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INTRODUCTION

Background: It is well documented that elderly individuals are at increased risk of cognitive
decline after anesthesia. General anesthesia is believed to be a risk factor for Alzheimer's
disease (AD). Recent studies suggest that anesthesia may increase the risk for cognitive
decline and AD through promoting abnormal hyperphosphorylation of tau, which is crucial
to neurodegeneration seen in AD.

Methods: \We treated 3xTg-AD mice, a commonly used transgenic mouse model of AD,
with daily intranasal administration of insulin (1.75 U/day) for one week. The insulin- and
control-treated mice were then anesthetized with single intraperitoneal injection of propofol
(250 mg/kg body weight). Tau phosphorylation and tau protein kinases and phosphatases
in the brains of mice 30 min and 2 h after propofol injection were then investigated by using
Western blots and immunohistochemistry.

Results: Propofol strongly promoted hyperphosphorylation of tau at several AD-related
phosphorylation sites. Intranasal administration of insulin attenuated propofol-induced
hyperphosphorylation of tau, promoted brain insulin signaling, and led to up-regulation
of protein phosphatase 2A, a major tau phosphatase in the brain. Intranasal insulin also
resulted in down-regulation of several tau protein kinases, including cyclin-dependent
protein kinase 5, calcium/calmodulin-dependent protein kinase Il, and c-Jun N-terminal
kinase.

Conclusion: Our results demonstrate that pretreatment with intranasal insulin prevents
AD-like tau hyperphosphorylation. These findings provide the first evidence supporting that
intranasal insulin administration might be used for the prevention of anesthesia-induced
cognitive decline and increased risk for AD and dementia.

Keywords: intranasal insulin, anesthesia, hyperphosphorylation of tau, brain insulin signaling, protein phosphatase
2A, tau protein kinases, Alzheimer’s disease, propofol

brain and thus promote the development of AD (Papon etal.,

Alzheimer’s disease (AD) is the most common form of demen-
tia in adults, which accounts for an estimated 60 to 80% of
dementia cases (Thies and Bleiler, 2013). The major brain patho-
logical hallmarks of AD are extracellular senile plaques comprised
predominantly of amyloid-B (AP) peptides, and intraneuronal
neurofibrillary tangles (NTFs) comprised of abnormally hyper-
phosphorylated tau. The hyperphosphorylated tau loses its activity
to bind to microtubules and to promote microtubule assembly,
and instead disrupts microtubules (Igbal etal., 1986, 2010).

The majority of AD cases have the sporadic form of the disease.
Sporadic AD is multifactorial and may involve several different
etiopathogenic mechanisms. It is well established that elderly
individuals are at increased risk of cognitive decline after anes-
thesia or surgery (Moller etal., 1998; Rasmussen etal., 2003;
Monk etal.,, 2008). Though the long-term effect of anesthe-
sia on cognition is still under debate, anesthesia may accelerate
preexisting but asymptomatic neurodegenerative changes in the

2011). Evidence from animal models suggests that anesthetic
exposure can increase AB plaque formation and tau hyperphos-
phorylation (Planel etal., 2007; Bianchi et al., 2008; Perucho et al.,
2010; Run etal, 2010; Dong etal.,, 2012), and cause signifi-
cant learning and memory deficits in aged rodents (Culley etal.,
2004a,b; Bianchi etal., 2008; Le Freche etal., 2012; Shen etal.,
2013).

Impaired brain insulin signaling pathway has been impli-
cated in the development of AD (Correia etal., 2011; De Felice,
2013). We also found decreases in the levels and activities of sev-
eral components of the insulin signaling pathway in AD (Liu
etal,, 2011). In agreement with the proposed role of insulin
signaling in cognition, intranasal administration of insulin has
been reported to improve memory in healthy humans (Bene-
dict etal., 2004, 2007) and in individuals with mild cognitive
impairment and AD (Reger etal., 2008a,b; Craft etal., 2012). Ani-
mal studies also show improved general behavioral performance
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and cognition in normal and diabetic mice after treatment with
intranasal insulin (Francis et al., 2008; Marks etal., 2009). It has
also been reported that insulin can affect with the stability, pro-
duction, degradation and aggregation of Af, leading to reduced
neurotoxicity (Qiu and Folstein, 2006; De Felice etal., 2009; de
la Monte, 2012). However, whether intranasal insulin treatment
prevents or ameliorates anesthesia-induced tau hyperphospho-
rylation, which is crucial to neurodegeneration, has not been
reported.

In the present study, we treated 3xTg-AD mice, a commonly
used transgenic model of AD which harbors three mutated trans-
genes (human PS1yn46v, APPswE, and taupsogr.), with propofol,
a commonly used intravenous anesthetic in clinical practice, and
investigated the effects of intranasal insulin on propofol-induced
hyperphosphorylation of tau. We found that insulin attenuated
propofol-induced hyperphosphorylation of tau, which may be
mainly through up-regulation of protein phosphatase 2A (PP2A)
and down-regulation of several tau protein kinases.

MATERIALS AND METHODS

ANTIBODIES AND REAGENTS

Primary antibodies used in this study are listed in Table 1.
Peroxidase-conjugated anti-mouse and anti-rabbit IgG were
obtained from Jackson Immuno Research Laboratories (West
Grove, PA, USA). The enhanced chemiluminescence (ECL) kit
was from Pierce (Rockford, IL, USA). The ABC staining sys-
tem was from Santa Cruz Biotechnology (Santa Cruz, CA, USA).
Propofol was purchased from MP Biomedicals (Solon, OH, USA).
Insulin (Humulin R U-100) was from Eli Lily (Indianapolis, IN,
USA). Other chemicals were from Sigma-Aldrich (St. Louis, MO,
USA).

ANIMALS AND ANIMAL TREATMENTS

The breeding pairs of the homozygous 3xTg-AD mouse harbor-
ing PS1pmi46v, APPsye, and taupsop transgenes and the wild type
(WT) control mouse (a hybrid of 129/Sv and C57BL/6 mice) were
initially obtained from Dr. F. M. LaFerla through Jackson Labora-
tory (New Harbor, 124 ME, USA), and the mice were bred in our
institutional animal colony. Mice were housed (4~5 animals per
cage) with a 12/12 h light/dark cycle and with ad libitum access to
food and water. The housing, breeding, and animal experiments
were in accordance with the approved protocol from our Insti-
tutional Animal Care and Use Committee, according to the PHS
Policy on Human Care and Use of Laboratory animals (revised
March 15, 2010).

The 3xTg-AD mice and WT mice (female, 9 months old) used
for the present study were habituated to handling for 14 days prior
to the experiment. Female mice were used because the female
3xTg-AD mice develop behavioral deficits faster than the male
mice (Clinton et al.,2007). The selection of the age of 9 months was
because the 3xTg-AD mice at this age show neurogenic and neuro-
plastic deficits but no NFTs or amyloid plaques and are cognitively
impaired (Billings etal., 2005; Clinton etal., 2007; Mastrangelo
and Bowers, 2008; Blanchard et al., 2010). Intranasal delivery was
carried out manually without anesthesia while the mouse head
was restrained in a supine position with the neck in extension, as
described (Marks etal., 2009). A total of 1.75U/17.5 pl insulin

or 0.9% saline (Veh 1) was delivered over both nares alterna-
tively using a 10 pl Eppendorf pipetter. The mouse was held
for an additional 5-10 s to ensure the fluid was inhaled. The
successful nasal delivery by using this approach was confirmed
by examination of ink in the autopsied brains after nasal deliv-
ery with ink using the same approach (data not shown). All
mice were treated with insulin or, as a control, saline daily for
seven consecutive days. Thirty minutes following the last dose,
the mice were injected intraperitoneally (i.p.) with propofol dis-
solved in intralipid (250 mg/kg body weight) or the equivalent
amount of intralipid (Veh 2), followed by sacrifice of the ani-
mals 30 min or 2 h later (Figure 1). The brains were removed
immediately, and the rostral halves (separated coronally at the
bregma level) of the mouse brains were dissected, flash frozen in
dry ice, and stored at —80°C for biochemical analyses at a later
date.

WESTERN BLOT ANALYSIS

Mouse brain tissue was homogenized in pre-chilled buffer con-
taining 50 mM Tris-HCl (pH 7.4), 50 mM GIcNAc, 20 uM
UDP, 2.0 mM EGTA, 2 mM Na3zVO4, 50 mM NaF, 20 mM
Glycero-phosphate, 0.5 mM AEBSE, 10 pg/ml aprotinin, 10 pg/ml
leupeptin, and 4 pg/ml pepstatin A. Protein concentrations of
the homogenates were determined by using modified Lowery
method. The samples were resolved in 10 or 12.5% SDS-PAGE
and electro-transferred onto Immobilon-P membrane (Millipore,
Bedford, MA, USA). The blots were then probed with pri-
mary antibody and developed with the corresponding horseradish
peroxidase-conjugated secondary antibody and ECL kit (Pierce,
Rockford, IL, USA). Densitometrical quantification of pro-
tein bands in Western blots were analyzed by using the TINA
software (Raytest IsotopenmeBgerate GmbH, Straubenhardt,
Germany).

IMMUNOHISTOCHEMICAL STAINING

Floating sagittal sections were incubated at room temperature
in 0.3% H,0, for 30 min and then in 0.3% Triton X-100 for
15 min, washed in PBS, and blocked in a solution containing 5%
normal goat serum and 0.1% Triton X-100 for 30 min. Sections
were then incubated at 4°C with primary antibody overnight, fol-
lowed by incubation with biotinylated secondary antibody and
avidin/biotinylated horseradish peroxidase (Santa Cruz Biotech-
nology). The sections were stained with peroxidase substrate and
then mounted on microscope slides (Brain Research Laboratories,
Newton, MA, USA), dehydrated, and covered with cover slips.

STATISTICAL ANALYSIS

For biochemical analyses, data were analyzed by one-way ANOVA
followed by Tukey’s post hoc tests or unpaired two-tailed ¢ tests,
using Graph pad. All data are presented as means + SEM, and
P < 0.05 was considered statistically significant.

RESULTS

PROPOFOL EXACERBATES HYPERPHOSPHORYLATION OF TAU AT
MULTIPLE SITES IN 3XTG-AD MICE

We first verified the effect of propofol treatment on tau
phosphorylation by using Western blots developed with
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Table 1 | Primary antibodies used in this study.

Antibody Type Specificity Phosphorylation sites Source/reference

IRB Poly- IRB Cell Signaling Technology, Danvers,
MA

IGF-1RB Poly- IGF1RB Cell Signaling Technology

P-IRB/IGF-1RB Mono- P-IRB/IGF-1RB Tyr1150/1151(IRB), Cell Signaling Technology

Tyr1135/1136 (IGF1RB)

IRS1 Poly- IRS1 Cell Signaling Technology

IRS1 pS307 Poly- P-IRS1 Ser307 Cell Signaling Technology

PI3K p85 Poly- PI3K (p85) Cell Signaling Technology

P-PI3K p85 Poly- P-PI3K (p85) Tyrd58/Tyr199 Cell Signaling Technology

PDK1 Poly- PDK1 Cell Signaling Technology

PDK1 pS241 Poly- P-PDK1 Ser241 Cell Signaling Technology

AKT Poly- AKT Cell Signaling Technology

AKT pS473 Poly- P-AKT Ser4d73 Cell Signaling Technology

AKT pT308 Poly- P-AKT Thr308 Cell Signaling Technology

GSK-3B pS9 Poly- P-GSK-8 Ser9 Cell Signaling Technology

GSK-3a/B Poly- GSK-3B Cell Signaling Technology

R134d Poly- Tau Tatebayashi etal. (1999)

pS199 Poly- P-tau Ser199 Invitrogen, Grand Island, NY

pT205 Poly- P-tau Thr205 Invitrogen

pT212 Poly- P-tau Thr212 Invitrogen

pS214 Poly- P-tau Ser214 Invitrogen

pT231 Poly- P-tau Thr231 Invitrogen

pS262 Poly- P-tau Ser262 Invitrogen

12E8 Mono- P-tau Ser262/356 Dr. D. Schenk

PHF1 Mono- P-tau Ser396/404 Dr. P Davies

pS409 Poly- P-tau Ser409 Invitrogen

pS422 (R145) Poly- P-tau Ser422 Pei etal. (1998)

CaMKll Mono- CaMKll Promega, Madison, WI

CaMKIl(pT286) Poly- P-CaMKII Thr286 Promega

JNK Poly- JNK Cell Signaling Technology

P-JNK Poly- P-JNK Thr183/Tyr185 Cell Signaling Technology

ERK1/2 Mono- ERK1/2 Cell Signaling Technology

P-ERK1/2 Poly- P-ERK1/2 Cell Signaling Technology

CDK5 Poly- CDK5 Santa Cruz Biotechnology

P35 Poly- P35 Santa Cruz Biotechnology

PP2A-C Mono- PP2A-C BD Bioscience, Palo Alto, CA

Methyl-PP2A-C Mono- Methyl-PP2A-C Millipore, Temecula, CA

PP2A pY307 Poly- P-PP2A Tyr307 Santa Cruz Biotechnology,
Santa Cruz, CA, USA

Anti-GAPDH Poly- GAPDH Santa Cruz Biotechnology

phosphorylation-dependent and site-specific tau antibodies,
which detect tau phosphorylation at Thr181, Ser199, Thr205,
Thr212, Thr231, Ser262/356 (12E8 sites), Ser396/404 (PHF-1
sites), Ser409 and Ser422. As expected, we observed a marked
increase in tau phosphorylation at all the above phosphorylation

sites except Ser422 both 30 min and 2 h after propofol injec-
tion (Figure 2). Quantitative analyses indicated that the increase
of tau phosphorylation was most dramatic at Thr181, Thr205,
Thr212, Ser262/356 (12E8 sites), and Ser396/404 (PHEF-1 sites;
Figures 2B,C). The phosphorylation of tau at several sites was
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FIGURE 1 | Animal study design.

Last dose
3xTg-AD/ WT l
. . . Propofol 30
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9 mon/ 2 Intranasal, q.d. intralipid 2 hrg

higher at 2 h than 30 min post anesthesia. Up-shift of the
apparent gel mobility of tau, which is a well-established phe-
nomenon of tau hyperphosphorylation (Kopke etal., 1993; Liang
etal., 2008), was also seen (Figure 2A). These results confirmed
marked increase in tau phosphorylation in mice anesthetized with
propofol.

Hypothermia is known to be a major factor underlying
anesthesia-induced tau hyperphosphorylation (Planel et al., 2007;
Run etal., 2009). Therefore, we determined the rectal tempera-
ture of the mice. We found that the average temperature dropped
from around 38.2 to 28.6°C within 30 min after propofol injec-
tion (Figure 3), which is consistent with previous reports (Planel
etal, 2007; Run etal., 2009). The average rectal temperature
dropped further to 25.6°C 2 h after propofol injection when
the mice had not woken from anesthesia. We did not prevent
the anesthesia-induced hypothermia because the objective of this
study is to evaluate intranasal insulin’s efficacy in the prevention
of hyperphosphorylation of tau, rather than to investigate the
role of hypothermia in propofol-induced brain changes, which
have been reported previously (Planel etal., 2007; Run etal.,
2009).

INTRANASAL INSULIN ATTENUATES PROPOFOL-INDUCED TAU
HYPERPHOSPHORYLATION

Insulin is neuroprotective, and intranasal delivery is a non-invasive
and effective way for insulin to reach the brain without affect-
ing the peripheral blood glucose level (Reger etal., 2006). In
order to investigate the effect of insulin on propofol-induced
hyperphosphorylation of tau, we delivered insulin intranasally to
3xTg-AD mice for 7 days prior to the administration of propofol.
We observed that mice receiving daily intranasal insulin (3xTg-
ins/prop group) for 7 days before anesthesia had significantly
lower phosphorylation level of tau at Thr212, Ser262/356 (12E8
sites), Ser396/404 (PHEF-1 sites), and Ser409 at 30 min following
propofol injection when compared to mice receiving saline (vehi-
cle) only (3xTg-veh1/prop; Figures 4A,C). The phosphorylation
level of tau at other epitopes studied (Thr181, Ser199, Thr205,
Thr231, and ser422) was also lower in the insulin-treated group
than the untreated group, but the decreases did not reach statis-
tical significance (Figure 4C). Similar preventive role of insulin
against propofol-induced tau phosphorylation was also seen 2 h
following propofol injection (Figures 4B,D). The prevention
of tau phosphorylation by insulin was confirmed immunohis-
tochemically by using monoclonal antibodies 12E8 and PHF-1
against phosphorylated tau. We found that the number of strongly
stained neurons in the mouse brains was markedly reduced in
the 3xTg-ins/prop group as compared to the 3xTg-vehl/prop
group (Figure 4E). These results indicate that intranasal insulin

administration attenuates propofol-induced tau hyperphospho-
rylation in the mouse brain. The insulin’s action in attenuation
of propofol-induced tau hyperphosphorylation was not related
to hypothermia because no difference in the body temperature
between the insulin-treated and untreated mice was observed
(Figure 3).

INTRANASAL INSULIN ENHANCES BRAIN INSULIN SIGNALING

To understand the possible mechanism of the beneficial effect
of intranasal insulin treatment on tau hyperphosphorylation,
we investigated its effect on insulin signaling in the mouse
brain by comparing the level and activation of each compo-
nent of the signaling pathway, including insulin receptor  (IRB),
insulin-like growth factor-1 receptor § (IGF-1R), insulin recep-
tor substrate-1 (IRS-1), phosphatidylinositide 3-kinases (PI3K),
3-phosphoinositide-dependent protein kinase-1 (PDK1) and pro-
tein kinase B (AKT). The activation of these proteins was
assessed by measuring their phosphorylation levels at the activity-
dependent sites. We found that insulin signaling pathway was
disturbed in the brains of 3xTg-AD mice (Figures 5A,B, 3xTg-
veh1l/veh2 vs. WT-vehl/veh2). Propofol further disturbed the
insulin signaling, as evidenced by down-regulation of the level
of PI3K p55 pY199 and PDK1 and up-regulation of the level
of PI3K p85 pY458 and AKT pS473 (Figures 5A,B). The dra-
matic increase in AKT pS473 might result from a cross-talk with
other signaling pathway activated by propofol. We observed that
intranasal delivery of insulin for 7 days prior to the administra-
tion of propofol enhanced the insulin signaling transduction in
the brain. The levels of IRB, IGF-1Rf, IR} pY1150/1151, IRS1
pS307, PI3K p85 pY458, PI3K p55 pY199, PDKI1, AKT, and
AKT pT308 were all up-regulated in the 3xTg-ins/prop mice
as compared to the 3xTg-vehl/prop mice (Figure 5). These
results indicate that intranasal insulin promotes brain insulin
signaling.

INTRANASAL INSULIN UP-REGULATES PP2A IN THE BRAIN

Down-regulation of PP2A, a major tau phosphatase in the brain
(Liu etal., 2005), was shown to underlie anesthesia-induced
hyperphosphorylation of tau (Planel etal., 2007). To investi-
gate whether PP2A also mediates insulin’s activity to attenuate
propofol-induced tau hyperphosphorylation, we determined the
level of the catalytic subunit of PP2A (PP2A-C) and its methy-
lation, which enhances PP2A activity (Guenin etal., 2008), and
tyrosine-phosphorylation at Tyr307, which inhibits its activity
(Chen etal., 1992). We observed that intranasal insulin treat-
ment led to a significant increase in the level and the methylation
of PP2A in the mouse brain (Figures 6A,B). However, the net
PP2A methylation, as quantified after normalization with the
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FIGURE 2 | Tau hyperphosphorylation at various AD-related sites in the
brains of 3xTg-AD mice after anesthesia with propofol. (A) Homogenates
of the rostral halves of brains from 3xTg-AD mice sacrificed 30 min or 2 h
following intraperitoneal injection of propofol were analyzed by Western

blots developed with antibody R134d against total tau and several

phosphorylation-dependent and site-specific tau antibodies, as indicated in
the middle of the blots. (B,C) Densitometrical quantifications (mean + SEM,
n = 6/group) of the blots after being normalized with the corresponding total
tau level (B) or with the GAPDH level (C). The levels of the 3xTg-veh1/veh2
group were set to 100. *p < 0.05 vs. vehicle-injected 3xTg-AD mice.
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FIGURE 3 | Alteration of rectal temperature during anesthesia of the
3xTg-AD mice.

PP2A-C level, was not increased (Figure 6C), suggesting that the
increased total PP2A methylation is due to the increase of PP2A-C
level. These results suggest that intranasal insulin might attenuate
propofol-induced tau hyperphosphorylation through an increase
of methylated PP2A-C and thus its activity in the brain.

ACTIVITIES OF SEVERAL TAU KINASES ARE ALTERED IN THE MOUSE

BRAIN AFTER PROPOFOL AND INTRANASAL INSULIN TREATMENTS

Besides PP2A, tau phosphorylation is also regulated by sev-
eral protein kinases (Wang and Liu, 2008). The levels of sev-
eral tau protein kinases have been reported to be altered after
anesthesia (Planel etal., 2007; Run etal., 2009). We therefore
determined the levels of the total and the activated form of sev-
eral tau protein kinases, including glycogen synthase kinase-3f
(GSK-3p), mitogen-activated protein kinase/extracellular signal-
regulated kinase (MAPK/ERK), cyclin-dependent kinase 5 (cdk5),
calcium/calmodulin-dependent protein kinase II (CaMKII), and
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FIGURE 4 | Effect of intranasal insulin treatments on propofol-induced
tau phosphorylation. (A,B) Homogenates of the rostral halves of brains
from 3xTg-veh1/prop and 3xTg-ins/prop mice sacrificed 30 min (A) or 2 h (B)
following intraperitoneal injection of propofol were analyzed by Western blots
developed with antibody R134d against total tau and several
phosphorylation-dependent and site-specific tau antibodies, as indicated.

PHF-1

(C,D) Densitometrical quantifications (mean + SEM, n = 6/group) of the blots
after being normalized with the corresponding total tau level. *p < 0.05.

(E) Immunohistochemical staining of the brain tissue sections (frontal cortex)
of mice sacrificed 30 min after propofol treatment. Monoclonal antibodies
12E8 and PHF1 recognizes tau phosphorylated at Ser262/Ser356 and
Ser396/Ser404, respectively.
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FIGURE 5 | Effect of propofol and intranasal insulin treatment on brain
insulin signaling. Homogenates of the rostral halves of brains from mice
sacrificed 30 min following propofol injection were analyzed by Western blots
developed with the indicated antibodies. The blots were then quantified
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c-Jun N-terminal kinase (JNK). Consistent with previous studies
(Planel et al., 2007; Run et al., 2009), we found a dramatic increase
in the inhibitory Ser9 phosphorylation of GSK-3f8 and moderate
alterations of a few other tau kinases after anesthesia with propofol
(Figure 7). Intranasal insulin treatment resulted in mild to mod-
erate reductions of CDK5, CaMKII pT286, and JNK pT184/pY185
in the propofol-treated mouse brains. These results suggest that

the insulin-induced reduction of these three tau kinases might also
contribute to insulin’s role in attenuation of propofol-induced tau
hyperphosphorylation.

DISCUSSION

Tau is the major microtubule-associated protein of mature neu-
rons. Its major known physiological activity is to promote the
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assembly of tubulin into microtubules and to stabilize microtubule
structure. Abnormally hyperphosphorylated tau fails to bind to
tubulin and also gains a toxic activity of disrupting microtubules
(Igbaletal., 1986; Alonso et al., 1994). Therefore, abnormal hyper-
phosphorylation of tau appears to be crucial to neurodegeneration
in AD and other tauopathies (Gong etal., 2010). The vital role of
tau in neurodegeneration have been further supported by sev-
eral recent in vivo studies showing that tau knockout reduces or
eliminates neurodegeneration and behavioral deficits in transgenic
mouse models of AD (Roberson etal., 2007; Gomez de Barreda
etal., 2010).

Many epidemiological studies have demonstrated that general
anesthesia induces memory loss and increases the risk for demen-
tia and AD (Papon etal,, 2011). In an effort to understand the
possible underlying mechanisms, several studies have found that
both intravenous and inhalational anesthetics induce hyperphos-
phorylation of tau in the brain (Ikeda etal., 2007; Planel etal,,
2007; Run etal., 2009, 2010; Le Freche etal., 2012). These studies
suggest an important molecular mechanism by which anesthe-
sia may induces memory loss and increases the risk for dementia
and AD through promoting abnormal hyperphosphorylation of
tau and consequently neurodegeneration (Planel etal., 2009; Run
etal., 2009; Le Freche etal., 2012).

Planel etal. (2007) reported that anesthetics induced hyper-
phosphorylation of tau as a consequence of PP2A inhibition by
hypothermia. Subsequently, two distinct underlying mechanisms
were found: one associating with activation of stress-activated
protein kinases and the other resulting from anesthesia-induced
hypothermia (Run etal., 2009; Whittington etal., 2011). In
consistent with previous reports, we found, in the present
study, a marked increase in tau phosphorylation at several
AD-related sites after 3xTg-AD mice were anesthetized with
propofol. Furthermore, tau hyperphosphorylation was accom-
panied with activation of JNK but inhibition of GSK-3p and
ERK after anesthesia with propofol. These findings are consis-
tent with previous observations showing activation of JNK and
marked inhibition of GSK-3p and ERK in WT mice after anes-
thesia (Planel etal., 2007, 2009; Run et al., 2009; Le Freche etal.,
2012).

Drug administration into the brain through intranasal deliv-
ery, which was first introduced by Dr. W. H. Frey, bypasses the
blood brain barrier and has been used successfully in animal
studies and clinical trials in humans (Reger etal., 2006, 2008b;
Francis etal., 2008; Hanson and Frey, 2008; Marks etal., 2009;
Craft etal., 2012; Yang etal., 2013). Intranasal administration
of insulin has an additional advantage that it does not interfere
with the insulin level or glucose metabolism in the periphery
(Reger etal., 2006). Thus, in the present study we selected this
approach to investigate whether insulin prevents or ameliorates
anesthesia-induced tau hyperphosphorylation. We found that
daily administration of insulin for a week significantly prevented
propofol-induced tau hyperphosphorylation at several AD-related
sites. Furthermore, the insulin’s preventive role might result from
its promotion of brain insulin signaling and PP2A and down-
regulation of several tau protein kinases, CDK5, CaMKII, and JNK.
Although hypothermia was observed in the 3xTg-AD mice after
anesthesia with propofol, the insulin’s preventive role does not

seem to be associated with hypothermia because pre-treatment
of mice with intranasal insulin did not affect propofol-induced
hypothermia. Our present findings provide important experimen-
tal evidence supporting that intranasal insulin treatment might be
used for preventing anesthesia-induced risk for memory loss and
dementia.

In summary, we have found that anesthesia with propofol
exacerbated hyperphosphorylation of tau at multiple AD-related
phosphorylation sites in the brain of 3xTg-AD mice. These
findings provide experimental evidence supporting the role of
anesthesia in increasing the risk for dementia and AD in vul-
nerable individuals and demonstrate that anesthesia could be
a significant factor for AD in those elderly individuals who
have received general anesthesia. Furthermore, we found, for
the first time, that intranasal administration of insulin for
a week prior to anesthesia significantly prevented propofol-
induced tau hyperphosphorylation and enhanced brain insulin
signaling. These findings provide the first evidence supporting
that intranasal insulin might be a promising treatment for preven-
tion of anesthesia-induced memory loss and increased risk for AD
and dementia.
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