in both
young and aged old 5XFAD brains (data not shown) and therefore
served as a positive and internal control for RNA-Seq.

In Tg4–42 mice, a Thy-1 promoter sequence (Moechars et al.,
1996) was found to be over-expressed in both young and aged
mice (data not shown). Again, this was expected as Tg4–42 mice
express human Aβ4–42 fused to the murine TRH signal peptide
under the control of the neuronal Thy-1 promoter (Bouter et al.,
2013).

GENE EXPRESSION IN YOUNG Tg4–42 AND 5XFAD MICE
Nineteen genes were identified as significantly differentially
expressed between young 5XFAD and age-matched WT mice. In
order to demonstrate the expression changes, volcano plots were
created (Figure 5A). Thirteen genes were up-regulated (Figure 5A,
green dots), while six genes were down-regulated (Figure 5A, red

dots). DEGs encoded proteins from diverse functional categories,
including translation (ribosomal proteins), glycolysis, and ATP-
binding, kinases and hydrolases (Table 2). In contrast, no DEGs
could be detected in young Tg4–42 mice.

GENE EXPRESSION IN AGED Tg4–42 MICE
Fifty-six genes were differentially expressed in aged Tg4–42
mice. Seven genes were up-regulated and 49 down-regulated
(Figure 5C). Twenty genes were solely differentially expressed in
aged Tg4–42 (Table 3; Figure 6), among these only three genes
were found to be up-regulated (Uqcc2, Beta-S, and Kif1a).

The 17 genes that were significantly down-regulated are
involved in diverse biological processes including regulation of
gene expression, nervous system development, cell communica-
tion, metal ion transport, neurogenesis, and regulation of synaptic
plasticity.

GENES SIMILARLY EXPRESSED IN BOTH AGED Tg4–42 AND 5XFAD MICE
Of the 56 DEGs in aged Tg4–42 mice, 36 were also found to be
differentially expressed in aged 5XFAD mice (Table 4; Figure 6).

Frontiers in Aging Neuroscience www.frontiersin.org April 2014 | Volume 6 | Article 75 | 6

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bouter et al. Deep sequencing: 5XFAD versus Tg4–42

FIGURE 3 | Impaired contextual conditioning inTg4–42 and 5XFAD
mice. Aged 5XFAD, Tg4–42, and WT mice were trained with a CS/US
pairing for contextual fear conditioning (n= 11–13). Mice were reintroduced
to the original training context (CS) 24 h post training and tested for
contextual memory. Levels of freezing during the re-exposure were not
different from the training trial for 5XFAD and Tg4–42. In contrast, WT mice
showed a significant increase on freezing response to the context.
CS= conditioned stimulus. Freezing: unpaired t -test; ***p < 0.001.

FIGURE 4 | Impaired tone conditioning in 5XFAD mice. Aged 5XFAD,
Tg4–42, and WT mice at 12 months of age were trained with a CS/US
pairing for tone fear conditioning (n=11–13). Mice were placed in an altered
fear conditioning chamber 48 h post training and tested for freezing during
tone presentation (CS). WT and Tg4–42 mice shock froze significantly more
during tone presentation compared to the training trial. In contrast, 5XFAD
mice did not associate the tone with the received foot-shock as freezing
was not significantly different between the training and the tone trial. CS,
conditioned stimulus; US, unconditioned stimulus. Freezing: unpaired
t -test; **p < 0.001.

Of these 36 genes, four were up-regulated and 32 were down-
regulated in aged Tg4–42 and 5XFAD mice and most showed
similar expression levels in the two models.

The biggest differences between aged Tg4–42 and 5XFAD could
be detected in the expression of Gfap and Xist. The intermediate
filament protein GFAP encoding gene was found to be four times
higher over-expressed in 5XFAD compared to Tg4–42. The non-
protein coding RNA Xist was twofold less abundant in Tg4–42 as
compared to 5XFAD mice. Apart from Gfap, Calmodulin 3, Fbxo2,
and Gpm6a were also up-regulated in both aged mouse lines.

The functional annotation of the jointly down-regulated genes
includes the following gene ontology (GO) (Ashburner et al., 2000)
categories: regulation of cell differentiation and anatomical struc-
ture development, regulation of gene expression and transcription,

Table 1 | Number of exonic reads in brain tissue of wildtype and

transgenic mice.

Genotype Number of reads in exons

Young WT 6,230,197

Aged WT 5,512,056

Young 5XFAD 8,570,239

Aged 5XFAD 9,163,060

Young Tg4–42 6,342,018

Aged Tg4–42 4,976,552

histone modification, ion binding and protein methyltransferase
activity, nervous system development, and neurogenesis.

Two genes were similarly down-regulated in aged Tg4–42 and
5XFAD but also young 5XFAD animals (Figure 6). First, Ubqln2
which encodes a member of the ubiquilin family (Ubiquilin 2)
that is involved in the protein degrading pathway as it regulates
the degradation of ubiquitinated proteins (Ko et al., 2004). Sec-
ond, the RNA binding protein neuro-oncological ventral antigen
2 encoding gene (Nova2).

GENE EXPRESSION IN AGED 5XFAD MICE
In aged 5XFAD mice,131 genes with significant expression changes
were identified. While 62 genes were up-regulated, 69 genes were
down-regulated (Figure 5B). Eighty-seven of the genes were only
found to be altered in aged 5XFAD mice (Table 5), while 36 showed
an overlap with aged Tg4–42 mice (Table 4; Figure 6) and eight
were also differentially expressed in young 5XFAD mice.

A notable group DEGs is involved in immune system processes
and inflammation (according to the GO annotation). These are,
among others, innate immune response and adaptive immune
response, immune effector processes, activation and regulation of
immune response as well as immune system development.

Furthermore, DEGs were also involved in cell communication
and system development, signal transduction, synaptic transmis-
sion as well as regulation of gene expression and transcription.

GENES SIMILARLY EXPRESSED IN BOTH YOUNG AND AGED 5XFAD
MICE
Eight genes were found to be differentially expressed in both young
and aged 5XFAD mice (Figure 6). Of these genes, four were up-
regulated and four down-regulated. The up-regulated genes are
the ribosomal protein Rpl21, Aldolase A, Snora68, and the ribonu-
clease P RNA component H1. Ubqln2, Nova2, Atp1a2, and Rn45s
showed reduced expression.

VALIDATION OF DIFFERENTIALLY EXPRESSED GENES IDENTIFIED BY
RNA-Seq USING REAL-TIME PCR
The quality of the isolated RNA is crucial for obtaining reliable
qRT-PCR results. Therefore, the quality of the RNA samples iso-
lated from the mice brains was evaluated by assessing the integrity
and purity of the RNA. All samples displayed A260/A230 ratios
greater than 1.8 and A260/A280 ratios higher than 2.0 (data not
shown) indicating an acceptable RNA purity.

For young 5XFAD (Figure 7),aged 5XFAD (Figure 8),and Tg4–
42 (Figure 9) mice at least seven DEGs were randomly selected
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Bouter et al. Deep sequencing: 5XFAD versus Tg4–42

FIGURE 5 | Volcano plots of the significant gene expression changes inTg4–42 and 5XFAD mice. Fold changes in gene expression of (A) young 5XFAD,
(B) aged 5XFAD, and (C) aged Tg4–42 mice. Each dot represents one gene. Dashed lines illustrate statistical significance (p=0.05). Red, down-regulated;
green, up-regulated.

and validated using qRT-PCR. For all genes, the qRT-PCR analysis
revealed expression patterns similar to the deep sequencing results.

DISCUSSION
The transcriptome includes all RNA transcripts expressed in a
given tissue and renders a profile of genes that are expressed at the
studied time point. Altered gene expression profiles may therefore
provide information about the genes and mechanisms involved
in the molecular pathogenesis of diseases like AD and ultimately
promote the search for new therapeutic drugs.

ADVANTAGES OF mRNA DEEP SEQUENCING
Microarrays were used in the past as a standard technique for tran-
scriptome profiling. The method has been proven to be valuable
to quantify simultaneously large numbers of mRNA transcripts
(Courtney et al., 2010). Commercially available microarrays can
be used to analyze up to 15,000–30,000 different mRNAs and facil-
itate genome-wide gene expression profiling (Altar et al., 2009).
Oligonucleotide and cDNA microarrays are both affordable and
offer a high-throughput approach.

However, due to the use of indirect signal detection by
hybridization, microarray techniques possess several limitations
(Courtney et al., 2010). These include reliance upon knowledge
of already known sequences, poor range of quantification, and
relatively low sensitivity and specificity (Choi et al., 2013). Fur-
thermore, the non-specific binding of samples make the detection
of low expressed transcripts against the background noise difficult
(Sutherland et al., 2011) and unsuitable for the quantification of
over- and under-expressed genes with fold changes smaller than
two (Wang et al., 2009). van Bakel et al. (2010) reported that
hybridization signals from microarrays can lead to a high num-
ber of false positive signals especially from transcripts with low
expression levels.

Several microarray studies on amyloid mouse models for AD
have been reported (Stein and Johnson, 2002; Dickey et al., 2003;
Wu et al., 2006; Selwood et al., 2009; Wirz et al., 2013). The
transgenic models included APP/PS1∆Ex9, PDAPP, Tg2576, and
combinations with different mutant PSEN-1 genetic variants. All
of these transgenic lines represent models for familial AD and

abundant plaque formation without severe neuron loss. Therefore,
we compared two models that do show a robust behavioral deficit
and in addition harbor a significant neuron loss.

RNA-Seq allows to cope with many of the problems described
for microarrays and has a number of advantages over microarray
technology. Most importantly, deep sequencing does not rely on
known genome sequence data and therefore novel transcripts can
be detected (Courtney et al.,2010). It is possible to detect billions of
nucleotide information within a single experiment (Cheng et al.,
2013). Furthermore, problems with saturation and background
signal do not exist as each molecule is individually sequenced and
mapped to unique regions of the genome. RNA-Seq offers a larger
dynamic range than microarray technology as no upper or lower
levels exist in this quantification technique (Courtney et al., 2010).
In comparison to microarrays, deep sequencing has a low false pos-
itive rate and is moreover highly reproducible (Nagalakshmi et al.,
2008).

5XFAD, A MODEL FOR FAMILIAL ALZHEIMER’S DISEASE
Using deep sequencing technology, we analyzed the RNA profiles
from the two AD models 5XFAD and Tg4–42 (Table 6). We com-
pared these two models, because they show a robust behavioral
deficit and in addition develop a significant neuron loss.

5XFAD is a model for familial AD that shows massive and
early plaque formation, intraneuronal Aβ aggregation, behavioral
deficits, and neuron loss in the neocortical layer 5 and subicu-
lum (Oakley et al., 2006; Jawhar et al., 2010). In the 5XFAD
model, many molecular pathways are altered due to mutant APP
and PS1 over-expression leading to massive elevation of Aβ1–42,
Aβ1–40, Aβ4–42, pyroglutamate AβpE3–42, and Aβ3–42 (Wittnam
et al., 2012). The consequence of this is that 5XFAD harbor soluble
forms of full-length and diverse N-truncated Aβ species that are
also found precipitated in plaques.

Tg4–42, A MODEL FOR SPORADIC ALZHEIMER’S DISEASE
In vitro and in vivo analysis of amyloid deposits in AD revealed
N- and C-terminal variants of the Aβ peptide (Masters et al.,
1985; Prelli et al., 1988; Miller et al., 1993). Masters et al. (1985)
discovered that the majority (64%) of the peptides in amyloid
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Bouter et al. Deep sequencing: 5XFAD versus Tg4–42

Table 2 | List of differentially expressed transcripts in young 5XFAD mice.

ID Gene

name

Gene description GO biological process

annotation/functions

Log2 fold

change

Adjusted

p-value

MGI:87994 Aldoa Aldolase A, fructose-bisphosphate Fructose-bisphosphate aldolase activity 1.62 1.16E-08

Actin binding

Cytoskeletal protein binding

Tubulin binding

Glycolysis

MGI:2148181 Snora68 Small nucleolar RNA, H/ACA box 68 Non-coding RNA 1.60 7.99E-07

Uridine modifications

MGI:105110 Rps2 Ribosomal protein S2 mRNA binding 1.30 2.92E-03

Fibroblast growth factor binding

Structural constituent of ribosome

MGI:96412 Ide Insulin-degrading enzyme Insulysin activity 1.22 2.92E-03

Metalloendopeptidase activity

Protein homodimerization activity

Hydrolase Activity

Beta-amyloid binding

Glycoprotein binding

ATP-binding

Zinc ion binding

Ubiquitin binding

MGI:1353472 Rpl7a Ribosomal protein L7a RNA binding 1.20 3.51E-02

Structural constituent of ribosome

MGI:98865 Ttr Transthyretin Hormone activity 1.18 6.09E-04

Protein heterodimerization activity

Retinol binding

MGI:1340062 Sgk1 Serum/glucocorticoid regulated kinase 1 Kinase activity 1.17 3.16E-03

Potassium/calcium channel regulator activity

ATP-binding

Response to DNA damage stimulus

MGI:1278340 Rpl21 Ribosomal protein L21 Structural constituent of ribosome 1.12 3.65E-02

RNA binding

MGI:108415 Pafah1b2 Platelet-activating factor acetylhydrolase,

isoform 1b, subunit 2

Hydrolase activity 1.09 5.67E-03
1-Alkyl-2 acetylglycero-phosphocholine

esterase activity

Homodimerization activity

MGI:99845 Gdi2 Guanosine diphosphate (GDP) dissociation

inhibitor 2

Rab GDP-dissociation inhibitor activity 0.99 3.51E-02
Rab GTPase activator activity

MGI:1934664 Rpph1 Ribonuclease P RNA component H1 Endoribonuclease activity 0.90 3.51E-02

MGI:97783 Psap Prosaposin Glycoprotein 0.90 3.51E-02

Lipid binding

Enzyme activator activity

MGI:97591 Pkm Pyruvate kinase, muscle Magnesium ion binding 0.90 4.41E-02

ATP-binding

Potassium ion binding

Pyruvate kinase activity

(Continued)
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Bouter et al. Deep sequencing: 5XFAD versus Tg4–42

Table 2 | Continued

ID Gene

name

Gene description GO biological process

annotation/functions

Log2 fold

change

Adjusted

p-value

MGI:108391 Kif1a Kinesin family member 1A ATP-binding −0.90 3.51E-02

Phospholipid binding

Motor activity

Axonal neuropathies

MGI:88106 Atp1a2 ATPase, Na+/K+ transporting, alpha 2

polypeptide

Sodium:potassium-exchanging ATPase

activity

−0.90 3.51E-02

ATP-binding

Metal ion binding

Hydrolase activity

MGI:1860283 Ubqln2 Ubiquilin 2 Protein binding −1.07 2.82E-02

Cell death

MGI:1313261 Spnb3 Spectrin beta, non-erythrocytic 2 Phospholipid binding −1.23 1.50E-04

Actin binding

Structural constituent of cytoskeleton

MGI:1337000 Rn45s 45S pre-ribosomal 5 Non-coding RNA −1.23 1.50E-04

MGI:104296 Nova2 Neuro-oncological ventral antigen 2 RNA binding −1.37 2.14E-03

plaques of AD begin with a phenylalanine residue corresponding
to position 4 of the full-length sequence. Moreover, they detected
dimeric and tetrameric Aβ aggregates from the HPLC separations
of plaques from AD having the same ragged NH2-terminal ends.
The importance of Aβ4–42 was later supported by the finding that it
represents a dominant fraction in the hippocampus and cortex of
AD patients using immunoprecipitation and mass spectrometry
(Portelius et al., 2010).

In order to investigate the long-lasting neurotoxic effect of
Aβ4–42, we recently generated the novel mouse model Tg4–42
expressing exclusively Aβ4–42 (Bouter et al., 2013). Tg4–42 mice
develop severe hippocampal neuron loss and memory deficits
that correlate well with the hippocampus-specific intraneuronal
expression of Aβ4–42. These findings are corroborated by previous
mouse models expressing full-length mutant APP. For example,
APP/PS1KI mice exhibit neuron loss in the CA1 region of the hip-
pocampus (Casas et al., 2004; Breyhan et al., 2009), the frontal
cortex (Christensen et al., 2008), and in distinct cholinergic nuclei
(Christensen et al., 2010). The APP/PS1KI model is character-
ized by age-dependent accumulation of heterogeneous N-terminal
truncated Aβ peptides with Aβ4–42 being one of the most abun-
dant variants (Casas et al., 2004). In 5XFAD mice, a heterogeneous
mixture of full-length, N-truncated and modified Aβ peptides,
including Aβ4–42, was also found (Wittnam et al., 2012). Hence,
the pathological events observed in the APP/PS1 KI and 5XFAD
mouse models might be at least partly triggered by N-terminal
truncated Aβ4–42.

LEARNING AND MEMORY DEFICITS IN 5XFAD AND Tg4–42 MICE
In the present work, we could show that Tg4–42 mice and 5XFAD
mice feature comparable learning and memory deficits. Both
mouse lines exhibited age-dependent spatial reference memory

deficits as assessed by the Morris water maze. Aged Tg4–42 and
5XFAD mice have also been tested in the CFC paradigm and exhib-
ited deficits in this hippocampus-dependent memory tasks. Tg4–
42 and 5XFAD mice displayed hippocampus-dependent memory
deficits similar to those of other AD transgenic models (Chen et al.,
2000; Stover and Brown, 2012; Kishimoto et al., 2013).

Classical fear conditioning is assumed to be highly dependent
on the hippocampus (Bast et al.,2003). Phillips and LeDoux (1992)
reported that lesions of the hippocampus interfered with CFC
but not with cue and TFC. In contrast, a functional amygdala is
required for appropriate fear conditioning for both context and
tone. Moreover, anxiety behavior was claimed to correlate with
the presence of intraneuronal Aβ in the amygdala (España et al.,
2010). These observations are in agreement with the impairment
in conditioned learning in response to a tone stimulus of aged
5XFAD mice, but not of age-matched Tg4–42 animals.

DEEP SEQUENCING IN 5XFAD AND Tg4–42 MICE
In order to detect gene expression changes in the two AD mouse
models, deep sequencing analysis was performed on young as well
as aged 5XFAD and Tg4–42 mice. A wide range of DEGs could be
identified in aged Tg4–42 as well as in young and aged 5XFAD mice
compared to age-matched wildtype controls, respectively. Even
though, the potential for false positive results cannot be eliminated
completely, more than 25 transcript changes detected by RNA-Seq
could be successfully validated by qRT-PCR and therefore vali-
dated the deep sequencing results. Furthermore, the detection of
the transgenic human PSEN-1 and APP sequences in young and
aged 5XFAD mice through deep sequencing is also an indication
for the quality of the method.

The expression changes detected in the transgenic mice give
a broad picture of the profound physiological changes that
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Bouter et al. Deep sequencing: 5XFAD versus Tg4–42

Table 3 | List of transcripts exclusively differentially expressed in agedTg4–42.

ID Gene

name

Gene description GO biological process annotation/functions log2 Fold

change

Adjusted

p-value

MGI:1914517 Uqcc2 Ubiquinol-cytochrome-c reductase

complex assembly factor 2

Regulation of insulin secretion 1.17 2.18E-02
ATP production

MGI:5474852 Beta-S Hemoglobin, beta adult s chain Iron ion binding 1.14 1.31E-02

Oxygen binding

MGI:108391 Kif1a Kinesin family member 1A Microtubule motor activity 0.90 1.77E-02

ATP-binding

MGI:2153272 Trrap Transformation/transcription

domain-associated protein

Phosphotransferase Activity −0.86 4.74E-02
Regulation of transcription

MGI:1194504 Kcnj10 ATP-sensitive inward rectifier potassium

channel 10

Potassium channel activity −0.93 3.76E-02
ATP-binding

MGI:3039582 Lmtk3 Lemur tyrosine kinase 3 Protein tyrosine kinase activity −0.94 3.98E-02

MGI:1343180 Vgf Nerve growth factor inducible Neuropeptide hormone activity −0.95 3.64E-02

Synaptic plasticity

Neurosecretory protein (Jahn et al., 2011 no. 284)

Regulation of energy balance (Jahn et al., 2011

no. 284)

Important for modulating neuronal activity (Cocco

et al., 2010 no. 286)

MGI:106374 Zmiz2 Zinc finger MIZ domain containing

protein 2

Zinc ion binding −0.98 1.90E-02

Ligand-dependent nuclear receptor transcription

coactivator activity

MGI:1194488 Slc32a1 Vesicular inhibitory amino acid transporter

solute carrier family 32 (GABA vesicular

transporter), member 1

Glycine transporter activity −1.02 3.76E-02
Amino acid-polyamine transporter activity

Neurotransmitter transport

MGI:1277171 Dcx Doublecortin Microtubule binding −1.03 4.42E-02

Protein kinase binding

Neurogenesis

MGI:101947 Hnrnpd Heterogeneous nuclear

ribonucleoprotein D

Regulation of transcription −1.04 1.99E-02
RNA binding and telomeric DNA binding

MGI:109591 Nfic Nuclear factor I/C Transcription factor activity −1.10 1.90E-02

DNA binding

MGI:2441726 BC005537 cDNA sequence BC005537 Unknown −1.11 9.46E-03

MGI:2673998 Arhgap33 Rho GTPase activating protein 33 Rac GTPase activator activity −1.12 1.08E-02

Phosphatidylinositol binding

MGI:1330828 Cdk5r2 Cyclin-dependent kinase 5 activator 2

(p39)

Lipid binding −1.14 1.04E-02
Cyclin-dependent protein kinase 5

Activator activity

Neuron-specific

MGI:2674092 Zfp609 Zinc finger protein 609 Zinc ion binding −1.17 1.90E-02

MGI:1915454 2900060 RIKEN cDNA 2900060B14 gene Unknown −1.18 2.43E-02

B14Rik

(Continued)
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Table 3 | Continued

ID Gene

name

Gene description GO biological process annotation/functions log2 Fold

change

Adjusted

p-value

MGI:1351334 Syn3 Synapsin III Catalytic activity −1.25 1.30E-02

ATP-binding

MGI:1920907 Fbrsl1 Fibrosin-like 1 Unknown −1.25 2.43E-02

MGI:106589 Hivep3 Human immunodeficiency virus type I

enhancer binding protein 3

DNA binding −1.26 5.18E-03
Zinc ion binding

Transcription factor

FIGURE 6 | Venn diagram analysis for significantly regulated genes in
Tg4–42 mice compared to 5XFAD mice. The numbers outside each circle
represent the number of genes that were significantly differentially
expressed in the respective mouse line (compared to WT mice). The
numbers in the spaces of overlapping circles represent the number of
genes that were affected in more than one condition. p < 0.05.

accompany the neuron loss and the detected memory deficits in
5XFAD and Tg4–42 mice. Some of the DEGs have been reported
before, while many genes are described for the first time in the con-
text of AD. The observed parallel expression of these genes now
offers new perspectives in understanding the pathology of AD.

DIFFERENTIALLY EXPRESSED GENES IN YOUNG 5XFAD MICE
In young 5XFAD mice, a substantial number of genes is differ-
entially expressed prior to robust amyloid deposition and neuron
loss. The 19 DEGs encoded proteins from diverse functional cate-
gories, including translation, glycolysis, and ATP-binding, kinases
and hydrolases. The 5XFAD model has been reported to develop
plaque deposition starting already at the age of 3 months (Jawhar
et al., 2010). Intraneuronal Aβ is evident at 1.5 months of age, just
before the first appearance of amyloid deposits at 2 months of age
(Oakley et al., 2006).

The data of young 5XFAD mice elucidate the expression profile
at the commencement of plaque formation and before learning
and memory deficits are apparent. Several DEGs that are involved
in the clearance of Aβ: transthyretin (Ttr) (Li and Buxbaum, 2011)
and insulin-degrading enzyme (Ide) (Farris et al., 2003; Miners
et al., 2009) are found up-regulated.

No DEGs were detected in young Tg4–42 mice, which suggest
that the pathology is weak at that age and points to a later onset
of the pathological events that underlie the phenotypic changes
observed at later ages.

COMMON MOLECULAR SIGNATURE OF Tg4–42 AND 5XFAD MICE
Interestingly, 36 genes were differentially expressed in both mouse
models indicating common disease pathways associated with
behavioral deficits and neuron loss occurring in these mouse mod-
els. Nearly half of the DEGs in aged Tg4–42 were also differentially
expressed in 5XFAD mice.

Many of the genes that showed differential regulation in 5XFAD
alone belong to neuroinflammatory processes typically found
associated with plaques. As Tg4–42 mice do not develop any
plaques, but massive neuron loss, we assume that the genes isolated
in both models and those in Tg4–42 alone are defining the mole-
cular signature underlying memory decline in this mouse model
for AD.

The DEGs that were found in both models fall in a broad
range of functional categories: regulation of cell differentiation
and anatomical structure development, regulation of gene expres-
sion and transcription, histone modification, ion binding and
protein methyltransferase activity, nervous system development,
and neurogenesis.

Together with Calm3, Fbxo2, and Gpm6a only Gfap was found
to be up-regulated in both aged 5XFAD and Tg4–42 mice.
The astrocyte marker glial fibrillary acidic protein gene (Gfap)
was found to be similarly up-regulated in both mouse lines.
Increased astrogliosis was previously described in both mouse
lines (Oakley et al., 2006; Bouter et al., 2013). Increased astroglio-
sis, measured by GFAP concentration, is also found in cortex,
thalamus, brainstem, and cerebellum in AD brains (Delacourte,
1990).

Next to the up-regulated genes, 32 genes were commonly down-
regulated in aged transgenic mice compared to WT. Among oth-
ers Lrp1 was altered. Kanekiyo et al. (2013) demonstrated that
receptor-mediated endocytosis in neurons by LRP1 plays a critical
role in Aβ clearance in the brain.

Decreased levels of Shank1 RNA were found in both mouse
lines. The levels of the post-synaptic proteins SHANK1 and
SHANK3 were also regulated in patients with AD and in the brains
of amyloid precursor protein transgenic mice. It has been pro-
posed that Aβ reduces Shank levels in the dendrites (Pham et al.,
2010).

The gene coding for the lysine (K)-specific methyltransferase
2D (Mll2), also known as Kmt2b, that is highly expressed through-
out development as well as in adult tissue (Glaser et al., 2006)
is down-regulated in aged 5XFAD and Tg4–42. Kerimoglu et al.
(2013) showed that mice lacking Mll2 in the adult forebrain
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Bouter et al. Deep sequencing: 5XFAD versus Tg4–42

Table 4 | List of transcripts differentially expressed in both agedTg4–42 and 5XFAD mice.

ID Gene

name

Gene description GO biological process

annotation/functions

log2

Fold

change

Tg4–42

Adjusted

p-value

Tg4–42

log2

Fold

change

5xFAD

Adjusted

p-value

5xFAD

MGI:103249 Calm3 Calmodulin 3 Ion channel binding 1.90 5.49E-13 1.00 1.28E-03

Calcium ion binding

G-protein coupled receptor protein

signaling pathway

MGI:2446216 Fbxo2 F-box protein 2 Ubiquitin-protein ligase activity 1.40 6.60E-04 1.24 1.73E-03

Glycoprotein binding

Beta-amyloid binding

Carbohydrate binding

MGI:107671 Gpm6a Neuronal membrane glycoprotein

M6-a

Calcium channel activity involved in

neuronal differentiation

0.90 1.77E-02 0.90 5.39E-03

Role in neuronal plasticity

MGI:95697 Gfap Glial fibrillary acidic protein Integrin binding 0.88 3.76E-02 3.64 2.36E-42

Kinase binding

Structural constituent of cytoskeleton

MGI:1860283 Ubqln2 Ubiquilin 2 Ubiquitin binding −0.92 4.35E-02 −1.27 8.71E-05

Protein modification

Proteolysis

MGI:97495 Pbx1 Pre-B-cell leukemia transcription

factor 1/pre-B-cell leukemia

homeobox 1

Transcription factor activity −0.92 3.79E-02 −0.86 2.85E-02
Protein heterodimerization activity

involved in the regulation of osteogenesis

required for skeletal patterning and

programing

MGI:3647820 Gm15800 Predicted gene 15800 Ubiquitin-protein ligase activity −0.96 1.04E-02 −0.83 1.84E-02

MGI:96669 Kcnc3 Potassium voltage-gated channel,

shaw-related sub-family, member 3

Voltage-gated potassium channel activity −0.99 3.47E-02 −1.04 6.53E-03
Delayed rectifier potassium channel

activity

MGI:96828 Lrp1 Low density lipoprotein

receptor-related protein 1

Endocytic receptor or receptor activity −1.00 5.80E-03 −0.83 1.77E-02
Lipoprotein binding

Calcium ion binding

Apolipoprotein binding

Beta-amyloid clearance

Apoptotic cell clearance

MGI:2183691 Nav2 Neuron navigator 2 Heparin binding −1.04 1.29E-02 −0.89 2.33E-02

Helicase activity

ATP-binding

Role in neuronal development

MGI:1890563 Wasf1 WAS protein family, member 1 Actin binding −1.05 1.99E-02 −0.95 2.11E-02

MGI:96995 Mll1 Lysine (K)-specific

methyltransferase 2A

Calcium ion binding −1.05 4.97E-03 −0.81 3.37E-02
Zinc ion binding

Chromatin binding

Histone methyltransferase activity

Regulation of transcription

(Continued)
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Bouter et al. Deep sequencing: 5XFAD versus Tg4–42

Table 4 | Continued

ID Gene

name

Gene description GO biological process

annotation/functions

log2

Fold

change

Tg4–42

Adjusted

p-value

Tg4–42

log2

Fold

change

5xFAD

Adjusted

p-value

5xFAD

MGI:2446229 Tet3 Tet methylcytosine dioxygenase 3 Methylcytosine dioxygenase activity −1.05 1.98E-02 −1.05 6.56E-03

Oxidoreductase activity

Metal ion binding

Plays role in the DNA methylation process

MGI:99948 Zfhx3 Zinc finger homeobox 3 GTP binding −1.06 3.98E-02 −1.12 7.24E-03

Sequence-specific DNA binding

transcription factor activity

Zinc ion binding

MGI:1347464 Foxg1 Forkhead box G1 Sequence-specific DNA binding −1.06 4.30E-02 −1.11 9.22E-03

Negative regulation of neuron

differentiation

Regulation of transcription

Brain development

Forebrain marker (Yahata et al., 2011

no. 296)

MGI:1919847 Auts2 Autism susceptibility candidate 2 Unknown −1.07 2.00E-02 −1.05 7.45E-03

MGI:1915467 Prrc2a Proline-rich coiled-coil 2A Unknown −1.07 4.33E-03 −0.85 2.24E-02

MGI:1917685 Inf2 Inverted formin, FH2 and WH2

domain containing

Rho GTPase binding −1.07 7.70E-03 −0.87 2.60E-02
actin binding

MGI:2158663 Inpp5j Inositol polyphosphate

5-phosphatase J

SH3 domain binding −1.12 2.43E-02 −1.78 6.55E-07
Hydrolase activity

Phosphatase activity

MGI:2682319 Mll2 Lysine (K)-specific

methyltransferase 2D

Histone methyltransferase −1.12 1.90E-03 −1.05 1.48E-03

MGI:3026647 Flrt1 Fibronectin leucine rich

transmembrane protein 1

Receptor signaling protein activity −1.18 1.53E-02 −1.25 1.89E-03

MGI:1888520 Brd4 Bromodomain containing 4 DNA binding −1.19 4.97E-03 −1.05 7.64E-03

MGI:1916205 Srrm4 Serine/arginine repetitive matrix 4 mRNA binding −1.22 2.43E-02 −1.25 6.20E-03

Promotes alternative splicing and

inclusion of neural-specific exons in target

mRNAs

MGI:1926106 Fam163b Family with sequence similarity

163, member B

Unknown −1.27 9.85E-03 −1.60 2.91E-05

MGI:2685951 Myo16 Myosin XVI Motor activity −1.27 1.57E-03 −1.09 4.62E-03

ATP-binding

Protein phosphatase binding

MGI:1923304 Prrc2b Proline-rich coiled-coil 2B Unknown −1.30 2.37E-05 −1.11 2.28E-04

MGI:1923206 Srrm2 Serine/arginine repetitive matrix 2 C2H2 zinc finger domain binding −1.33 8.92E-06 −1.04 7.25E-04

RNA binding involved in pre-mRNA

splicing

(Continued)
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Bouter et al. Deep sequencing: 5XFAD versus Tg4–42

Table 4 | Continued

ID Gene

name

Gene description GO biological process

annotation/functions

log2

Fold

change

Tg4–42

Adjusted

p-value

Tg4–42

log2

Fold

change

5xFAD

Adjusted

p-value

5xFAD

MGI:1337080 Ncor2 Nuclear receptor co-repressor 2 Chromatin binding −1.38 5.62E-05 −1.39 1.21E-05

Regulation of transcription

Transcription co-repressor activity

Notch binding

MGI:1306776 Mtap1a Microtubule-associated protein 1 A Structural molecule activity −1.44 3.82E-07 −1.62 9.68E-10

Microtubule assembly

Perception of sound

MGI:104725 Atn1 Atrophin 1 Toxin receptor binding −1.44 2.15E-04 −1.32 3.38E-04

Transcription co-repressor activity

MGI:104296 Nova2 Neuro-oncological ventral antigen 2 RNA binding −1.49 4.27E-05 −1.64 7.71E-07

MGI:3613677 Shank1 SH3 and multiple ankyrin repeat

domains 1

SH3 domain binding −1.57 9.26E-08 −1.53 7.43E-08
Identical protein binding

Synapse maturation

MGI:2679002 Prr12 Proline-rich 12 DNA binding −1.59 3.68E-04 −1.68 2.80E-05

MGI:2143886 Dot1l DOT1-like histone H3

methyltransferase

Transcription factor binding −1.63 3.29E-05 −1.06 1.72E-02
DNA binding

Histone-lysine N -methyltransferase

activity

MGI:88107 Atp1a3 Sodium/potassium-transporting

ATPase subunit alpha-3

Sodium:potassium-exchanging ATPase

activity

−1.73 1.31E-10 −1.90 1.70E-13

ATP-binding

Metal ion binding

Hydrolase activity

MGI:98974 Xist Inactive× specific transcripts Non-protein coding −1.73 1.31E-10 −0.90 5.70E-03

displayed impaired hippocampus-dependent memory function.
Furthermore, the loss of MLL2 leads to down-regulation of
genes implicated in neuronal plasticity. 5XFAD and Tg4–42
also showed hippocampus-dependent memory impairments. The
down-regulation of Mll2 that is reported to be crucial for memory
consolidation and regulation of hippocampal plasticity genes is
well in line with our findings.

DIFFERENTIALLY EXPRESSED GENES IN AGED Tg4–42 MICE
Up-regulated genes in aged Tg4–42 mice
Twenty genes were solely differentially expressed in aged Tg4–
42. Among these, only the genes Uqcc2, Beta-S, and Kif1a were
found to be up-regulated. Kif1a is a member of the kinesin
family (KIFs) (Takemura et al., 1996) and has previously been
connected to AD (Kondo et al., 2012). These microtubule-based
motor proteins transport membrane organelles, mRNA, and pro-
teins (Hirokawa et al., 2009). By transporting those complexes,
KIFs play important roles in neuronal function and plasticity as
well as morphogenesis and survival (Hirokawa et al., 2010). In neu-
rons,KIF1A transports components of synaptic vesicles containing
synaptic vesicle proteins such as synaptophysin and synaptotagmin

(Hirokawa et al., 2010). Recently, Kondo et al. (2012) could show
that an up-regulation of KIF1A contributes to synaptogenesis in
the hippocampus.

Down-regulated genes in aged Tg4–42 mice
The 17 genes that were significantly down-regulated in aged Tg4–
42 are involved in diverse biological processes. These include
regulation of gene expression, nervous system development, cell
communication, metal ion transport, neurogenesis, and regula-
tion of synaptic plasticity. The gene encoding nerve growth factor
inducible protein (VGF), which is down-regulated in aged Tg4–42,
is a neurosecretory protein that is solely expressed in neurons (van
den Pol et al., 1994). Adult VGF is detected in several areas in the
brain including the olfactory system, cerebral cortex, hypothala-
mus, and hippocampus as well as the adrenal medulla and motor
neurons of the spinal cord (van den Pol et al., 1994; Snyder and
Salton, 1998; Thakker-Varia and Alder, 2009). Several groups pro-
posed VGF as a potential biomarker for AD (Carrette et al., 2003;
Jahn et al., 2011). They detected lower protein levels of VGF in
the cerebrospinal fluid (CSF) of AD patients compared to healthy
controls.
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Bouter et al. Deep sequencing: 5XFAD versus Tg4–42

Table 5 | List of differentially expressed transcripts in aged 5XFAD mice.

ID Gene name Gene description GO biological process

annotation/functions

log2 Fold

change

Adjusted

p-value

MGI:88228 C4b Complement component 4B Endopeptidase inhibitor activity 3.31 2.44E-27

Inflammatory response

Complement activation

Immune response

MGI:88225 C1qc Complement component 1, q

subcomponent, C chain

Complement activation 3.05 1.84E-23
Immune response

MGI:88223 C1qa Complement component 1, q

subcomponent, alpha polypeptide

Phosphate transport 2.99 1.31E-24
Complement activation

Immune response

MGI:107341 Ctss Cathepsin S Cysteine-type peptidase activity 2.75 5.00E-21

Hydrolase activity

Proteolysis

Immune response

MGI:88224 C1qb Complement component 1, q

subcomponent, beta polypeptide

Phosphate transport 2.72 2.22E-19
Complement activation

Immune response

MGI:1891190 Ctsz Cathepsin Z Cysteine-type peptidase activity 2.49 1.01E-15

Hydrolase activity

MGI:98932 Vim Vimentin Structural constituent of cytoskeleton 2.27 8.36E-13

Identical protein binding

Apoptotic process

MGI:96074 Hexb Hexosaminidase B Cation binding 2.16 9.49E-15

Protein homodimerization activity

Beta-N -acetylhexosaminidase activity

Protein heterodimerization activity

MGI:88562 Ctsd Cathepsin D Aspartic-type endopeptidase activity 2.13 1.66E-16

Hydrolase activity

MGI:2148181 Snora68 Small nucleolar RNA, H/ACA box 68 Non-coding RNA 2.11 4.37E-14

Uridine modifications

MGI:87994 Aldoa Aldolase A, fructose-bisphosphate Actin binding 2.03 1.32E-15

Fructose-bisphosphate aldolase activity

Cytoskeletal protein binding

Tubulin binding

Glycolysis

MGI:88127 B2m Beta-2 microglobulin MHC class I receptor activity 1.86 5.03E-10

Cellular defense response

Innate immune response

MGI:108046 Laptm5 Lysosomal-associated protein

transmembrane 5

Transmembrane transport 1.86 1.32E-07

MGI:1333815 Cx3cr1 Chemokine (C-X3-C motif) receptor 1 Chemokine receptor activity 1.66 9.43E-07

G-protein coupled receptor activity

Transmembrane protein

Signal transduction

(Continued)
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Bouter et al. Deep sequencing: 5XFAD versus Tg4–42

Table 5 | Continued

ID Gene name Gene description GO biological process

annotation/functions

log2 Fold

change

Adjusted

p-value

MGI:99554 Lgals3bp Lectin, galactoside-binding, soluble, 3

binding protein

Scavenger receptor activity 1.66 1.19E-05
Isomerase activity

Cellular defense response

Signal transduction

MGI:1921298 4632428N05Rik RIKEN cDNA 4632428N05 gene Receptor activity 1.63 1.48E-06

MGI:96614 Itgb5 Integrin beta 5 Integrin binding 1.56 1.05E-06

Receptor activity

Cell adhesion

MGI:1914877 Olfml3 Olfactomedin-like 3 Scaffold protein 1.53 1.36E-04

MGI:96073 Hexa Hexosaminidase A Beta-N -acetylhexosaminidase activity 1.51 3.85E-06

Protein heterodimerization activity

Hydrolase activity

MGI:1339758 Csf1r Colony -stimulating factor 1 receptor Macrophage colony-stimulating factor

Receptor activity

1.45 1.58E-06

Protein homodimerization activity

ATP-binding

Immune response

MGI:107387 Aqp4 Aquaporin 4 Porin activity 1.42 8.90E-07

Water transmembrane transporter activity

MGI:1918089 P2ry12 Purinergic receptor P2Y, G-protein coupled 12 ADP receptor activity 1.40 2.68E-04

Guanyl-nucleotide exchange factor activity

G-protein coupled adenosine receptor activity

Signal transducer activity

MGI:1278340 Rpl21 Ribosomal protein L21 Structural constituent of ribosome 1.37 2.20E-04

RNA binding

MGI:107286 Man2b1 Mannosidase 2, alpha B1 Carbohydrate binding 1.35 4.77E-05

Alpha-mannosidase activity

Hydrolase activity

MGI:1096881 Eef1a1 Eukaryotic translation elongation factor 1

alpha 1

GTPase activity 1.32 6.22E-06
Translation elongation factor activity

Regulation of transcription

MGI:1915213 Npc2 Niemann Pick type C2 Cholesterol binding 1.27 1.20E-03

Enzyme binding

MGI:88561 Ctsb Cathepsin B Cysteine-type peptidase activity 1.25 1.21E-05

Hydrolase activity

Immune response

MGI:88564 Ctsl Cathepsin L Cysteine-type peptidase activity 1.23 3.42E-04

Hydrolase activity

Histone binding

Immune response

MGI:1934664 Rpph1 Ribonuclease P RNA component H1 Endoribonuclease activity 1.23 1.21E-05

MGI:1920174 Anln Anillin Actin binding 1.22 1.53E-03

Phospholipid binding

(Continued)
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Bouter et al. Deep sequencing: 5XFAD versus Tg4–42

Table 5 | Continued

ID Gene name Gene description GO biological process

annotation/functions

log2 Fold

change

Adjusted

p-value

MGI:95832 Grn Granulin Growth factor activity 1.21 1.00E-03

Cytokine activity

Signal transduction

MGI:98729 Tgfbr2 Transforming growth factor, beta receptor II ATP-binding 1.18 4.94E-03

Transmembrane receptor protein

serine/threonine kinase activity

Transferase activity

Receptor activity

SMAD binding

Signal transduction

MGI:894320 Prdx6 Peroxiredoxin 6 Glutathione peroxidase activity 1.17 2.21E-04

Oxidoreductase activity

Antioxidant activity

Response to oxidative stress

MGI:1921305 Plce1 Phospholipase C, epsilon 1 Guanyl-nucleotide exchange factor activity 1.15 5.42E-03

Calcium ion binding

Receptor signaling protein activity

Hydrolase activity

Signal transducer activity

MGI:107357 Inpp5d Inositol polyphosphate-5-phosphatase D SH3 domain binding 1.14 1.96E-02

PTB domain binding

Hydrolase activity

Signal transducer activity

Immune response

MGI:1330838 Lgmn Legumain Cysteine-type endopeptidase activity 1.07 1.82E-03

Peptidase activity

Immune response

Hydrolase activity

MGI:1917329 Golm1 Golgi membrane protein 1 Protein modification 1.03 2.85E-02

Nucleus organization

MGI:88385 Cfh Complement component factor h Heparin binding 1.02 4.65E-02

Heparan sulfate proteoglycan binding

Complement activation

Immune response

MGI:95640 Gapdh Glyceraldehyde-3-phosphate dehydrogenase Microtubule binding 1.01 3.07E-03

NADP binding

MGI:1924096 Rps9 Ribosomal protein S9 Structural constituent of ribosome 1.01 1.59E-02

RNA binding

Translation regulator activity

MGI:97171 Mt1 Metallothionein 1 Organic cyclic compound binding 1.01 3.08E-03

Hormone binding

Copper ion binding

MGI:97591 Pkm Pyruvate kinase, muscle Magnesium ion binding 1.00 1.56E-03

Pyruvate kinase activity

ATP-binding

(Continued)
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Bouter et al. Deep sequencing: 5XFAD versus Tg4–42

Table 5 | Continued

ID Gene name Gene description GO biological process

annotation/functions

log2 Fold

change

Adjusted

p-value

MGI:88423 Clu Clusterin ATPase activity 0.96 2.50E-03

Ubiquitin -protein ligase binding

Misfolded protein binding

Immune response

MGI:1338892 Padi2 Peptidyl arginine deiminase, type II Protein-arginine deiminase activity 0.95 4.86E-02

Calcium ion binding

Hydrolase activity

Immune response

MGI:1915472 Tubb4b Tubulin, beta 4B class IVB Structural molecule activity 0.93 2.03E-02

GTPase activity

Double-stranded RNA binding

Structural constituent of cytoskeleton

Unfolded protein binding

MGI:2445114 Pisd Phosphatidylserine decarboxylase Lyase activity 0.93 1.94E-02

MGI:96247 Hsp90ab1 Heat shock protein 90 alpha (cytosolic), class

B member 1

Unfolded protein binding 0.90 6.13E-03
GTP binding

ATP-binding

Double-stranded RNA binding

Ion channel binding

Immune response

Negative regulation of neuron apoptotic

process

MGI:1925017 Ermn Ermin, ERM-like protein Actin filament binding 0.90 3.02E-02

MGI:105959 Cox8a Cytochrome-c oxidase subunit VIIIa Cytochrome-c oxidase activity 0.88 1.52E-02

MGI:96748 Lamp2 Lysosomal-associated membrane protein 2 Membrane glycoprotein 0.88 2.94E-02

TRNA ligase activity

ATP-binding

Hemostasis

MGI:97748 Ctsa Cathepsin A Enzyme activator activity 0.86 3.15E-02

Serine-type carboxypeptidase activity

Hydrolase activity

MGI:103099 Cox6a1 Cytochrome-c oxidase subunit VIa

polypeptide 1

Cytochrome-c oxidase activity 0.85 2.02E-02

MGI:1346074 Fxr2 Fragile×X mental retardation, autosomal

homolog 2

RNA binding 0.84 3.11E-02
Identical protein binding

MGI:99607 Abca1 ATP-binding cassette, sub-family A (ABC1),

member 1

Apolipoprotein binding 0.82 4.37E-02
Phospholipid binding

Cholesterol binding

ATP-binding

MGI:88252 Calr Calreticulin Iron ion binding 0.81 3.02E-02

Calcium ion binding

Hormone binding

mRNA binding

Regulation of transcription

Signal transduction

Immune system

(Continued)
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Bouter et al. Deep sequencing: 5XFAD versus Tg4–42

Table 5 | Continued

ID Gene name Gene description GO biological process

annotation/functions

log2 Fold

change

Adjusted

p-value

MGI:98467 Syp Synaptophysin Transporter activity 0.79 2.74E-02

Calcium ion binding

Cholesterol binding

Syntaxin-1 binding

SH2 domain binding

Synaptic vesicle maturation

Synaptic transmission

MGI:98373 Sparc Secreted acidic cysteine rich glycoprotein Extracellular matrix binding 0.78 4.37E-02

Calcium ion binding

Signal transduction

Hemostasis

MGI:1096398 Cd81 CD81 antigen MHC class II protein complex binding 0.77 4.93E-02

Regulation of immune response

MGI:1915347 Dynll2 Dynein light chain LC8-type 2 Cytoskeletal protein binding −0.86 2.10E-02

Motor activity

MGI:1277955 Bsn Bassoon Metal ion binding −0.87 1.10E-02

Synaptic transmission

MGI:3648294 Tnrc18 Trinucleotide repeat containing 18 DNA binding −0.87 3.34E-02

MGI:2145310 Rnf44 Ring finger protein 44 Zinc ion binding −0.89 3.49E-02

MGI:103291 Rai1 Retinoic acid induced 1 Zinc ion binding −0.90 2.82E-02

DNA binding

Transcription factor

MGI:1096362 Nrxn2 Neurexin II Cell adhesion molecule binding −0.90 1.19E-02

Calcium channel regulator activity

Metal ion binding

Synaptic transmission

MGI:1337000 Rn45s 45S pre-ribosomal 5 Non-coding RNA −0.90 5.41E-03

MGI:88106 Atp1a2 ATPase, Na+/K+ transporting, alpha 2

polypeptide

Sodium:potassium-exchanging ATPase

activity

−0.90 5.39E-03

Metal ion binding

Hydrolase activity

ATP-binding

MGI:96667 Kcnc1 Potassium voltage -gated channel,

shaw-related sub-family, member 1

Rectifier potassium channel activity −0.92 1.07E-02
Voltage-gated ion channel activity

Synaptic transmission

MGI:1347488 Foxk1 Forkhead box K1 Transcription regulation −0.94 3.02E-02

Cell differentiation

DNA binding

Mg-ion binding

MGI:106190 Bcl11a B cell CLL/lymphoma 11A (zinc finger protein) B cell differentiation −0.96 3.73E-02

T cell differentiation

Regulation of transcription

MGI:1321395 Ltbp4 Latent transforming growth factor beta

binding protein 4

Growth factor binding −0.96 4.59E-02
Hormone secretion

Regulation of cell differentiation

(Continued)
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Table 5 | Continued

ID Gene name Gene description GO biological process

annotation/functions

log2 Fold

change

Adjusted

p-value

MGI:2176606 Scrt1 Scratch homolog 1, zinc finger protein Transcription regulation −0.96 2.09E-02

MGI:1925589 Ttyh3 Tweety homolog 3 Chloride channel activity −0.96 7.91E-03

Transmembrane transport

MGI:2444218 Ahdc1 AT hook, DNA binding motif, containing 1 DNA binding −0.97 1.84E-02

MGI:98460 Syn1 Synapsin I Neurotransmitter secretion −0.98 3.98E-03

Synaptic vesicle transport

MGI:95617 Gabra5 Gamma-aminobutyric acid (GABA) A

receptor, subunit alpha 5

GABA-receptor −0.99 1.52E-02

Chloride transport

Gamma-aminobutyric acid signaling pathway

MGI:2143099 AI593442 Expressed sequence AI593442 Unclassified −1.00 4.30E-03

MGI:1346031 Tshz1 Teashirt zinc finger family member 1 Transcription factor −1.00 1.73E-02

DNA binding

MGI:2444817 C530008

M17Rik

RIKEN cDNA C530008M17 gene Unknown −1.00 2.26E-02

MGI:2441680 Tmem8b Transmembrane protein 8B Cell cycle regulation −1.00 2.27E-02

Cell matrix adhesion

MGI:109169 Epas1 Endothelial PAS domain protein 1 Regulation of transcription −1.01 6.32E-03

Angiogenesis

Transcription

Signal transduction

Cellular stress response

MGI:1351323 Snord33 Small nucleolar RNA, C/D box 33 Unknown −1.04 4.35E-02

MGI:107363 Stxbp1 Syntaxin binding protein 1 Release of neurotransmitters via syntaxin

regulation

−1.04 7.75E-04

Vesicle transport

Exocytosis

Regulation of insulin secretion

MGI:2443847 Sdk2 Sidekick homolog 2 Chemotaxis −1.04 2.43E-02

Protein targeting

Cell adhesion

MGI:1919559 Tmem158 Transmembrane protein 158 Ras pathway −1.06 2.27E-02

MGI:102858 Fosl2 Fos-like antigen 2 Regulation of transcription −1.10 1.07E-02

Cell regulation

Fibroblasten proliferation

MGI:2686934 Zfhx2 Zinc finger homeobox 2 DNA binding −1.11 6.32E-03

Transcriptional factor activity

MGI:96434 Igf2 Insulin-like growth factor 2 Hormone activity −1.11 4.47E-03

Growth factor activity

Cell proliferation

Regulation of cell cycle

Protein metabolism

Hemostasis

Signal transduction

(Continued)
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Table 5 | Continued

ID Gene name Gene description GO biological process

annotation/functions

log2 Fold

change

Adjusted

p-value

MGI:2444034 9530091C08Rik RIKEN cDNA 9530091C08 gene Unclassified non-coding RNA gene −1.14 1.10E-02

MGI:1313277 Vamp2 Vesicle-associated membrane protein 2 Vesicle mediate transport −1.14 2.79E-04

Synaptic vesicle exocytosis

Regulation of insulin secretion

MGI:1890616 Scube1 Signal peptide, CUB domain, EGF-like 1 Inflammatory response −1.19 1.28E-03

Endothelial cell differentiation

MGI:2444210 Nr1d1 Nuclear receptor sub-family 1, group D,

member 1

Transcription factor −1.23 6.34E-04
Insulin secretion

Metabolic processes

Inflammatory processes

MGI:2444521 Rnf165 Ring finger protein 165 Zinc ion binding −1.25 1.05E-02

MGI:1351339 Grm2 Glutamate receptor, metabotropic 2 Synaptic transmission −1.27 2.12E-03

Glutamate secretion

MGI:102703 Gng4 Guanine nucleotide binding protein

(G-protein), gamma 4

Signal transduction −1.42 7.64E-05
GTPase activity

Hemostasis

Synaptic transmission

Glucagon response

Transmembrane transport of small molecules

MGI:95295 Egr1 Early growth response 1 Transcriptional regulator −1.55 6.15E-07

Immune response

T cell differentiation

FIGURE 7 | Validation of young 5XFAD deep sequencing results through
quantitative real-time polymerase chain reaction (qRT-PCR) analysis. To
confirm the deep sequencing data, qRT-PCR experiments for various genes
were performed on young 5XFAD and age-matched WT mice. Expression

levels of 5XFAD mice were compared to age-matched WT animals (dashed
red line represents WT standard). Normalization was performed against the
housekeeping gene β-Actin. ***p < 0.001; **p < 0.01; *p < 0.05; m age in
months; n=4–5 per group.

Another notable down-regulated gene in aged Tg4–42 mice
codes for doublecortin (Dcx). Doublecortin is a microtubule-
associated protein that is expressed in migrating neuronal
precursors of the developing CNS and immature neurons
(Couillard-Despres et al., 2005). Human DCX is often used as
a marker for neurogenesis (Couillard-Despres et al., 2005; Ver-
wer et al., 2007). In AD mouse models expressing mutant forms

of APP or PSEN-1, neurogenesis was found to be impaired.
Aβ was found to disrupt neurogenesis in the subventricular
zone and the hippocampus in these mice (Haughey et al.,
2002a,b). Jin et al. (2004) however described increased lev-
els of doublecortin in the hippocampus of AD patients brains
and therefore suggested that neurogenesis is increased in AD
hippocampus.
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FIGURE 8 | Validation of aged 5XFAD deep sequencing results through
quantitative real-time polymerase chain reaction (qRT-PCR) analysis. To
confirm the deep sequencing data, qRT-PCR experiments for various genes
were performed on aged 5XFAD and age-matched WT mice. Expression
levels of 5XFAD mice were compared to age-matched WT animals (dashed
red line represents WT standard). Normalization was performed against the
housekeeping gene β-Actin. **p < 0.01; *p < 0.05; m age in months;
n=4–5 per group.

FIGURE 9 | Validation of agedTg4–42 deep sequencing results through
quantitative real-time polymerase chain reaction (qRT-PCR) analysis. To
confirm the deep sequencing data, qRT-PCR experiments for various genes
were performed on aged Tg4–42 and age-matched WT mice. Expression
levels of Tg4–42 mice were compared to age-matched WT animals (dashed
red line represents WT standard). Normalization was performed against the
housekeeping gene β-Actin. ***p < 0.001; **p < 0.01; *p < 0.05; m age in
months; n=4–5 per group.

The pathology of AD has recently been linked to the deregu-
lation of cyclin-dependent kinase 5 (CDK5) (Shukla et al., 2012).
CDK5 is regulated by the neuron-specific cyclin-related proteins
p35 (CDK5R1) and p39 (CDK5R2). Activated CDK5 plays an
important role in neurogenesis, synaptic plasticity and neuronal
survival (Nikolic et al., 1996; Tan et al., 2003; Shukla et al., 2012).
CDK5 phosphorylates tau and the CDK5 complex is involved in
posttranslational modification of APP and PSEN (Rademakers
et al., 2005). Various neurotoxic events, including oxidative stress
and elevated Aβ levels, result in calpain cleavage of the regulatory
proteins p39 and p35. The resulting C-terminal truncated pro-
teins p29 and p25 lead to hyperactivation and mislocalization of
CDK5. The introduction of p25 in primary neurons leads to the

Table 6 | Comparison of the two transgenic mouse models 5XFAD and

Tg4–42.

Features 5XFAD Tg4–42

Mutations APP695 (Swedish, Florida,

London)

None

PSEN-1 (M146L and L286V)

Genetic background C57Bl6 C57Bl6

Transient intraneuronal Aβ Yes Yes

Prevalence of Aβ variants Aβ1–42 > 1–40 > 4–

42 > pyroglutamate3-42

only Aβ4–42

Plaques Plaque deposits starting at

3 months

None

Neuron loss 38% loss in cortical layer 5 49% loss in

CA1

Gliosis Yes Yes

Behavioral deficits Yes Yes

deregulation of CDK5 causing among others phosphorylation of
tau and neuronal cell death (Cruz and Tsai,2004; Rademakers et al.,
2005). It can be hypothesized that the over-expression of Aβ4–42

in Tg4–42 mice stimulates activation of calpain and therefore
down-regulation of Cyclin-dependent kinase 5 activator 2.

It is notable that several DEGs in aged Tg4–42 mice have an ion
binding function. The proteins ZMIZ2 and ZFP609 bind to zinc
ions while Beta-S is an iron ion binding protein. Furthermore, the
metal ion binding proteins MLL1, ZFHX3, SRRM2, and ATP1A are
down-regulated in both aged Tg4–42 and 5XFAD mice. The bind-
ing targets zinc and iron, in addition to copper, have been shown
to be involved in the pathology of AD. Zinc promotes the aggrega-
tion of Aβ (Watt et al., 2010) and was found to be enriched in AD
plaques (Lovell et al., 1998; Leskovjan et al., 2011; Roberts et al.,
2012). While the overall Zn level in the aging brain is relatively
constant, the zinc transporter ZnT3 has been shown to decrease
with age (Roberts et al., 2012). Furthermore, disruption of zinc
homeostasis in the brain leads to synaptic and memory deficits
(Watt et al., 2010). Aged 5XFAD mice also displayed a variety of
DEGs involved in metal binding, for example Bsn, Rnf44, Rai1,
Atp1a2, and Rnf165.

DIFFERENTIALLY EXPRESSED GENES IN AGED 5XFAD MICE
Inflammatory processes
In aged 5XFAD mice 131 genes with significant expression changes
were identified. Eighty-seven of these genes were only found to
be altered in this mouse line and not in Tg4–42. Compared to
aged Tg4–42 mice, a significant larger number of genes were
differentially expressed in aged 5XFAD mice.

Recently, Upadhaya et al. (2013) suggested somatic versus neu-
ritic mechanism by which Aβ may cause neurodegeneration in
APP48 and APP23 transgenic mice, respectively. The authors
defined the somatic type of neurodegeneration as intraneuronal
accumulations of Aβ that are produced independent of APP.
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In contrast to the APP48 model, the Tg4–42 mice did not develop
such a dendritic pathology (Bouter et al., 2013). This may be due
to the different signal peptides used in APP48 (preproenkephalin)
and Tg4–42 (thyreotropin-releasing hormone). The signal pep-
tide of Tg4–42 ensures the routing through the secretory pathway
allowing the release of the peptide from neurons.

The neuritic type of neurodegeneration linking APP-derived
extra- and intracellular Aβ aggregation may be similar between
APP23 and 5XFAD mice. Hence, the DEGs observed in 5XFAD and
Tg4–42 mice could be partly explained by the different mechanism
by which Aβ causes neurodegeneration in these two models.

A large number of DEGs is involved in regulation of immune
system processes and inflammation. The respective transcripts
are involved among others in adaptive immune response, regu-
lation, and activation of immune response as well as immune
system development. Inflammatory processes in the brain are
a well-described feature of AD. It has been shown that plaque
deposition in AD brains is associated with chronic inflamma-
tion characterized by increased inflammatory cytokine expression
and activation of microglia, astrocytes, and complement factors
(Akiyama et al., 2000). Inflammation is thought to be a down-
stream process appearing after Aβ plaques, NFT, and neuron
degeneration (Arnaud et al., 2006). 5XFAD mice display distinct
neuroinflammatory features. The number of reactive astrocytes
and microglia increases proportionally to the amyloid burden in
this mouse line (Oakley et al., 2006; Kalinin et al., 2009).

5XFAD mice also show a dramatic increase in Aβ42 in compar-
ison to Aβ40. This results in an early pathology onset with plaque
deposition seen as early as 3 months of age. The plaque pathology
increases dramatically in an age-dependent manner (Oakley et al.,
2006; Jawhar et al., 2010). Aggregation of Aβ results in activated
microglia and induces the production of reactive-oxygen species,
pro-inflammatory cytokines, chemokines, and prostaglandines
leading to degenerative changes in neurons (Akiyama et al., 2000).

A large number of DEGs in aged 5XFAD mice have a role in
inflammatory pathways (including Scube1 and Nr1d1). Strikingly,
four genes of the complement system (C4b, C1qa, C1qb, and C1qc)
are highly up-regulated in 12-month-old 5XFAD mice. Comple-
ment activation is a major inflammatory process and is thought
to be activated in AD by the interaction of complement proteins
with the aggregated forms of Aβ and tau (Rogers et al., 1992; Shen
et al., 2001).

Notably, five genes, encoding the cysteine proteases Cathep-
sin B, Cathepsin L, Cathepsin S, and Cathepsin Z as well as the
aspartyl protease Cathepsin D, were up-regulated in aged 5XFAD
mice. Cathepsin D is a lysosomal enzyme found in neuritic plaques
and is considered to be involved in APP processing (Schuur et al.,
2011). Cataldo et al. (1995) showed an up-regulation of Cathep-
sin D mRNA in the pyramidal neurons of AD brains. The cysteine
protease Cathepsin B has been proposed as an alternative can-
didate β-secretase in the regulated secretory pathway of neurons,
where it produces Aβ by cleavage of the WT β-secretase site of APP
(Hook et al., 2009; Wang et al., 2012). Hook et al. (2009) demon-
strated that deletion of Cathepsin B in a hAPPwt transgenic mouse
model significantly reduced the levels of Aβ40 and Aβ42. There-
fore, Cathepsin B might be a valid target for developing inhibitors
to lower brain Aβ levels in AD patients.

Another interesting gene that showed an up-regulated expres-
sion in aged 5XFAD mice is clusterin (Clu) also known as
apolipoprotein J. Clusterin is a chaperone glycoprotein that affects
many cellular processes, including inflammation. Clusterin is ele-
vated in AD affected brain regions and CSF from AD patients
(Lidström et al., 1998; Nilselid et al., 2006). Furthermore, it was
found to be associated with AD in several large genome-wide asso-
ciation studies (GWAS) (Harold et al., 2009; Lambert et al., 2009;
Carrasquillo et al., 2010). Recent studies suggest that Clusterin
contributes to the pathology to AD through various pathways,
including lipid metabolism, neuroinflammation, and apoptosis.
Interestingly, it is reported to increase Aβ aggregation as well as Aβ

clearance (Yu and Tan, 2012).
It should be noted that Inpp5d RNA was found to be differen-

tially expressed in 5XFAD mice. This gene was recently described
as a new locus for AD in a GWAS (Lambert et al., 2013). Inpp5d
encodes a member of the inositol polyphosphate-5-phosphatase
family of enzymes involved in second messenger signaling in
myeloid cells. INPP5D influences pathways that are associated
with cell proliferation and inflammatory responses (Medway and
Morgan, 2014).

EVIDENCE FOR DIVERSE MOLECULAR PATHWAYS
In addition to genes involved in inflammatory processes, DEGs in
aged 5XFAD mice were also involved in cell communication and
system development, signal transduction, synaptic transmission as
well as regulation of gene expression and transcription.

We observed significant transcriptional changes of genes with
synaptic function in aged 5XFAD mice. For instance, the gene
products of Bsn, Nrxn2, Kcnc1, Grm2, and Gng4 all play a role
in synaptic transmission and are down-regulated in 12-month-
old 5XFAD mice. Syn1, the gene encoding Synapsin1, a neuronal
phosphoprotein associated with the cytoplasmic surface of synap-
tic vesicles, is significantly down-regulated in aged 5XFAD mice.
It is involved in synapse formation and promotion of neurotrans-
mitter release (Südhof, 1990; Jaffrey et al., 2002). Qin et al. (2004)
showed that synapsin levels were also significantly decreased in the
CA1 and the dentate gyrus in AD patients.

Wirz et al. (2013) studied the genome-wide gene expres-
sion of another AD double transgenic APP/PS1 mouse model
using microarrays. A vast range of genes was altered in these
APP/PS1∆Ex9 mice that are involved in immune response and
inflammation. In contrast to our observations in 5XFAD mice, no
changes in the expression of genes involved in synaptic plasticity or
transmission were found. However, in AD patients dominant gene
expression changes concerning synaptic plasticity or transmission
were recently described in a genome-wide gene expression study
of the prefrontal cortex (Bossers et al., 2010). It can be argued that
deep sequencing and the use of 5XFAD mice are more informative
and better suited to identify the expression changes in a model
system of AD.

LIMITATIONS OF THE STUDY
Finally, it can be stated that RNA-Seq is a powerful technique
to analyze the expression profiles in AD mice. The detection of
hundreds of DEGs may offer a new perspective on the biological
processes underlying the pathology of AD. However, even though
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there is a strong correlation between gene expression levels and
abundances of the respectively corresponding proteins in mam-
malian cells (Lundberg et al., 2010), it has to be kept in mind that
proteins, rather than mRNAs, are the main mediators of physi-
ological processes and that there is a considerable body of data
that suggests a major role for post-transcriptional processes in
controlling protein abundances (Vogel and Marcotte, 2012).

While investigating the role of DEGs on the protein level is
beyond the scope of this study, we believe that the presented dataset
will provide an important source of information for the validation
in both mouse and human tissue in independent studies. A wide
range of detected genes were previously shown to be regulated in
AD, however, a variety of DEGs in the studied mouse models were
not previously associated with AD in humans. It remains to be
seen if these genes are also regulated in AD cases.

In agreement with the German guidelines for animal care all
animals were sacrificed by CO2 anesthesia. This treatment may
lead to prefinal hypoxia in both the transgenic as well as in the con-
trol wildtype mice. However, it cannot be ruled out that hypoxia
has distinct effects on transgenic mice inducing a different set
of DEGs.

CONCLUSION
In conclusion, we could (1) validate the Tg4–42 model express-
ing only Aβ4–42 as a valuable model for AD. The comparison
with 5XFAD, an established plaque-developing AD mouse model,
revealed a remarkable overlap in the molecular profile with the
Tg4–42 model. Although the 5XFAD produces also Aβ4–42, Aβ1–42

is more abundant followed Aβ1–40 and pyroglutamated and non-
pyroglutamated Aβ3–42. The jointly DEGs might indicate common
pathways that are involved in the learning and memory decline
apparent at 12 months of age in both transgenic models. (2) The
pool of genes that showed differential expression exclusively in
Tg4–42 is only associated to soluble Aβ4–42 as no extracellular
plaques or other Aβ variants are found in this model. In addition,
the robust CA1 neuron loss could also contribute to the differen-
tial expression profile. (3) As most of the genes with expression
levels exclusively altered in 5XFAD mice belong to inflammation-
associated pathways, we conclude that the majority is not associ-
ated with neuron loss and memory decline. (4) As expected, the
deep sequencing approach identified a plethora of genes that have
so far not been linked to AD, which might opens up new avenues
of research into the etiology of this devastating neurodegenerative
disorder.
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