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Recent neuroimaging studies have revealed normal aging-related alterations in functional
and structural brain networks such as the default mode network (DMN). However, less
is understood about specific brain structural dependencies or interactions between brain
regions within the DMN in the normal aging process. In this study, using Bayesian net-
work (BN) modeling, we analyzed gray matter volume data from 109 young and 82 old
subjects to characterize the influence of aging on associations between core brain regions
within the DMN. Furthermore, we investigated the discriminability of the aging-associated
BN models for the young and old groups. Compared to their young counterparts, the old
subjects showed significant reductions in connections from right inferior temporal cortex
(ITC) to medial prefrontal cortex (mPFC), right hippocampus (HP) to right ITC, and mPFC
to posterior cingulate cortex and increases in connections from left HP to mPFC and right
inferior parietal cortex to right ITC. Moreover, the classification results showed that the
aging-related BN models could predict group membership with 88.48% accuracy, 88.07%
sensitivity, and 89.02% specificity. Our findings suggest that structural associations within
the DMN may be affected by normal aging and provide crucial information about aging
effects on brain structural networks.

Keywords: normal aging, Bayesian network modeling, default mode network, structural associations, gray matter

INTRODUCTION
Normal aging is typically accompanied by progressive and grad-
ual decline in memory and executive control functions together
with morphological changes in the brain (Damoiseaux et al., 2008;
Miller et al., 2008; Madden et al., 2010). A number of struc-
tural magnetic resonance imaging (MRI) studies have shown that
normal aging-related morphological changes involve significant
reductions in gray matter volume or cortical thickness (Good et al.,
2001; Taki et al., 2004; Smith et al., 2007; Kalpouzos et al., 2009).
Moreover, most of these studies have consistently depicted a com-
mon pattern of gray matter atrophy in the prefrontal cortex (Raz
et al., 1997; Tisserand et al., 2002; Lemaitre et al., 2012) and the
medial temporal lobe (Sullivan et al., 1995; Lemaitre et al., 2012).
Interestingly, many important brain regions with high centrality
(hubs) were located in the prefrontal regions, and these aging-
affected regions were associated with deficits in cognitive functions
(Bullmore and Sporns, 2009; Wu et al., 2012).

Most of the previous structural MRI studies focused on local-
izing brain regions using univariate statistical approaches, and
they might have potentially missed the covariant morphometric
information related to normal aging. Using multivariate analytical
methods, several investigations have revealed the brain structure’s
small-world attributes [characterized by high degrees of local clus-
tering among regions-of-interest (ROIs) and short paths linking

all ROIs] or modularity (defined by distinct ROI groups with
dense connections within each ROI-group and sparse connec-
tions between these ROI groups) (Bullmore and Sporns, 2009).
These publications suggested that normal aging-related changes
exhibited the organized inter-regional covariance of morphologi-
cal features as a well-defined network (Bergfield et al., 2010; Chen
et al., 2011; Montembeault et al., 2012). In addition, the scaled sub-
profile model (SSM) was also used to depict an age-related struc-
tural network, which showed concurrent decreases in gray matter
volume, notably in the bilateral medial frontal, insula/perisylvian,
and anterior cingulate regions (Bergfield et al., 2010). Finally, uti-
lizing cortical thickness correlation analysis, Chen et al. (2011)
found that aging was associated with organizational alterations of
structural networks. Although these recent MRI studies have con-
structed structural networks associated with normal aging, less is
known about the influence of aging on inter-region dependencies
among spatially distributed regions within such brain networks.

On top of the above-mentioned structural networks, the
human brain is also intrinsically organized into complicated func-
tional networks (Bullmore and Sporns, 2009; Bassett and Gaz-
zaniga, 2011; Sporns, 2011). It has been widely accepted that
brain activity in resting state is organized into several func-
tionally relevant networks (De Luca et al., 2006; Mantini et al.,
2007) such as the default mode network (DMN), attention and
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visual/auditory networks. Literature findings suggest that these
resting state functional networks are related to structural networks,
therefore providing crucial insight into structural networks (or
vice versa).

Among these functional networks, the DMN, with its core
regions such as the posterior cingulate cortex (PCC) and medial
prefrontal cortex (mPFC), is one of the most frequently discussed
networks. For example, using a combination of diffusion tensor
imaging (DTI) and resting state functional MRI, researchers have
demonstrated that functional connectivity in resting state reflects
structural connectivity within the DMN (Damoiseaux and Gre-
icius, 2009; Greicius et al., 2009). Furthermore, normal aging
was also related to alterations in functional connectivity in the
DMN, especially decreased connectivity among the PCC, mPFC,
and parietal cortex (Hafkemeijer et al., 2012). Additionally, using
cortical thickness or gray matter volume, some researchers have
indicated that old adults have distinctly reduced intra-module
connections in the DMN when compared with young adults (Chen
et al., 2011; Wu et al., 2012). Together, these findings suggested
the needs for further exploring aging-associated alterations in
the DMN in the context of the structural network organizational
changes.

The organizational changes could be investigated using
Bayesian network (BN) approach, which was introduced and
utilized in neuroimaging studies (Zheng and Rajapakse, 2006).
Without a prior model configuration, BN modeling can be used
to investigate association dependency, or directed connection, of
one ROI on another. Here, the directed connection is in the con-
text of conditional probability (Chen and Herskovits, 2006; Zheng
and Rajapakse, 2006). As a tool to investigate associations among
variables, such as ROIs in neuroimaging studies, BN approach
has been successfully applied to study functional networks in
Alzheimer’s disease (AD) (Wu et al., 2011) and structural networks
in mild cognitive impairment (MCI) based on MRI (Chen and
Herskovits, 2006; Chen et al., 2012). These findings indicated that
BN approach was capable of characterizing associations among
brain regions. The feasibility of using BN approach to investigate
the effect of normal aging on structural networks, such as the
DMN, is however not well documented in the literature.

Using BN approach and structural MRI data from healthy
young and old subjects, the current study aimed to explore the
influence of aging on associations of regional gray matter volume
among the core DMN regions. These structural associations are
in terms of probabilistic dependence. The association differences
between these two groups were assessed statistically by using a
non-parametric permutation test. Finally, we investigated the dis-
criminability of aging-associated BN models to classify young and
old subjects.

MATERIALS AND METHODS
SUBJECTS
All participants in this study were from the Open Access Series
of Imaging Studies (OASIS) database1 including 109 young adults
[22.73± 2.34 years old (range: 20–28), 65 females, and 44 males]

1http://www.oasis-brains.org

and 82 healthy old adults [74.37± 8.23 years old (range: 60–90),
60 females, and 22 males]. Young subjects were recruited from the
Washington University community and questioned about their
medical histories and use of psychoactive drugs. Older adults were
recruited from the Washington University’s Alzheimer Disease
Research Center (ADRC) and underwent ADRC’s full assessment
(Marcus et al., 2007). The dementia status of old adults was
assessed by Mini-Mental State Examination (MMSE) (Folstein
et al., 1975) and Clinical Dementia Rating (CDR) scores (Morris,
1993). In this study, the healthy old subjects (CDR= 0) had mean
MMSE scores of 29.02± 1.27 (range: 25–30). The young group did
not differ from the old group in sex ratio (χ2

1 = 3.792, p = 0.051).
All subjects participated in accordance with guidelines of the
Washington University Human Studies Committee. The detailed
demographics of all participants were described in Marcus et al.
(2007) report.

MRI ACQUISITION
For each subject, three or four sagittally T1-weighted MPRAGE
images were collected on a 1.5-T MRI scanner (TR/TE/TI=
9.7/4.0/20 ms, flip angle= 10°, FOV= 256 mm× 256 mm, voxel
size= 1 mm× 1 mm, slices= 128, thickness= 1.25 mm). For the
sake of increasing signal-to-noise ratio, the T1 image selected
in this study for each subject was a motion-corrected coregis-
tered average image (1 mm× 1 mm× 1 mm) of all available data
(Marcus et al., 2007).

IMAGE PRE-PROCESSING
All of the structural T1 images were pre-processed using the VBM8
Toolbox2 in SPM83. Using adaptive maximum posterior and par-
tial volume estimation (Rajapakse et al., 1997; Tohka et al., 2004),
the structural image for every subject was segmented into rigid-
body aligned gray matter, white matter, and cerebrospinal fluid
(CSF) maps. Two denoising methods, the spatially adaptive non-
local means denoising filter and classical Markov Random Field
approach, were applied to improve the image segmentation. The
gray matter image was normalized to the Montreal Neurolog-
ical Institute (MNI) space by high dimensional diffeomorphic
anatomical registration using exponential Lie algebra (DARTEL)
algorithm (Ashburner, 2007). DARTEL parameterizes diffeomor-
phic and inverse consistent deformations using a time-invariant
velocity field. The normalized gray matter maps were modulated
by Jacobian determinants from the deformations to preserve the
total amount of tissue in the native spaces. Finally, all of the gray
matter maps were smoothed with a Gaussian kernel of 8 mm full
width at half maximum (FWHM).

ROIs DEFINITION
We selected eight core ROIs based on previous studies (Fox et al.,
2005; Fair et al., 2008). Table 1 shows the names and corresponding
abbreviations of these eight ROIs. Each ROI mask was generated
by using the WFU_PickAtlas software4 (Maldjian et al., 2003).
Every ROI covered the entire area of the corresponding anatomical

2http://dbm.neuro.uni-jena.de/vbm8
3http://www.fil.ion.ucl.ac.uk/spm
4http://www.ansir.wfubmc.edu
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Wang et al. Aging influence on structural associations within the DMN

Table 1 | Brain regions and the corresponding abbreviations of eight

ROIs in the DMN.

Brain regions Abbreviations

Posterior cingulate cortex PCC

Medial prefrontal cortex mPFC

Left hippocampus lHP

Right hippocampus rHP

Left inferior parietal cortex lIPC

Right inferior parietal cortex rIPC

Left inferior temporal cortex lITC

Right inferior temporal cortex rITC

region defined by the AAL atlas. We defined gray matter volume
of each ROI for each individual as an average value of all voxel
intensity above 0.15 cut-off value within the ROI. The average
gray matter volumes of the eight ROIs were entered into the BN
model as continuous variables to construct structural associations
within the DMN for the young and old adult groups.

BAYESIAN NETWORK ANALYSIS
Bayesian network model is a directed acyclic graph (DAG) used
to describe conditional dependence among nodes. For two nodes
x1 and x2 in a DAG, the directed arc from x1 to x2 represents
the probabilistic dependence of x2 on x1 (Chen and Herskovits,
2006; Zheng and Rajapakse, 2006). In the context of the condi-
tional probability concept, this is often depicted as the influence
of parent node x1 on child node x1. In our study and many oth-
ers using BN modeling (Chen and Herskovits, 2006; Wu et al.,
2011; Chen et al., 2012), the probabilistic dependence of one brain
region on another is phrased as a“direction”from one brain region
to another.

In this study, for each group, eight ROIs were regarded as
nodes of BN model and a set of average gray matter volumes of
ROIs were used as continuous variables that were entered into the
model. To generate an optimal BN model, we applied the popular
search-and-score approach to acquire graph structure and used
a maximum likelihood estimation (MLE) procedure to obtain
parameters (Zheng and Rajapakse, 2006). The search-and-score
approach (Chickering, 2003), using the Bayesian Information Cri-
terion (BIC) score, searches and assesses all the possible DAGs by
adding and removing edges between any two nodes until returns
the one with the highest score. The BIC is described as follows:

BIC(θ) =

d∑
j=1

L
(

j , πj , θ̂
mle
j

)
−

∣∣∣θ̂mle
j

∣∣∣
2

log n

where d is the number of nodes or ROIs, and n indicates
the number of the sample; the j th expression L(j , πj , θ) =

n
Σ

i=1
log p(Xi,j/Xi,πj , θ) in the summation is the log-likelihood of

node j, indicating the fitness degree of the model to the data; the

term

∣∣∣θ̂mle
j

∣∣∣
2 log n in the BIC formula above is the penalty on the

model complexity; θ̂mle
j = arg supθL(j , πj , θ) is the MLE of the

parameter of node j. All of the procedures were implemented with
the Bayesian Net Toolbox5 in MATLAB R2010.

After constructing the BN model, the conditional probability
density can be calculated for node j given its parent node-set πj,
which directly connects with node j in the graph structure:

p(Xj
∣∣πj , θj )

=
1

(2π)1/2
|Σ|1/2

exp

{
−

1

2

(
Xj − µj

)T
Σ−1 (Xj − µj

)}
where µj and Σj respectively represent the conditional mean
and variance of Xj; θj is the parameter for node j. Then, the
joint probability density for all of the ROIs can be described as

p(X) =
d
Π

j=1
p(Xj |πj , θj).

A non-parametric permutation test with 5000 permutations
on the distributions of all subjects was employed to detect the
differences in all connection weight coefficients between two BN
models. Here, the connection is about the existence of an edge
between two brain regions in the BN models and represents a sta-
tistical association between the corresponding variables. And the
weight coefficient represents the strength of structural association
or the volumetric correlation strength. In the end, we assessed
the significance of the difference by calculating the type-I error
probability of Young > Old or Old >Young.

Additionally, we used the joint probability density values to
assign the membership of a subject to one of the two groups
and used the receiver operating curve (ROC) to assess the
discriminability.

RESULTS
STRUCTURAL ASSOCIATIONS WITHIN THE DMN
Figure 1 shows two BN models for the young and old
groups, representing structural associations or probabilistic
dependence among the core DMN regions. Table 2 lists the
corresponding connection directions and weight coefficients.
Connections lHP→mPFC, rITC→ lITC, and rITC→mPFC
were present in both young and old groups, connections
rHP→ rITC, PCC→ lIPC, mPFC→PCC, and mPFC→ lIPC
were observed only in the young group, and connections
lITC→ lHP, rIPC→ rITC, and PCC→ rIPC were observed only
in the old group. Although connections between rHP and lHP,
rIPC and lIPC were revealed in both groups, they were opposite in
direction.

BETWEEN-GROUP ASSOCIATION DIFFERENCES
We adopted a permutation test to investigate between-group dif-
ferences in the connection weight coefficients with the probabili-
ties of type-I errors listed in Table 3. The column “Young > Old”
shows the probabilities of type-I errors under the null hypothesis
that the strength of structural association in the young group is
stronger than in the old group, but the column “Old >Young” dis-
plays the opposite. The connections rITC→mPFC, rHP→ rITC,
and mPFC→PCC were stronger in the young group than in the

5https://code.google.com/p/bnt/
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Wang et al. Aging influence on structural associations within the DMN

FIGURE 1 | Bayesian network models of the DMN in the young (left
panel) and old (right panel) groups. The arrows represent
dependencies among brain regions and the thickness of the arrows is

proportional to the strength of the connections. The asterisks indicate
the connections that were significantly stronger in young/old than in
old/young groups.

Table 2 | List of connections and the corresponding weight coefficients

in the Bayesian network models of the young and old groups.

Connections Weight coefficients

of connections

Young Old

I lHP→mPFC 0.284 0.292

rITC→ lITC 0.784 0.723

rITC→mPFC 0.469 0.372

II rHP→ rITC 0.576

PCC→ lIPC 0.422

mPFC→PCC 0.548

mPFC→ lIPC 0.292

III lITC→ lHP 0.425

rIPC→ rITC 0.559

PCC→ rIPC 0.576

IV rHP→ lHP 0.921

lHP→ rHP 0.773

rIPC→ lIPC 0.649

lIPC→ rIPC 0.625

Part I of this table lists connections that exist in both groups. Parts II and III show

the connections present only in the young and old groups, respectively. Part IV

lists connections that are opposite in direction in two groups.

old group, which were determined by a significance level of uncor-
rected p < 0.05. Using the same assessment, the lHP→mPFC
and rIPC→ rITC connections showed significantly decreased
alterations in the young group when compared with the old group.

CLASSIFICATION ABILITY
The classification results for the young versus the old groups are
summarized as follows. The classification accuracy based on the

Table 3 |The probabilities ofType-I errors for between-group

differences in all connections.

Young > Old Old >Young

Connections Probabilities Connections Probabilities

lHP→mPFC 1.000 lHP→mPFC 0.000

rITC→ lITC 0.334 rITC→ lITC 0.666

rITC→mPFC 0.000 rITC→mPFC 1.000

rHP→ rITC 0.041 lITC→ lHP 0.064

PCC→ lIPC 0.150 rIPC→ rITC 0.000

mPFC→PCC 0.050 PCC→ rIPC 0.832

mPFC→ lIPC 0.220 lHP→ rHP 0.145

rHP→ lHP 0.232 rIPC→ lIPC 0.236

lIPC→ rIPC 0.233

The column “Young > Old” displays the probabilities of type-I errors in the hypoth-

esis that the strength of connections in the young group is stronger than in the

old group.The other column “Old >Young” shows the opposite.The probabilities

marked in bold indicate significantly stronger connections (p < 0.05).

derived two BN models reached 88.48%, and the corresponding
specificity and sensitivity were 89.02 and 88.07%, respectively.

DISCUSSION
In the present study, we applied BN method to characterize gray
matter associations among core brain regions within the DMN of
young and old adults. Then, we employed a non-parametric per-
mutation test to detect the BN connection differences in weight
coefficients between two groups. Furthermore, we evaluated the
discriminability of the aging-related BN models by comparing
joint probability density scores based on the BN models in each
of the young and old groups. The permutation test showed signif-
icant reductions in the connections rITC→mPFC, rHP→ rITC,
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and mPFC→PCC and increases in the connections lHP→mPFC
and rIPC→ rITC in the old group when compared with the young
group. In addition, the aging-related BN models could predict
the membership of subjects with high accuracy, sensitivity, and
specificity.

In contrast to the BN model in young adults, the one in old
adults revealed some coordination disruptions among the DMN
core regions, possibly due to aging. Our findings, in this regard, are
consistent with several published studies. For example, using cor-
relation analysis, previous studies based on cortical thickness or
gray matter volume consistently demonstrated that intra-modular
connections in the DMN in the old group were more reduced
than in the young group (Chen et al., 2011; Wu et al., 2012).
Additionally, Hafkemeijer et al. (2012) summarized various age-
related studies of brain function and found that the DMN generally
showed reduced functional connectivity as a consequence of the
normal aging process. Decreased functional connectivity might
reflect structural alteration of brain network.

Our findings revealed that there were strong structural associ-
ations between brain regions in one hemisphere and the homol-
ogous regions in the opposite hemisphere in both young and old
groups. However, the strengths of structural associations were
generally greater in the young group than in the old group.
The decreased strengths of structural associations between two
homologous brain regions reflected inconsistency in the degree
of atrophy between right and left hemispheres in the old group.
Some previous studies attempted to explore the possible causes
for the reduced homologous inter-hemisphere connections. For
example, Vernooij et al. (2008) found white matter atrophy in cor-
pus callosum might lead to a decrease in structural connections
between bilateral brain regions. In another study, Mechelli et al.
(2005) proposed that the gray matter density of a brain region
could predict the density of a homologous region located in the
opposite hemisphere. In addition to the fact that corpus callosum
contributed to the inter-hemispheric structural connectivity,a pre-
vious study demonstrated that loss of corpus callosum integrity
affected functional connectivity (Quigley et al., 2003).

The prominent between-group changes in the strengths of
structural associations included the decreased connections from
rITC to mPFC, rHP to rITC, and mPFC to PCC and increased
connections from lHP to mPFC and rIPC to rITC in the old group
compared with the young group. The prefrontal cortex is well
known to be associated with executive control function (Madden
et al., 2010). Overall, in our study, the number of connections
with mPFC in the old group was reduced when compared with
the young group. In a previous DTI study of normal aging, Grieve
et al. (2007) found that prefrontal regions showed notable neg-
ative relationship with age, which could be a factor that affected
the strengths of structural associations between other regions and
mPFC as proposed in our study. Another study, based on seed-
ROI, verified that the functionally correlated DMN regions were
also volumetrically correlated and that such correlations between
the right angular cortex and some frontal regions were signifi-
cantly decreased in the old group (Montembeault et al., 2012).
This observed alteration is consistent with our present result
showing connections between mPFC and lIPC present only in
the young group. Moreover, Vernooij et al. (2008) found that

fractional anisotropy in cingulate bundle was reduced, which
might result in decreased structural associations between mPFC
and PCC found in the current study. Andrews-Hanna et al. (2007)
also reported that older adults showed decreased functional con-
nectivity between mPFC and PCC. Additionally, using cortical
thickness, Chen et al. (2011) showed that the correlation between
right mPFC and left precuneus was decreased due to aging, which
is also consistent with our findings. Pertaining to increased struc-
tural associations in the old group, it was possible that these results
were due to a connectivity compensation, a concept described as
some brain regions working harder to make up for the deficiencies
of other regions in the network (Cappell, 2008).

Additionally, we noted that a small number of connections
(between lHP and rHP, between lIPC and rIPC) had reversal
direction in the two groups but showed no statistically signifi-
cant between-group differences. We speculated that the direction
alternation might be influenced by aging among other factors. The
explanation on the direction reversal should be with great caution
since the association dependency is in terms of the conditional
probability (Chen and Herskovits, 2006). More importantly, Smith
et al. (2011) suggested that it was more difficult to achieve accurate
estimation of connection directionality by BN approach in spite
of its high sensitivity of detecting the presence of connections.

Bayesian network modeling can be used to examine probabilis-
tic associations among variables. Till now, BN approach has been
successfully utilized in neuroimaging (including functional MRI
and structural MRI) studies (Chen and Herskovits, 2006; Zheng
and Rajapakse, 2006; Wu et al., 2011; Chen et al., 2012). For func-
tional MRI data, BN modeling examines conditional dependencies
of brain activity based on functional MRI time series for each indi-
vidual subject. For structural MRI data, BN modeling investigates
probabilistic associations of morphological feature based on mor-
phometric variables such as gray matter volume from all subjects
at the group level either within or between groups. A number of
publications have suggested that brain regions covary in their mor-
phological properties, and such structural networks coordinate
due to various factors such as normal aging (Bergfield et al., 2010;
Chen et al., 2011; Montembeault et al., 2012). Furthermore, some
previous studies proposed that structural covariances may result
from mutually trophic influences or common experience-related
plasticity that are mediated by white matter connections (Ferrer
et al., 1995; Mechelli et al., 2005; Soriano-Mas et al., 2013) and the
altered relation between regions may arise from lack of mutually
trophic influences in different clinical conditions (He et al., 2008;
Seeley et al., 2009). Therefore, BN modeling, as a valuable method
of mining association relationships between continuous variables,
can be used to investigate the association dependency based on
regional gray matter volumes. Nevertheless, our current results on
the directional relationship are statistical in nature and they can-
not replace direct biological and medical evidence. We hope that
our study provides additional, consistent but preliminary findings
in support of more comprehensive investigations in this regard.

In addition to examining the network differences, we employed
the BN model as a classification tool to infer group membership
of subjects by comparing the joint probability densities between
the young and the old groups. This operation for classification
integrated all gray matter volume information from eight ROIs
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instead of focusing on obvious morphological changes in some
particular brain regions. The ROC analysis demonstrated the dis-
criminability of the BN model with 88.07% sensitivity, 89.02%
specificity, and 88.48% accuracy. Both the sensitivity and speci-
ficity were close to 90%, which not only verified the validity of our
age-associated BN models but also provided an evidence for the
BN model to server as a predictive brain biomarker in structure
for normal aging.

Although the accuracy of classification was close to 90%, we
noted that we examined the discriminability of the derived BN
models by comparing joint probability densities of the subjects
used to construct BN models. This classification of post hoc nature
has limited validity. Thus, its generalizability needs to be cross-
validated using independent dataset. Additional studies are needed
to verify the replicability and stability of the aging-related BN
models in an independent dataset.

In summary, our study suggests that structural associations
within the DMN are affected by the normal aging process. The
BN modeling approach potentially can serve as a useful tool
for studying structural associations or probabilistic dependence
among multiple brain regions.
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